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1 Introduction

The discussion and analysis throughout this paper will be carried out within the
framework of Bishop’s constructive mathematics?.

It was during the author’s postgraduate studies under the guidance and su-
pervision of Bridges that firmness of the space of a Banach algebra was curiously
looked at. Bishop and Bridges in the final chapter of [4, page 462] discuss the
firmness of the spectrum of Banach algebra. It is a slight translation of that
approach that motivated Bridges and the author to use firmness of the state
space (which is related to the spectrum) in the investigation of positive elements
[9, 13]. It should be pointed out that this short article has two main aims: first,
to highlight this interesting aspect of constructive Banach algebra theory, and
secondly to stand as one of the testimonies to the many areas where Bridges had
been and currently working on. Furthermore, it is the intention of the author
that the materials presented in this article would motivate future investigations
on constructive Banach algebra theory.

The development of constructive Banach algebra theory can be traced back to
Bishop’s work in [2]. Bishop in the final chapter of [3] shed lights in the construc-
tivisation process and, together with Bridges, topped it with a much smoother
development in [4]. For current and recent works on constructive Banach algebra
theory, see [5, 6, 8, 10, 11, 15].

There are two sections that follow immediately after this introductory one.
The first contains some technical results and definitions, and the last presents
the main results. Additionally, there is a brief discussion of extreme points of a
state space and its connection to the character space of the Banach algebra.

1 C. S. Calude, H.Ishihara (eds.). Constructivity, Computability, and Logic. A
Collection of Papers in Honour of the 60th Birthday of Douglas Bridges.

2 This is simply mathematics based on intuitionistic logic where ‘existence’ is strictly
intfzrpreted a? ‘computability’. Details on ‘constructive mathematics’ can be found
in [1, 3, 4, 12].
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2 Preliminary

We write B to denote a complex unital Banach algebra with identity e and Bj
the unit ball of the dual space B’ of B. We define the state space of B to be

set
Ve={feB" :fley=1=|f|}.
For each t > 0 the set

Ve={feB :|fl <L[1-fle)l <t}

is a t-approximation to Vg.
A character of B is a bounded homomorphism of B onto C, and the char-
acter space (or spectrum) of B is the set

Yp={ue B :u(e) = 1,u(xry) = u(z)u(y) for all z,y € B}.

Bishop and Bridges [4, page 452] showed that we can’t hope in general to prove
constructively the compactness of the spectrum. To see this, let (an)ff:o be
an increasing binary sequence and B the algebra consisting of all sequences
x = (z,),-, of complex numbers for which

e}

x| =" (1= an) |z (1)

n=0

exists. We define the elements x and y = (y),~, to be equal if ||x —y|| = 0.
Then B is a Banach space equipped with norm given by (1). Moreover, if we
define the product of any two elements x and y of B by

oo

n
vy - (z y> ,
=0

n=0
then B is a Banach algebra with identity e = (1,0,0,...). Let
z= (1,271,222 ) eB

If a,, = 1 for some n, then the character space X'g of B consists of the single
element x — xg. On the other hand, if a,, = 0 for all n, then to each complex
number § with || < 1 there corresponds an element u¢ of X'p defined by

ue (x) = Z &
n=0

Suppose Y'p is compact. Since the mapping u — |u(z)| is uniformly continuous
relative to the weak* topology on the unit ball of B’ it maps X' to a totally
bounded subset of R; whence

R =sup{|u(z)| :u € Xp}

exists. Either R > 1 or R < 2. In the first case, we have a,, = 0 for all n. In the
second case, we cannot have a,, = 0 for all n. Thus the statement
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The spectrum of every separable commutative unital Banach algebra is
compact.

implies WLPO.
Recall that an element f of X’, where X of a normed linear space, is
normapble if its norm

1f1l = sup {]f ()] : =[] <1}

exists. If X' is separable, and (x,,),-, is a dense sequence in the unit ball
Xi={feX Ve e X (If (=) <=}

of X', then the weak* topology on X’ is induced by the double norm?, defined
by

Al => 27" 1f ()l (feX').
n=1

Proposition 1. For all but countably many t > 0, VE is a nonempty, weak*
compact subset of B’.

Proof. Since the mapping f +— |1 — f (e)| is uniformly continuous on B relative
to the double norm, we see from Theorem 4.9 of [4, page 98] that for all but
countably many ¢ > 0, V! is either empty or weak* compact. An application of
Corollary 4.5 of [4, page 341] shows that for such ¢, V* is nonempty and therefore
weak® compact. Q.E.D.

