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Abstract: Let us say that an infinite binary sequence q lies above an infinite binary
sequence p if q can be obtained from p by replacing selected 0’s in p by 1’s. We show
that above any infinite binary Martin-Löf random sequence p there exists an infi-
nite binary nonrandom sequence q above which there exists an infinite binary random
sequence r. This result is of interest especially in connection with the new random-
ness notion for sets of natural numbers introduced in [Hertling and Weihrauch 1998,
Hertling and Weihrauch 2003] and in connection with its relation to the Martin-Löf
randomness notion for infinite binary sequences.
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1 Introduction

The today perhaps most widely used notion of randomness for infinite binary
sequences is due to Martin-Löf [Martin-Löf 1966]. His definition is based on the
idea that a sequence should be called random if it does not satisfy any law
which can be verified effectively and which is valid only for a small subset of
all sequences. Here “small” is meant in a measure-theoretic sense. Technically,
this can be expressed by so-called “randomness tests”. Precise definitions will be
given in Section 3. One can characterize this notion of randomness of an infinite
binary sequence also via the program-size complexity of the finite prefixes of the
infinite binary sequence. For more background information about randomness
notions the reader is referred to [Calude 2002] and [Li and Vitanyi 1997].

In this paper we prove a new property of Martin-Löf random infinite binary
sequences. Consider some random binary sequence p. Is it possible, by first re-
placing some 0’s in p by 1’s, to arrive at a nonrandom sequence q, and then,
by repeating this process, i.e., by replacing some 0’s in q by 1’s, to arrive at a
random sequence r again? It is the main result of this paper that this is indeed
possible, even for all random binary sequences p. Note that this is by no means
obvious. In the first step of replacing 0’s by 1’s one has to introduce some non-
randomness, i.e., some effectively testable law, into the original random binary
sequence. But in the second step, by replacing even more 0’s by 1’s, one has to
destroy this law again, and to make sure that the resulting sequence does not
satisfy any effectively testable law. If, for example, in the first step one makes
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sure that q(n) = 1 for all n which are a power of 2, then certainly q is a nonran-
dom sequence. But any sequence obtained by changing even more 0’s to 1’s will
satisfy the same law, and, hence, will also be nonrandom.

While we believe that the result stated above in terms of infinite binary
sequences is interesting itself already, the motivation which led to this result was
a question arising in the study of random sets of numbers. Which sets of natural
numbers should be called random? Of course, one might take the randomness
notion for infinite binary sequences and transfer it to sets by identifying a set
with its characteristic sequence. Another, new notion of randomness for sets was
introduced in [Hertling and Weihrauch 1998, Hertling and Weihrauch 2003]. It
is obtained by defining randomness tests on the power set 2IN of the set IN of all
natural numbers similarly to Martin-Löf’s randomness tests, but with respect
to the topology on 2IN as a complete partial order in the usual sense, not with
respect to the topology on 2IN induced by identifying 2IN with the space of all
infinite binary sequences. The precise definition will be given in a later section.
The relation between random binary sequences and random sets has something in
common with the relation between decidable sets and computably enumerable
sets. For random binary sequences one considers any effectively testable law
that can be expressed in terms of finite 0, 1-strings. But for random sets one
considers only effectively testable laws that can be expressed in terms of finite
sets, i.e., in terms of finite combinations of 1’s. Thus, while for random sequences
one considers positive (1’s) and negative (0’s) information, for random sets one
considers only positive (1’s) information. The situation is similar for decidable
sets (positive and negative information) and computably enumerable sets (only
positive information). It is a fundamental fact that a set is decidable if and only
if both the set and its complement are computably enumerable. Is a similar
statement true for random sequences and random sets, that is, is it true that a
sequence is random if and only if the corresponding set and its complement are
random? It is easy to see that randomness of the characteristic sequence of a
set implies randomness of the set and of its complement. But it is a corollary of
the result stated above that the converse is not true: there exists a set such that
both the set and its complement are random but the corresponding characteristic
binary sequence is nonrandom. In fact, we can derive a much stronger result: For
any random set A, there exists a superset B ⊇ A such that both B and IN \ B
are random, but the characteristic sequence of B is not random.

In the following section we introduce some basic, general notation. In Section
3 we remind the reader of Martin-Löf’s randomness notion for infinite binary
sequences and state the main result of the paper in a more formal way. In Section
4 we repeat the definition of random sets of natural numbers, introduced in
[Hertling and Weihrauch 1998, Hertling and Weihrauch 2003], and restate and
derive the statement mentioned above about the relation between random sets
and random binary sequences. Section 5 contains the proof of the main result.

