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Abstract: This is a preliminary pass at examining some of the constructive issues in
the theory of finite Markov chains. I trust that it is not all bad that there seem to be
more questions raised than answered.
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1 Introduction

Throughout, A will denote a Markov matrix with entries aij where i and j are
in some set I called the set of states. So aij ≥ 0 for all i, j ∈ I and

∑
j∈I aij = 1

for each j ∈ I. Usually the number of states will be finite, but some of the results
hold also when the number of states is infinite. The number aij is the probability
that if our system is in state i at time n, then it will be in state j at time n + 1.
The entries in the matrix An are denoted by a

(n)
ij .

A key relation among states of a Markov chain is reachability. If a
(n)
ij > 0

for some n we say that you can reach j from i or you can get to j from i or
you can go from i to j. If d is the number of states in the chain, then you can
reach j from i if and only if the ij-th entry in the matrix

I + A + A2 + · · · + Ad−1

is different from zero. For some purposes it seems necessary (but not desirable)
to require decidable reachability, that is, to require that each entry in the
displayed matrix be either zero or nonzero. This certainly holds if each entry in
the original matrix A is either zero or nonzero.

2 Transient states

A state i is said to be transient if there is a state j such that a
(n)
ij > 0 for some

n and a
(n)
ji = 0 for all n. That is, you can reach j from i but you can’t reach i

from j. We will show that

Theorem 1. If i is a state of a Markov chain with transition matrix A, then
each of the following conditions implies the next:
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1. The state i is transient,

2. lim
n→∞ a

(n)
ki = 0 for each state k,

3. lim
n→∞ a

(n)
ii = 0.

Moreover, if the chain has decidable reachability, then the three conditions are
equivalent to

4.
∑∞

n=1 a
(n)
ii converges.

The remainder of this section is devoted to proving Theorem 1.
Clearly each of (2) and (4) implies (3), even without decidable reachability.

To show that (1) implies (2) we use the following lemma.

Lemma2. Let i, j and k be states, m ≥ 1 and n ≥ 0 integers. If i cannot be
reached from j, then

a
(n)
ki a

(m)
ij

(
1 +

⌊ n

m

⌋)
≤ 1.

Proof. Set b
(n)
i = supk a

(n)
ki . We will show that

b
(n)
i a

(m)
ij

(
1 +

⌊ n

m

⌋)
≤ 1.

Note that
a
(n+1)
ki =

∑
s

aksa
(n)
si ≤

∑
s

aksb
(n)
i = b

(n)
i ,

so b
(n+1)
i ≤ b

(n)
i . If the initial state is k, then the number a

(n−tm)
ki a

(m)
ij is the

probability that the chain is in state i at time n − tm and in state j at time
n − tm + m. These are disjoint events for t = 0, . . . , �n/m� because you can’t
get from j to i. So

�n/m�∑
t=0

a
(n−tm)
ki a

(m)
ij ≤ 1

from which it follows that

�n/m�∑
t=0

b
(n−tm)
i a

(m)
ij ≤ 1

and thus (
1 +

⌊ n

m

⌋)
b
(n)
i a

(m)
ij ≤ 1

because b
(n)
i decreases as n increases.
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That (1) implies (2) follows immediately from Lemma 2 upon choosing j and
m so that a

(m)
ij > 0. This result doesn’t require the number of states to be finite:

we can treat the supremum supk a
(n)
ki in the proof of Lemma 2 as a generalized

real number—a nonlocated supremum [2].
We now show that (3) implies (1) if the chain has a finite number d of states

and decidable reachability.
Let S be the set of states reachable from i. Because reachability is decidable,

the set S is finite and either i is transient or i is not transient. So it suffices to
prove the contrapositive: not (1) implies not (3). If i is not transient, then i is
reachable from any state in S. For each j ∈ S there is t < d such that a

(t)
ji > 0.

Then

d−1∑
t=0

a
(n+t)
ii =

d−1∑
t=0

∑
j∈S

a
(n)
ij a

(t)
ji =

∑
j∈S

a
(n)
ij

d−1∑
t=0

a
(t)
ji ≥ inf

j∈S

d−1∑
t=0

a
(t)
ji > 0

for all n, so a
(n)
ii cannot converge to zero.