We say that ¢ > 0 is admissible if V), is weak* compact. Note that
Ve = m {V§ : t >0 is admissible},

the intersection of a family of nonempty, weak* compact sets that is descending
in the sense that if 0 < ¢/ < ¢, then V}; C V}. Being the intersection of a family
of complete sets, Vg is complete relative to the double norm.

We say that V is firm if it is compact and p,, (V! V) — 0 as ¢ — 0, where
pw is the Hausdorfl metric on the set of weak* compact subsets of Bj.

An element x of B is:

— Hermitian if for each € > 0 there exists ¢ > 0 such that [Im f(z)| < € for
all f € V; we denote the set of all Hermitian elements of B by Her(B).

— positive if for each ¢ > 0 there exists ¢ > 0 such that Re f(z) > —¢ and
[Im f(z)| < e for all f € V*; we then write z > 0.

An element f of B’ is a positive linear functional if f(x) > 0 for each positive
element z of B; we then write f > 0.
The following lemma is stated is proved [9)].

3 Double norms defined by different dense sequences in X are equivalent on X7, and
X1 is weak™ compact. Moreover, for each x € X the mapping f — f () is uniformly
continuous on X with respect to the double norm.
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Lemma 2. Suppose that the state space of B is firm. Let A be a Banach subal-
gebra of B, let {z1,...,xNn} be a finitely enumerable subset of A with ©1 = e,
and let € > 0. Then there exists an admissible t > 0 such that for each [ € A’
with ||f|l <1 and |1 — f ()| < t, there exists g € Va4 with

If (zk) —g(wx)| < e (1<k<N)

Lemma3. Let (K)),c; be a nonempty family of totally bounded subsets of a
metric space X, and let K = (,c;, Kx. Suppose that for each € > 0 there evists
X € L such that for each x € K there exists y € K with ||z —y|| < e. Then K
is totally bounded. If also each K is complete, then K is compact.

Proof. Given ¢ > 0, choose A € L as in the hypotheses. Let {x1,...,2n}
be a finite e—approximation to K, and for each n choose y, € K such that
|z — ynl|| < €. Let y € K C K. Then there exists n such that ||y — z,| < €
and therefore

[y = ynll < lly = znll + [l2n —yal <e+e=2e

Thus {y1,...,yn} is & 2e—approximation to K. Since e > 0 is arbitrary, K
is totally bounded. If also each K is complete, then K is an intersection of
complete sets and so is complete; whence it is compact. Q.E.D.

3 Firmness and positivity

Proposition4. If the state space of B is firm, then so is the state space of every
separable Banach subalgebra of B.

Proof. Let A be a separable Banach subalgebra of B, (xn)zo:l a dense sequence
in the unit ball of A, and ||| the corresponding double norm on A’. Given ¢ > 0,
choose N such that Z?:N-ﬂ,-l 27" < €. Using Lemma 2, choose ¢t > 0 such that

— V} and V] are weak* compact,
~— Pw (VéaVB) <g, and
— for each f € V} there exists g € V4 such that

|f(zr) —g(xr)| < e (L<k<N). (2)
Let f € Vi, and choose g € V4 such that (2) holds. We have, in A,

If =gl =_27"1(f — 9) (zn)]

n=1
N e}
:Z |f Tn _g(xn)|+ Z 2_"|f(xn)—g(l‘n)|
n=N+1

N
Z e 42 Z 27"
n=1 n=N+1

< 3e.

It follows from Lemma 3 that V4 is weak™ compact. It is then clear from the
foregoing that p, (V4,V4a) - 0ast— 0. Q.E.D.
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Let K be a convex subset of a normed space, and let xy € K. We say that
To 18

— a classical extreme point of K if
1
Vz,y € K xozi(x+y):>x:y:xo ;
— an extreme point of K if

Ve >036 >0Vx,y € K (

1
xo—i(x—ky)H<6$||x—y|<s>.

An extreme point is a classical extreme point, and the converse holds classically.
The proof of the next result is similar to that given in [14, page 38| for the
special case where B is a Banach algebra of functions. This is proved in [9, 13].

Proposition 5. Let A be a commutative, unital Banach algebra generated by
Hermitian elements, and

K°={feA :f>0, f(e) <1}.
Then every classical extreme point of K° is an element of Xp.

Lemma6. For each t € (0,1), if 0 < o, <1 and 1 —%(a—i—ﬂ) < t/2, then
a>1l—tand f>1-—t.