2 Notation

We denote the set of natural numbers by IN = {0, 1, 2, . . .}. The cardinality of a
finite set E is denoted by #(E). Throughout the paper, Σ denotes the binary
alphabet: Σ = {0, 1}. The set of all finite strings over Σ is denoted Σ∗. The
length of a finite string w is denoted length(w). The symbols of w are usually
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written w(0), . . . , w(length(w)−1). By #1(w) we denote the number of 1’s in w.
For sets A, B ⊆ Σ∗, by AB we denote the set of all concatenations of strings in
A and strings in B (in this order). A possibly partial function mapping elements
of a set X to elements of a set Y is denoted f :⊆ X → Y . For a function
f :⊆ X → Y and an element x ∈ X , we write f(x) ↓ if, and only if, x is in the
domain of definition dom(f) of f , and f(x) ↑ otherwise. If dom f = X , we may
write f : X → Y . We use the notions of a computable, possibly partial, function
f :⊆ INk → IN and of a computably enumerable (c.e.) set A ⊆ INk in the usual
sense, for k ≥ 1. By identifying the sets Σ∗ and IN via the length-lexicographical
ordering we obtain computability notions also on Σ∗ and on products of IN and
Σ∗. A sequence is a total mapping p : IN → X to some set X and usually written
in the form (pn)n or (p(n))n. The infinite product Σω := {p | p : IN → Σ} of
Σ is the set of all infinite binary sequences. For 0 ≤ n ≤ m and p ∈ Σω, by
p[n . . .m − 1] we denote the string of length m − n consisting of the symbols
p(n) . . . p(m − 1). The set Σω is a topological space with a basis consisting of
the sets wΣω = {p ∈ Σω | p[0 . . . length(w) − 1] = w}, for w ∈ Σ∗. For A ⊆ Σ∗,
we use AΣω =

⋃
w∈A wΣω. We denote by µ the usual uniform measure on Σω

given by µ(wΣω) = 2−length(w), for w ∈ Σ∗.

3 Random Infinite Binary Sequences

In this section we remind the reader of Martin-Löf’s [Martin-Löf 1966] definition
of random binary sequences and state the main results of the paper in a more
formal way.

Definition 1. 1. A sequence (Un)n of subsets of Σω is called uniformly c.e.
open if there is a c.e. set A ⊆ IN × Σ∗ with Un = AnΣω for all n, where

An := {w ∈ Σ∗ | (n, w) ∈ A} .

2. A randomness test on Σω is a uniformly c.e. open sequence (Un)n of subsets
of Σω satisfying additionally µ(Un) ≤ 1/(n + 1) for all n ∈ IN.

3. A sequence p ∈ Σω is called nonrandom if there exists a randomness test
(Un)n on Σω with p ∈ ⋂

n Un. A sequence p ∈ Σω is called random if it is
not nonrandom.

Often, for example in the original paper [Martin-Löf 1966], instead of the
condition µ(Un) ≤ 1/(n + 1) the condition µ(Un) ≤ 2−n is used. It is clear that
our choice does not lead to a different randomness notion. The only reason for
our choice is that with respect to notation it is more convenient for some proofs
later on.

One of the striking properties of this randomness notion is the existence of a
universal randomness test: we call a randomness test (Un)n universal if

⋂
n Un

contains all nonrandom sequences p ∈ Σω.

Proposition2 ([Martin-Löf 1966]). There exists a universal randomness test
on Σω.
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Let us define the bijection χ : 2IN → Σω by

χ(A)n =
{

1 if n ∈ A,
0 if n 	∈ A,

for all A ⊆ IN and n ∈ IN, i.e., for A ⊆ IN the sequence χ(A) is the characteristic
sequence of A.

Definition 3. We define a partial order relation ≤ on Σω by

p ≤ q : ⇐⇒ χ−1(p) ⊆ χ−1(q) ,

for any p, q ∈ Σω.

The following theorem, first stated in the technical report [Hertling 2001], is
the main result of the paper.

Theorem 4. For every random sequence p ∈ Σω there exist two sequences q, r ∈
Σω with the following properties: q is nonrandom, r is random, p ≤ q, and q ≤ r.

The proof will be given in Section 5.

4 Random Sets of Numbers

In [Hertling and Weihrauch 1998, Hertling and Weihrauch 2003] a randomness
notion for sets of natural numbers was introduced in a similar way as randomness
for infinite binary sequences, namely via randomness tests. For a finite set E ⊆ IN
we define

O(E) := {A ⊆ IN | E ⊆ A} .