It remains to show that (1) implies (4) if reachability is decidable. We state
that as a separate theorem.

Theorem 3. Let i be a transient state of a finite Markov chain with decidable
reachability and transition matrix A. Then

∑∞
n=1 a

(n)
ii converges, that is, (1)

implies (4).

Proof. Suppose you can reach j from i but not vice versa. States from which i

cannot be reached may be incorporated into j without affecting a
(n)
ii or the fact

that i is transient. Decidable reachability allows us to identify those states, so
we may assume that i can be reached from every state except j, whence ajj = 1.
Then δ = infk a

(d)
kj > 0 for some d so

a
(nd)
ij ≥ 1 − (1 − δ)n

for all n, whence
a
(n)
ij ≥ 1 − (1 − δ)�n/d�

for all n (because a
(n)
ij increases with n). Thus

a
(n)
ii ≤ (1 − δ)�n/d�

for all n. Then
∞∑

n=md

a
(n)
ii ≤ d

∞∑
t=0

(1 − δ)m+t = d
(1 − δ)m

δ

goes to zero as m goes to infinity, so
∑∞

n=1 a
(n)
ii converges.
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3 Limitations on extending Theorem 1

In Theorem 1, you can’t prove that (2) implies (1) without some additional
hypothesis on A because that would show that the real numbers were discrete.
Indeed, given 0 ≤ r < 1/2, consider the Markov matrix

A =

⎛
⎝0 1 0

r 1 − 2r r

0 0 1

⎞
⎠ .

To verify (2) for state 1 of this matrix, we need to show that, for each ε > 0,
there exists n such that a

(n)
i1 < ε for all n ≥ N . As a

(n)
i1 ≤ r for all n ≥ 1, if r < ε,

we can choose N = 1. If, on the other hand, r > 0, then state 1 is transient so
Theorem 1 provides the N . Thus (2) holds for state 1. However, if state 1 is
transient, then you can get from 1 to some state j but not back. If j = 2, then
r = 0 while if j = 3, then r > 0.

Note that this example does not satisfy (4). Clearly a
(n)
11 ≥ r(1 − 2r)n−2, so∑

a
(n)
11 ≥ r/(2r) = 1/2 if r > 0, and

∑
a
(n)
11 = 0 if r = 0.

Theorem 3, that (1) implies (4), is classically true for infinite chains also.
Suppose you can get from state i to state j but not from j to i, and let θ be one
minus the positive probability of some path from i to j that doesn’t return to i

on the way. Then 0 ≤ θ < 1 and the probability of returning m times to state i

is at most θm. So the expected number of returns,
∑∞

n=1 a
(n)
ii , is bounded by∑

mθm =
θ

(1 − θ)2
.

However
∑∞

n=1 a
(n)
ii need not converge constructively; indeed we need not be

able to show that limn→∞ a
(n)
11 = 0. Let the state space be the natural numbers

{1, 2, 3, . . .} and define the Markov matrix by

a21 = a23 = 1/2,

a11 = 1,

ai,i+1 = 1 if si = 0, otherwise ai1 = 1,

where si is a sequence of zeros and ones. State 2 is certainly transient, but if
limn→∞ a

(n)
22 = 0, then there exists i0 such that if si = 0 for all i ≤ i0, then

si = 0 for all i.
You need some sort of condition on A, in the finite case, to prove Theorem

3, that (1) implies (4). With no condition, the implication from (1) to (4) allows
us to show that the real numbers are discrete. Consider a Markov chain with
state space {1, 2, 3} and transition matrix

A =

⎛
⎝ 1 0 0

1/2 0 1/2
0 r 1 − r

⎞
⎠ .
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Clearly state 1 is absorbing and state 2 is transient. We will show that if
∑

a
(n)
22

converges, then r = 0 or r > 0. The recursion for a
(n)
22 and a

(n)
23 is given by

a
(n)
22 = a

(n−1)
23 r and

a
(n)
23 = (1 − r)a(n−1)