Proof. 1f 1 — 1 (a + ) < t/2, then

0< u—@+%u—m<

Y

N =
N | o+

so both (1 —a) < t/2 and & (1 — ) < ¢/2. Hence « > 1 —t and 3 > 1 —¢.
Q.E.D.

Proposition 7. If the state space V of B is firm, then every extreme point of
V' is a character of B.

Proof. Let ||-|| be the double norm corresponding to a dense sequence (x,,) -, in
the unit ball of B with z; = e. Noting that V C K°, we show that every extreme
point of V is also one of K. Accordingly, let fo be an extreme point of V, and
let € > 0. Choose 6; € (0,¢) such that if f,g € V and |||% (f+9) — f0||| < 01,
then ||f —g|| < &. Then choose an admissible ¢ > 0 such that p, (V,V) <
91/2. Finally, choose 62 > 0 such that if f,g € B’ and ||f —g|| < J2, then

|f(e) —g(e)| < t/2. Now let
0 = min —1 01,0
1 2 1,02 3

and consider f,g € K° with m% (f+9)— fom < 4. Since

<

Y

DO |

30+9)© 1] =540 @ - 70
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we have |1 — f (e)| < t and |1 — g(e)| < t, by Lemma 6; whence f,g € V!, and
therefore there exist f', g’ € V such that |f — f'|| < 61/2 and |lg — ¢'|| < 61/2.
We now have

1 1 1
|5 0+a1-n =1+ 5l - g

<|3u+0-1

1 1 1
=01+ =01 + =01 = 01.
< 5 1+ 1 1+ 11 1
Hence || f" — ¢'|| < €, and therefore

If =gl <f = FD+0F" =g+ llg—g'll <e+6d1 <2

Since € > 0 is arbitrary, this completes the proof that fy is an extreme point, and
therefore a classical extreme point, of K°. By Proposition 5, fy is a character of
B. Q.E.D.

Proposition 8. If V is weak* compact, then every element of V is a convex
combination of characters of B.

Proof. 1t is easily shown that V is convex. An application of the Krein—Milman
Theorem [4, page 363, (7.5)] shows that V' is the closed convex hull of its extreme
points; so we can apply Proposition 7. Q.E.D.

Corollary 9. If the state space of B is firm, then the character space of every
separable commutative Banach subalgebra of B is nonempty.

Proof. Let A be a separable commutative Banach subalgebra of B. Proposition
4 shows that V4 is firm; in particular, it is compact and so has extreme points.
By Proposition 7, those extreme points are characters of A.  Q.E.D.

Proposition10. Let V be firm. Then a € Her (B) is positive if and only if
f(a) >0 for each f € V.

Proof. If a is positive, then for each £ > 0 there exists an admissible ¢t > 0 such
that Reg(a) > —¢ and [Img(a)| < ¢ for all g € VI If f € V, then f € V! and
so Re f(a) > —¢ and |Im f(a)| < e. Since € > 0 is arbitrary, we conclude that
f(a) = Re f(a) > 0.

Conversely, suppose that f(a) > 0 for each f € V. Since there exist admis-
sible numbers ¢ > 0 such that p,, (V,V?) is arbitrarily small, we can choose an
admissible ¢ such that for each g € V* there exists f € V with |g(a) — f(a)| < e.
It now follows that for each g € V¢,

[Img(a)| < [Im f(a)| + |g(a) — f(a)| SO+e=¢

and
Reg(a) >Re f(a) —e > 0—ec = —¢.

Since € > 0 is arbitrary, we conclude that a > 0. Q.E.D.

Theorem 11. Let a be a Hermitian element of a complex unital Banach algebra
B that has firm state space. Then a™ is positive for each even positive integer n.
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Proof. Let A be a (separable) closed subalgebra of B generated by Hermi-
tian elements a and identity e. By Proposition 4, the state space V4 of A is
firm. It follows from Proposition 8 that for each f € V4 there exist characters

Uty - -

., Um of A, and nonnegative numbers A1, ..., Ay, such that Y /" A =1

and ||f — Y i~ Mgl is arbitrary small. In particular, given any n and € > 0,
choose u; and \; such that [(f — Y% Aiu;) (a™)| < e. If a > 0 and n is even,
then

Re f (a™) > Re Z Aiwg (@) — | f(a™) — Z A (a™)

> Re Z Aiu; (a)" —e
i=1

Z _E;

the last step following from Proposition 10. Since € > 0 is arbitrary, we have
Re f (a™) > 0 for each f € V; whence, again by Proposition 10, ™ > 0. Q.E.D.
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