The sets O(E) for finite E form a basis of a topology on 2IN. This topology
gives 2IN a well-researched structure of a “complete partial order”; see e.g.
[Weihrauch 1987]. It is different from the topology on 2IN induced by identi-
fying 2IN via χ with the topological space Σω, but both topologies generate the
same σ-algebra; see [Hertling and Weihrauch 2003, Lemma 6.1]. Therefore, we
can translate the measure µ on Σω via χ to 2IN. We also use the standard bijec-
tive numbering D : IN → {E ⊆ IN | E is finite} of the set of all finite subsets of
IN, defined by D−1(E) :=

∑
i∈E 2i.

Definition 5. 1. A sequence (Un)n of subsets of 2IN is called uniformly c.e.
open if there is a c.e. set R ⊆ IN2 with Un =

⋃
i∈Rn

O(Di) for all n, where

Rn := {i ∈ IN | (n, i) ∈ R} .

2. A randomness test on 2IN is a uniformly c.e. open sequence (Un)n of subsets
of 2IN satisfying additionally µ(Un) ≤ 1/(n + 1) for all n.

3. A set A ⊆ IN is called nonrandom if there exists a randomness test (Un)n on
2IN with p ∈ ⋂

n Un. A set A ⊆ IN is called random if it is not nonrandom.

The randomness notions for infinite binary sequences and for sets are closely
related.
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Proposition6 ([Hertling and Weihrauch 1998]). A set A ⊆ IN is random
if, and only if, there is a set B ⊇ A such that χ(B) is random.

For a proof of this result see [Hertling and Weihrauch 2003].
For any A ⊆ IN the sequence χ(A) is random if and only if, the sequence

χ(IN \ A) is random. Therefore, Proposition 6 implies that if χ(A) is random
then both A and IN \A are random. Is the converse true? From Theorem 4 and
Proposition 6 we can deduce that this is not the case. In fact, we can deduce the
following much stronger result.

Corollary 7. For any random set A ⊆ IN there exists a superset B ⊇ A of
natural numbers with the following properties: both the set B and its complement
IN \ B are random, but the characteristic sequence χ(B) of B is not random.

Proof. Let A be an arbitrary random set. By Proposition 6, there exists a random
sequence p with A ⊆ χ−1(p). By Theorem 4 there exist a nonrandom sequence q
and a random sequence r with p ≤ q ≤ r. Set B := χ−1(q). Then A ⊆ χ−1(p) ⊆
B. Since r is random and B ⊆ χ−1(r), by Proposition 6, B is random. Since p is
random, also the sequence p obtained by replacing all 0’s in p by 1’s and all 1’s
in p by 0’s, is random. Hence, since IN \B ⊆ χ−1(p), by Proposition 6, IN \B is
random. �

5 The Proof of Theorem 4

This section contains the proof of Theorem 4. The first subsection contains the
construction and the main body of the proof. The remaining three subsections
contain proofs of lemmata formulated in the first subsection.

5.1 The Construction and the Main Body of the Proof

We need the following simple notions and statements.

Definition 8. 1. For S ⊆ Σω we set

up(S) := {q ∈ Σω | ∃p ∈ S . p ≤ q} .

2. For S ⊆ Σω we set

down(S) := {p ∈ Σω | ∃q ∈ S . p ≤ q} .

3. A set S ⊆ Σω is called upwards closed if up(S) ⊆ S.
4. A set S ⊆ Σω is called downwards closed if down(S) ⊆ S.

Lemma9. 1. If S is open, so are up(S) and down(S).
2. If S is closed, so are up(S) and down(S).
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Proof. The first statement is obvious. The second follows from the compactness
of Σω. We prove the second statement for up(S) in detail. The proof for down(S)
is similar. Let S ⊆ Σω be a closed set. Let q be an element of the closure of up(S).
We have to show that q is in up(S). For each n, let q(n) ∈ up(S) be a sequence
with q(n)[0 . . . n − 1] = p[0 . . . n − 1]. For each n, let p(n) ∈ S be a sequence
with p(n) ≤ q(n). Since S is closed, and, due to the compactness of Σω, also
compact, there is an accumulation point p ∈ S of the sequence (p(n))n. We claim
that p ≤ q. Indeed, for any m there exists some n ≥ m with p(n)[0 . . .m − 1] =
p[0 . . .m − 1]. Using also p(n) ≤ q(n) and q(n)[0 . . .m − 1] = q[0 . . .m − 1] we
obtain p[0 . . .m − 1]0ω ≤ q[0 . . .m − 1]0ω. This shows p ≤ q. Thus, p ∈ up(S).
We have proved that up(S) is closed. �

For l ∈ IN and 0 ≤ z ≤ l we set

S(l, z) := {w ∈ Σl | #1(w) = z} .