23 + a
(n−1)
22 /2 = (1 − r)a(n−1)

23 + a
(n−2)
23 r/2

with initial conditions a
(0)
23 = 0 and a

(1)
23 = 1/2. The characteristic equation of

the recursion for a
(n)
23 is X2 = (1 − r)X + r/2 with roots

λ+ =
1 − r

2
+

1
2

√
1 + r2 and

λ− =
1 − r

2
− 1

2

√
1 + r2

from which we get the formula

a
(n)
23 =

λn
+ − λn−

2
√

1 + r2

which works for n = 0 and n = 1. Note that if r > 0, then 0 ≤ λ+ < 1 and
|λ−| ≤ λ+. So, for r > 0, we have

∞∑
n=1

a
(n)
22 =

r

2
√

1 + r2

(
1

1 − λ+
− 1

1 − λ−

)

=
r

2
√

1 + r2

(
λ+ − λ−

(1 − λ+) (1 − λ−)

)

=
r

2
√

1 + r2

(√
1 + r2

r/2

)
= 1.

Thus the expected number of returns to state 2 is 1. That makes sense because
whenever the state is 2, there is a probability of 1/2 of getting absorbed into
state 1 on the next step, and otherwise the system will eventually return to 2 (if
r > 0). Of course if r = 0, then

∑∞
n=1 a

(n)
22 = 0. So if

∑∞
n=1 a

(n)
22 converges to s,

then s < 1 implies r = 0, and s > 0 implies that some a
(n)
22 > 0, so r > 0 there

being no way to get from state 2 to state 2 without transiting from state 3 to
state 2.

Other questions remain: Does (3) imply (2) without assuming decidable
reachability? As a

(m+n)
ii ≥ a

(m)
ik a

(n)
ki it does if k can be reached from i. We

can prove that (3) implies (2) when the number of states is (at most) three.

Proposition4. In any three-state Markov chain, if a
(n)
11 → 0, then a

(n)
21 → 0.

Proof. First we show that a32a21 = a23a31 = a21a31 = 0. If a32a21 > 0, then

a
(n)
12 ≤ a

(n+1)
11

a21

a
(n)
13 ≤ a

(n+2)
11

a32a21
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so

1 = a
(n)
11 + a

(n)
12 + a

(n)
13 ≤ a

(n)
11 +

a
(n+1)
11

a21
+

a
(n+2)
11

a32a21

which contradicts a
(n)
11 → 0. By symmetry, a23a31 = 0 also.

If a21a31 > 0, then

1 = a
(n)
11 + a

(n)
12 + a

(n)
13 ≤ a

(n)
11 +

a
(n+1)
11

a21
+

a
(n+1)
11

a31

which contradicts a
(n)
11 → 0. Thus a21a31 = 0.

As an
11 ≤ a

(n)
11 → 0, we have a11 < 1 so either a12 > 0 or a13 > 0. If a12 > 0,

then from a
(1+n)
11 ≥ a12a

(n)
21 , we can conclude that a

(n)
21 → 0 as desired. So we

may assume that a13 > 0. If a21 and a31 are both small, then

a
(n)
21 = a

(n−1)
21 a11 + a

(n−1)
22 a21 + a

(n−1)
23 a31

≤ a
(n−1)
21 a11 + a21 + a31

for all n, so, using this as a recursion and noting that a
(0)
21 = 0, we have

a
(n)
21 ≤ a21 + a31

1 − a11

is small for all n. So we may assume that either a21 > 0 or a31 > 0. If a31 > 0,
then a23 = a21 = 0 from the equations of the first paragraph, so a22 = 1 whence
a
(n)
21 = 0 for all n. There remains the case a21 > 0. Then a32 = 0 and a31 = 0,

from the equations of the first paragraph, so a33 = 1. Recall that we may assume
that a13 > 0, so 1 is a transient state whence a

(n)
21 → 0.