For each l, m ∈ IN and i ∈ {0, . . . , m} let g(l, m, i) be the smallest number j
with the following property:

#({w ∈ Σl | #1(w) ≤ j})
#(Σl)

≥ i

m
.

The partial function g :⊆ IN3 → IN defined in this way is obviously computable.
Clearly,

0 = g(l, m, 0) ≤ . . . ≤ g(l, m, i) ≤ g(l, m, i + 1) ≤ . . . ≤ g(l, m, m) = l

for l, m ∈ IN, i ∈ {0, . . . , m − 1}.
We define three computable sequences (lk)k, (mk)k, and (nk)k of natural

numbers by

lk := 2 · (k + 1)6, nk :=
k−1∑
i=0

li,

mk := (k + 1)2 .

For k ∈ IN we define

T (k) :=
mk⋃
i=0

S(lk, g(lk, mk, i))

and
Ck := {p ∈ Σω | p[nk . . . nk+1 − 1] ∈ T (k)} .

For each k, the set Ck is closed and open. It is clear that the sequence (Ck)k is
uniformly c.e. open.

Lemma10. For each k ∈ IN, µ(Ck) ≤ 1/(k + 1).
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This lemma is proved by estimating the number of strings in T (k). This is
done by using a version of Stirling’s formula with an error estimate. The proof
is given in Subsection 5.2.

Hence, any sequence p contained in
⋂∞

j=k Cj , for some k, is nonrandom.
Let (Vn)n be a universal randomness test on Σω; see Proposition 2. We define

for each k

Uk :=

⎧⎨
⎩p ∈ Σω

∣∣∣∣∣ up

⎛
⎝up ({p}) ∩

∞⋂
j=k

Cj

⎞
⎠ ⊆ Vk

⎫⎬
⎭ .

Lemma11. The sequence (Uk)k is uniformly c.e. open.

This lemma is proved in Subsection 5.3. The proof is based on the following
observations. On the one hand, the sequence (Vk)k is uniformly c.e. open, thus,
it can be approximated uniformly from below by basic open sets. On the other
hand, the set up

(
up ({p}) ∩ ⋂∞

j=k Cj

)
is compact and it can be approximated

uniformly from above by compact sets that are described by finite information.
This set is compact, because each Cj is compact, therefore also their intersection,
and because of Lemma 9, applied twice. It can be approximated from above by
the compact sets up

(
up (wΣω) ∩ ⋂i

j=k Cj

)
for longer and longer prefixes w of

p and for growing i.

Lemma12. For each k ∈ IN, µ(Uk) ≤ 2/(k + 1).

The proof of this lemma is the longest part of the proof. The main idea is
that, although for j tending to infinity the measure µ(Cj) tends to zero, the
measure µ(A ∪ B) of any union A ∪ B of a measurable, downwards closed set
A and a measurable, upwards closed set B such that A ∪ B contains Cj can
be bounded from below effectively by a number tending to 1 for j tending to
infinity. The proof of Lemma 12 is given in Subsection 5.4.

From these lemmata we can deduce the assertion of Theorem 4. Let p ∈ Σω

be a random sequence. We have to show that there exist two sequences q, r ∈ Σω

with the following properties: q is nonrandom, r is random, p ≤ q, and q ≤ r.
According to Lemma 11 and Lemma 12, the sequence (U2·k+1)k is a random-

ness test. Since p is random, there is some k0 with p 	∈ Uk0 . Hence, there is some
sequence r ∈ up

(
up({p}) ∩ ⋂∞

j=k0
Cj

)
with r 	∈ Vk0 . Since (Vk)k is a universal

randomness test, r 	∈ Vk0 implies that r is random. There must also exist some
sequence q ∈ up({p})∩⋂∞

j=k0
Cj with q ≤ r. The condition q ∈ up({p}) is equiv-

alent to p ≤ q. And the condition q ∈ ⋂∞
j=k0

Cj implies that q is nonrandom,
due to Lemma 10 and the fact that the sequence (Ck)k is uniformly c.e. open.
This ends the proof of Theorem 4.

We still have to prove Lemma 10, Lemma 11, and Lemma 12. This will be
done in the following subsections.
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5.2 Proof of Lemma 10

For k = 0 the assertion is trivial. Let us fix some k ≥ 1. It is clear that

2lk · µ(Ck) = #(T (k))

=
mk∑
i=0

#(S(lk, g(lk, mk, i)))

=
mk∑
i=0

(
lk

g(lk, mk, i)

)

= 2 +
mk−1∑
i=1

(
lk

g(lk, mk, i)

)
.

For the terms in the sum we use the following uniform estimate:(
lk
j

)
=

lk!
j! · (lk − j)!

≤ lk!
(lk/2)! · (lk/2)!

,

valid for any j ∈ {0, . . . , lk}. Note that lk is even. The last term on the right hand
side can be estimated using the following two-sided estimate for the factorial
function:

√
2πn · nn · e−n < n! <

√
2πn · nn · e−n · exp

(
1

12(n− 1)

)
,

valid for n ≥ 2. This is a version of Stirling’s formula together with an error
estimate. For a proof see e.g. Forster [Forster 1983]. Since lk/2 ≥ 2 for k ≥ 1,
we obtain

lk! <
√

2πlk · llkk · e−lk · exp
(

1
12(lk − 1)

)
,

(lk/2)! >
√

2π(lk/2) · (lk/2)lk/2 · e−lk/2 ,

hence,

lk!
(lk/2)! · (lk/2)!

≤
√

2πlk · llkk · e−lk · exp
(

1
12(lk−1)

)
π · lk · (lk/2)lk · e−lk

=
√

2
π · lk · 2lk · exp

(
1

12(lk − 1)

)
.

Thus, we obtain

µ(Ck) ≤ 2
2lk

+ (mk − 1) ·
√

2
π · lk · exp

(
1

12(lk − 1)

)

=
2

22·(k+1)6
+

((k + 1)2 − 1)
(k + 1)3

·
√

1
π
· exp

(
1

12(2 · (k + 1)6 − 1)

)
≤ 1/(k + 1) .

That was to be shown.
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5.3 Proof of Lemma 11

Let h : IN2 → Σ∗ be a total computable function with Vk = {h(k, i) | i ∈ IN}Σω

for all k. We define
Vk[i] := {h(k, j) | 0 ≤ j < i}Σω

for all k, i. It is clear that the set

D̃ :=

⎧⎨
⎩(k, i, w) ∈ IN2 × Σ∗

∣∣∣∣∣ i ≥ k and up

⎛
⎝up(wΣω) ∩

i⋂
j=k

Cj

⎞
⎠ ⊆ Vk[i]

⎫⎬
⎭

is decidable. Hence, the set D ⊆ IN × Σ∗ defined by

D :=
{

(k, w) ∈ IN × Σ∗
∣∣∣∣ ∃i ≥ k . (k, i, w) ∈ D̃

}

is computably enumerable. The assertion of Lemma 11 follows from this fact and
from the following lemma, where we use Dk := {w ∈ Σ∗ | (k, w) ∈ D}.
Lemma13. Uk = DkΣω for all k ∈ IN.

Proof. Let us fix some k ∈ IN. It is obvious that DkΣω ⊆ Uk. For the inverse
inclusion fix some p ∈ Uk. We have to show p ∈ DkΣω.

Since all sets Cj are closed, so is the set
⋂∞

j=k Cj . Since the singleton set {p} is
closed, so is the set up({p}), according to Lemma 9. Thus, also the set up({p})∩⋂∞

j=k Cj is closed, and again according to Lemma 9, also the set up(up({p}) ∩⋂∞
j=k Cj). It is even compact because Σω is compact. Since p ∈ Uk, there must

exist some i (without loss of generality i ≥ k) with

up

⎛
⎝up ({p}) ∩

∞⋂
j=k

Cj

⎞
⎠ ⊆ Vk[i] .

Let z be the smallest natural number such that

nz ≥ max{length(h(k, j)) | 0 ≤ j < i} .

We claim that even

up

⎛
⎝up(p[0 . . . nz − 1]Σω) ∩

z−1⋂
j=k

Cj

⎞
⎠ ⊆ Vk[i] . (1)

This, of course, implies p ∈ DkΣω. In order to prove (1), fix a sequence

r ∈ up

⎛
⎝up(p[0 . . . nz − 1]Σω) ∩

z−1⋂
j=k

Cj

⎞
⎠ .
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We have to show r ∈ Vk[i]. Fix also a sequence

q ∈ up(p[0 . . . nz − 1]Σω) ∩
z−1⋂
j=k

Cj

with q ≤ r. Set

q′ := q[0 . . . nz − 1]1ω and
r′ := r[0 . . . nz − 1]1ω .