For four states, it looks like one will have to dig deeper.
I have been unable to settle whether (4) implies (2), or whether (4) implies

(1), without decidable reachability.
Condition 3, that a

(n)
ii → 0, is some sort of weak transience. Does it admit a

good characterization? Let Pij be the set of simple paths (no repeated vertices)
from i to j. For ξ ∈ Pij , define

aξ =
∏

(s,t)∈ξ

ast

and set
Lij =

∑
ξ∈Pij

aξ.

The letter “L” is for “leads to”, and Lij is the probability of traveling along
a simple path to j if you start at i. So j can be reached from i if and only if
Lij > 0 if and only if aξ > 0 for some ξ ∈ Pij . If a

(n)
11 → 0, then a11 < 1 and
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∏
Li1 = 0. This is a pretty weak implication, even classically. If we are going to

draw serious consequences from a
(n)
11 → 0, then we need to do better than that.

Condition 1, that state i is (strongly) transient, can be phrased as there exist
j so that Lji = 0 and Lij > 0. A weaker version is

– For all ε > 0, there exists j such that Lji < ε and Lij > 0.

The strong and weak versions are equivalent under decidable reachability. The
weak version is implied by (3). If supt≤d a

(n+t)
ii < ε/d, choose j so that a

(n)
ij > 1/d.

Then Lij > 0 and supt≤d a
(n+t)
ii ≥ a

(n)
ij Lji ≥ Ljid, so Lji < ε. For the converse,

we would want to get a bound on a
(n)
ii from Lij > δ and Lji < ε.

4 First passages

Let f
(m)
ki be the probability of landing on i for the first time at step m starting

from k. (Land is a key word here—that is, f
(1)
ii = aii.) Then∑

m

f
(m)
ki ≤ 1.

We would like to show that this sum, which represents the probability of getting
from k to i, actually converges, but it need not. If

A =
(

1 − ε ε

0 1

)
,

then f
(m)
12 = (1 − ε)m−1ε is 0, if ε = 0, and sums to 1 if ε > 0. With decidable

reachability we get convergence.

Theorem 5. If reachability is decidable, then
∑

m f
(m)
ki converges for every k

and i.

Proof. Suppose that reachability is decidable. Let S be the set of states from
which i is reachable, excluding i itself. Restricting A to S gives rise to a sub-
markov chain with matrix AS . We will show that the probability of surviving in
this chain for n steps (or more) goes to zero as n goes to infinity.

If
∑

s∈S aks < 1 for each k ∈ S, then take

θ = max
k∈S

∑
s∈S

aks < 1.

The probability of surviving n steps in this chain is clearly at most θn. Apply
this argument to the matrix Ad

s , where d is the number of states in S. We get θ so
that the probability of surviving dn steps of AS is at most θn. So the probability
of surviving n steps of AS is at most θ[n/d] which goes to zero.

It remains to observe that
∑

m>n f
(m)
ki is bounded by the probability of sur-

viving n steps of AS starting at k.
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This theorem gives us a direct proof that (3) implies (2) in Theorem 1 if
reachability is decidable.

Corollary 6. If reachability is decidable, and a
(n)
ii → 0, then a

(n)
ki → 0 for each

k.

Proof. We have

a
(n)
ki =

∑
m≤n

f
(m)
ki a

(n−m)
ii ≤

∑
n/2≤m≤n

f
(m)
ki + max

m<n/2
a
(n−m)
ii .

The second term on the right goes to zero by hypothesis. The first term on the
right goes to zero by Theorem 5.

We can’t show that
∑

m f
(m)
ki converges in general, but do we need that in

order to prove Corollary 6? We have seen in Proposition 4 that Corollary 6 holds
if the number of states is at most three. The equality in

a
(n)
ki =

∑
m≤n

f
(m)
ki a

(n−m)
ii ≤

∑
n/2≤m≤n

f
(m)
ki + max

m<n/2
a
(n−m)
ii

seems to be the right thing to look at.
We can show that f

(n)
ki → 0.

Theorem 7. For any states i and k, we have limn→∞ f
(n)
ki = 0.