Then q′ ∈ up({p}) ∩ ⋂∞
j=k Cj and q′ ≤ r′. We conclude r′ ∈ Vk[i]. There must

be some j < i with r′ ∈ h(k, j)Σω. Since length(h(k, j)) ≤ nz, we conclude that
also r ∈ h(k, j)Σω, hence, r ∈ Vk[i]. That ends the proof. �

5.4 Proof of Lemma 12

We start with a simple property of downwards respectively upwards closed sets.

Lemma14. 1. For every string v ∈ Σ∗, every l ≥ 1, every z ∈ {0, . . . , l − 1},
and every downwards closed, measurable set A ⊆ Σω,

µ(A ∩ vS(l, z)Σω)
µ(vS(l, z)Σω)

≥ µ(A ∩ vS(l, z + 1)Σω)
µ(vS(l, z + 1)Σω)

.

2. For every string v ∈ Σ∗, every l ≥ 1, every z ∈ {1, . . . , l}, and every upwards
closed, measurable set B ⊆ Σω,

µ(B ∩ vS(l, z)Σω)
µ(vS(l, z)Σω)

≥ µ(B ∩ vS(l, z − 1)Σω)
µ(vS(l, z − 1)Σω)

.

Proof. This result follows from the symmetry of the sets S(l, z). We show only
the first statement. The second is proved in the same way. Fix some l ≥ 1 and
some z ∈ {0, . . . , l − 1}. Since A is downwards closed, for any w ∈ S(l, z),

µ(A ∩ vwΣω) ≥ max{µ(A ∩ vxΣω) | x ∈ S(l, z + 1) and w ≤ x}

≥
∑

x∈S(l,z+1), w≤x µ(A ∩ vxΣω)

#{x ∈ S(l, z + 1) | w ≤ x}
=

1
l − z

·
∑

x∈S(l,z+1), w≤x

µ(A ∩ vxΣω) .

Here w ≤ x has the obvious meaning for strings w and x of the same length:
w(i) ≤ x(i) for all i < length(w). In other words, w ≤ q ⇐⇒ w0ω ≤ x0ω,
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for string w and x of the same length. Summation over all w ∈ S(l, z) and
interchanging the summations on the right hand side yields:

µ(A ∩ vS(l, z)Σω) ≥ 1
l − z

·
∑

w∈S(l,z)

∑
x∈S(l,z+1), w≤x

µ(A ∩ vxΣω)

=
1

l − z
·

∑
x∈S(l,z+1)

∑
w∈S(l,z), w≤x

µ(A ∩ vxΣω)

=
1

l − z
·

∑
x∈S(l,z+1)

(z + 1) · µ(A ∩ vxΣω)

=
z + 1
l − z

· µ(A ∩ vS(l, z + 1)Σω) .

The assertion follows because

µ(vS(l, z)Σω) =
z + 1
l − z

· µ(vS(l, z + 1)Σω) .

�
Lemma15. Fix a string v ∈ Σ∗ and a number k ∈ IN. Let A ⊆ Σω be a
downwards closed, measurable set and B ⊆ Σω be an upwards closed, measurable
set. Let γ ∈ [0, 1] be a real number such that

µ(A ∩ vwΣω) + µ(B ∩ vwΣω)
µ(vwΣω)

≥ γ for all w ∈ T (k). (2)

Then
µ(A ∩ vΣω) + µ(B ∩ vΣω)

µ(vΣω)
≥ γ ·

(
1 − 1

mk

)
.

Proof. Throughout the proof, a string v ∈ Σ∗, a number k ∈ IN, a downwards
closed set A ⊆ Σω, an upwards closed set B ⊆ Σω, and a real number γ ∈ [0, 1]
satisfying (2) are fixed.

Lemma 14 implies for all i ≤ mk, and all z ≤ g(lk, mk, i),

µ(A ∩ vS(lk, z)Σω)
µ(vS(lk, z)Σω)

≥ µ(A ∩ vS(lk, g(lk, mk, i))Σω)
µ(vS(lk, g(lk, mk, i))Σω)

. (3)

Considering the definition of g(lk, mk, i) one deduces

µ(A ∩ vΣω)
µ(vΣω)

≥ 1
mk

·
mk∑
i=1

µ(A ∩ vS(lk, g(lk, mk, i))Σω)
µ(vS(lk, g(lk, mk, i))Σω)

. (4)

Before we prove this claim in detail, we continue with the main body of the proof
of Lemma 15. Similarly to (4), one obtains