Proof. Let S be the set of states other than i. Given ε > 0, write S as the disjoint
union R ∪ T so that if j ∈ R, then aji < ε, and if j ∈ T , then aji > 0. Let B be
A with the i-th row changed to bij = δij , so we have made i an absorbing state.
Then, for k ∈ S,

f
(n)
ki =

∑
j∈S

b
(n−1)
kj aji ≤ ε +

∑
j∈T

b
(n−1)
kj .

If j ∈ T , then j is a transient state of B, so b
(n−1)
kj goes to zero by Theorem 1.

Thus the theorem is true for k ∈ S. If k = i, then for n > 1,

f
(n)
ki =

∑
j∈S

aijf
(n−1)
ji → 0.

5 Recurrent states

A state i is recurrent if whenever j can be reached from i, then i can be
reached from j. This may or may not be a good definition, but it does parallel
the definition of a transient state. Note that if reachability is decidable, then
each state is either transient or recurrent (and not both).

We want to consider two other related conditions:
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1.
∑∞

n=1 f
(n)
ii = 1,

2.
∑∞

n=0 a
(n)
ii = ∞. (This is the “potential-matrix criterion.” It says that the

expected number of visits to i is infinite.)

To see that these two conditions are equivalent, consider the generating func-
tions

fii(t) =
∞∑

n=1

f
(n)
ii tn and

aii(t) =
∞∑

n=0

a
(n)
ii tn.

Then
aii = 1 + aiifii

that is
(1 − fii)aii = 1.

Now aii(r) and fii(r) converge if |r| < 1 because their coefficients are probabili-
ties. Note that fii(r) < 1 if |r| < 1, and that

lim
r→1

fii(r) =
∞∑

n=1

f
(n)
ii

lim
r→1

aii(r) =
∞∑

n=0

a
(n)
ii

in the obvious sense (both sides of each equation are sups). So the two conditions
are equivalent. How do they relate to the recurrency of i?

Suppose that i is recurrent. We will show that Condition 2 holds. That is,
given any B, we will to find N so that

∑N
n=0 a

(n)
ii > B. Let

θj = sup
t≤d

a
(t)
ji

and let S be a finite set of states such that θj > 0 for all j /∈ S. We may take
S to be all states initially. We induct on the cardinality of S. Choose N > d so
that N/d > 1 + B/θj for each state j /∈ S. We have

∑
j

N−d∑
n=0

a
(n)
ij = N − d + 1

so
∑N−d

n=0 a
(n)
ij > N/d − 1 for some state j. Because i is recurrent, θj > 0. If

j ∈ S, then we may replace S by S \ {j} and we are done by induction. If j /∈ S,
then

N−d∑
n=0

a
(n)
ij > B/θj
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so
N∑

n=0

a
(n)
ii ≥

N−d∑
n=0

a
(n)
ij θj > B.

which proves that if i is recurrent, then Condition 2 holds. I don’t know about
the converse in general, but if reachability is decidable, and Condition 2 holds,
then i cannot be transient (because of Theorem 1 part 4), so i must be recurrent.

Let’s return to the notion of transience in relation to the two sums x =∑∞
n=1 f

(n)
ii , and y =

∑∞
n=1 a

(n)
ii . Because

lim
r→1

fii(r) =
∞∑

n=1

f
(n)
ii

lim
r→1

aii(r) =
∞∑

n=0

a
(n)
ii

and
(1 − fii)aii = 1,

the sum x, which is a supremum, is located if and only if the sum y is located
(including ∞). So

∑∞
n=1 f

(n)
ii converges to a number less than 1 if and only

if
∑∞

n=1 a
(n)
ii converges. The latter condition is (4) of Theorem 1, so we have

another definition of “transient” that is equivalent to (4).

References

1. Kemeny, John G. and J. Laurie Snell, Finite Markov chains, D. Van Nostrand
1960.

2. Richman, Fred, Generalized real numbers in constructive mathematics, Indaga-
tiones Mathematicae, 9 (1998), 595–606.

2055Richman F.: Constructive Aspects of Markov Chains