µ(B ∩ vΣω)
µ(vΣω)

≥ 1
mk

·
mk−1∑
i=0

µ(B ∩ vS(lk, g(lk, mk, i))Σω)
µ(vS(lk, g(lk, mk, i))Σω)

. (5)
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Adding (4) and (5) and taking for every i ∈ {1, . . . , mk − 1} into account:

µ(A ∩ vS(lk, g(lk, mk, i)Σω) + µ(B ∩ vS(lk, g(lk, mk, i)Σω)
µ(vS(lk, g(lk, mk, i)Σω)

≥ γ

(this follows from the assumption (2)), we obtain

µ(A ∩ vΣω) + µ(B ∩ vΣω)
µ(vΣω)

≥ 1
mk

· (mk − 1) · γ .

That was to be shown.
We still wish to give a detailed proof of (4). The inequality (5) can be proved

in the same way. We prove only (4). First, using

δi :=
µ(A ∩ vS(lk, g(lk, mk, i))Σω)

µ(vS(lk, g(lk, mk, i))Σω)

we rewrite (3) as follows:

µ(A ∩ vS(lk, z)Σω) ≥ 2−length(v)−lk · δi · #(S(lk, z)) (6)

(this is valid for 0 ≤ i ≤ mk and 0 ≤ z ≤ g(lk, mk, i)). We observe

µ(A ∩ vΣω) =
lk∑

z=0

µ(A ∩ vS(lk, z)Σω)

=
mk∑
i=0

µ(A ∩ vS(lk, g(lk, mk, i))Σω) (7)

+
mk∑
i=1

∑
g(lk,mk,i−1)<z<g(lk,mk,i)

µ(A ∩ vS(lk, z)Σω) . (8)

The terms in the sum in (8), the double sum, are estimated using (6) directly.
For the estimate of the terms in the sum in (7) we define numbers αi for i ∈
{0, . . . , mk}:

αi :=
#({w ∈ Σlk | #1(w) ≤ g(lk, mk, i)}) − i

mk
· #(Σlk)

#(S(lk, g(lk, mk, i)))
.

Note that 0 ≤ αi ≤ 1 for each i ∈ {0, . . . , mk}, and especially α0 = 1, αmk
= 0.

By induction over i one observes for all i ∈ {1, . . . , mk}
1

mk
· #(Σlk) = αi−1 · #(S(lk, g(lk, mk, i − 1)))

+
∑

g(lk,mk,i−1)<z<g(lk,mk,i)

#(S(lk, z)) (9)

+ (1 − αi) · #(S(lk, g(lk, mk, i))) .
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For the terms in the sum in (7) we use the following estimate, according to (6)
valid for all i ∈ {0, . . . , mk − 1}:

µ(A ∩ vS(lk, g(lk, mk, i))Σω)

≥ 2−length(v)−lk · ((1 − αi) · δi + αi · δi+1

) · #(S(lk, g(lk, mk, i))) .

Due to αmk
= 0, this expression makes sense and is true also for i = mk. For

the term µ(A ∩ vΣω) we obtain

µ(A ∩ vΣω)

≥
mk∑
i=0

2−length(v)−lk · ((1 − αi) · δi + αi · δi+1

) · #(S(lk, g(lk, mk, i)))

+
mk∑
i=1

∑
g(lk,mk,i−1)<z<g(lk,mk,i)

2−length(v)−lk · δi · #(S(lk, z))

=
1

mk
· 2−length(v) ·

mk∑
i=1

δi .

The last equality follows by rearranging, by using α0 = 1 and αmk
= 0, and by

applying (9). This ends the proof of (4) and the proof of Lemma 15. �
Corollary 16. Fix a string v ∈ Σ∗, a number k ∈ IN, and a number i ≥ k.
Let A ⊆ Σω be a downwards closed, measurable set and B ⊆ Σω be an upwards
closed, measurable set. Let γ ∈ [0, 1] be a real number such that

µ(A ∩ vwΣω) + µ(B ∩ vwΣω)
µ(vwΣω)

≥ γ

for all w ∈ T (k) . . . T (i). Then

µ(A ∩ vΣω) + µ(B ∩ vΣω)
µ(vΣω)

≥ γ ·
i∏

j=k

(
1 − 1

mj

)
.

Proof. This follows by induction from Lemma 15. �
Corollary 17. Fix a number k ∈ IN, and a number i ≥ k. Let A ⊆ Σω be a
downwards closed, measurable set and B ⊆ Σω be an upwards closed, measurable
set such that

i⋂
j=k

Cj ⊆ A ∪ B .

Then

µ(A) + µ(B) ≥
i∏

j=k

(
1 − 1

mj

)
.

Proof. This follows from Corollary 16 by considering γ = 1 and all strings v of
length nk, and by taking the sum over all these strings. �
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Corollary 18. Fix a number k ∈ IN. Let A ⊆ Σω be an open, downwards closed
set and B ⊆ Σω be an open, upwards closed set such that

∞⋂
j=k

Cj ⊆ A ∪ B .

Then
µ(A) + µ(B) ≥ k

k + 1
.

Proof. There exist sets WA, WB ⊆ Σ∗ with A = WAΣω and with B = WBΣω.
Since the set

⋂∞
i=k Cj is compact there exists a number l ∈ IN such that

∞⋂
j=k

Cj ⊆ {w ∈ WA | length(w) ≤ l}Σω ∪ {w ∈ WB | length(w) ≤ l}Σω .

Set i := min{z ∈ IN | z ≥ k & nz+1 ≥ l}. Then, clearly,

i⋂
j=k

Cj ⊆ {w ∈ WA | length(w) ≤ l}Σω ∪ {w ∈ WB | length(w) ≤ l}Σω .

We conclude from Corollary 17

µ(A) + µ(B) ≥
i∏

j=k

(
1 − 1

mj

)

≥
∞∏

j=k

(
1 − 1

mj

)

=
∞∏

j=k

(
1 − 1

(j + 1)2

)

=
k

k + 1
.

�
Lemma19. Let A ⊆ Σω be a closed, downwards closed set, and fix some ε > 0.
There is an open, downwards closed set A′ with A ⊆ A′ and µ(A′) ≤ µ(A) + ε.

Proof. The complement Σω \A of A is an open, upwards closed set. There exists
a finite set W ⊆ Σω such that WΣω ⊆ Σω \ A and µ(WΣω) ≥ µ(Σω \ A) − ε.
The set WΣω is closed. So is the set up(WΣω). This set is also contained in
Σω \ A. Therefore, the set A′ := Σω \ up(WΣω) is open, it contains A, and it
satisfies

µ(A′) = 1 − µ(up(WΣω)) ≤ 1 − µ(WΣω) ≤ 1 − (µ(Σω \ A) − ε) = µ(A) + ε.

�
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Corollary 20. Fix a number k ∈ IN. Let A ⊆ Σω be a closed, downwards closed
set and B ⊆ Σω be an open, upwards closed set such that

∞⋂
j=k

Cj ⊆ A ∪ B .

Then
µ(A) + µ(B) ≥ k

k + 1
.

Proof. The assertion follows by applying first Lemma 19 to A and some ε > 0,
then Corollary 18, and then by letting ε tend to zero. �

Let us fix some k ∈ IN. The set

Ṽk := {q ∈ Σω | up({q}) ⊆ Vk}
is upwards closed. It is open because for any q ∈ Σω the set up({q}) is compact,
according to Lemma 9. Using it, we can describe Uk in the following way:

Uk =

⎧⎨
⎩p ∈ Σω

∣∣∣∣∣ up ({p}) ∩
∞⋂

j=k

Cj ⊆ Ṽk

⎫⎬
⎭ .

We conclude that Uk is upwards closed as well and that

∞⋂
j=k

Cj ⊆ (Σω \ Uk) ∪ Ṽk.

Since Uk is upwards closed, Σω \Uk is downwards closed. And since Uk is open,
Σω \ Uk is closed. Thus, Corollary 20 tells us

µ(Σω \ Uk) + µ(Ṽk) ≥ k/(k + 1).

Using additionally µ(Ṽk) ≤ µ(Vk) ≤ 1/(k + 1) we obtain µ(Uk) ≤ 2/(k + 1).
That was to be shown. This ends the proof of Theorem 4.

Remark. One can avoid to use Lemma 19 if one uses the sets

Uk,i :=

⎧⎨
⎩p ∈ Σω

∣∣∣∣∣ up

⎛
⎝up ({p}) ∩

i⋂
j=k

Cj

⎞
⎠ ⊆ Vk

⎫⎬
⎭ .

defined for any k ∈ IN and i ≥ k. They are upwards closed, and satisfy Uk,i ⊆
Uk,i+1 for all k, i,

⋃
i∈IN Uk,i = Uk for all k, and

i⋂
j=k

Cj ⊆ (Σω \ Uk,i) ∪ Ṽk.

Thus, one can directly apply Corollary 17.
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