
Functional Dependencies with Counting on Trees1

Klaus-Dieter Schewe
(Massey University, Department of Information Systems & Information Science

Research Centre, Private Bag 11 222, Palmerston North, New Zealand
k.d.schewe@massey.ac.nz)

Abstract: The paper presents an axiomatisation for functional dependencies on trees
that are defined using constructors for records, lists, sets and multisets. A simple form
of restructuring permitting lists to be mapped onto multisets and multisets onto sets is
added to the theory. Furthermore, the theory handles dependencies on sets treated as
multisets. This adds the possibility to use the count of elements in the dependencies.

Key Words: functional dependencies, complex value databases, counting attributes,
axiomatisation

Category: F.4.1, H.2.1

1 Introduction

Dependency theory is an important branch of database theory [Abiteboul et al.,
1995]. In the context of the relational data model around 90 classes of depen-
dencies have been investigated, and most problems (except the real hard ones)
have been solved. Thalheim in [Thalheim, 1991] gives a good account on rela-
tional dependency theory, but for more than a decade not much more database
research has been devoted to dependency theory.

Recently, there has been a revived interest in dependency theory for post-
relational databasess, in particular for HERM [Thalheim, 2000] and XML [Abite-
boul et al., 2000]. The work in [Arenas and Libkin, 2004], [Vincent et al., 2004]
and [Hartmann et al., 2006] considers functional dependencies (FDs) on trees.
Usually, FDs are considered to be the simplest class of dependencies, though
in the non-relational theories they can no longer be considered simple. While
the first two cited papers investigate paths in XML trees, the third approach ex-
ploits constructors for sets, lists and multisets, and then investigates Brouwerian
algebras of subattributes in order to axiomatise FDs. All three lines of research
lead to different, not yet unified theories, though the work in [Wang and Topor,
2005] tried to create a class of FDs that subsumes the other existing definitions.

The work in this paper continues the line of research in [Hartmann et al.,
2006], and further investigates the axiomatisation problem. The finite axiomati-
sation has been extended in [Sali and Schewe, 2006] to cover also a disjoint union
constructor. However, so called “counter subattributes” that permit counting the
1 C. S. Calude, H. Ishihara (eds.). Constructivity, Computability, and Logic. A

Collection of Papers in Honour of the 60th Birthday of Douglas Bridges.

Journal of Universal Computer Science, vol. 11, no. 12 (2005), 2063-2075
submitted: 5/10/05, accepted: 15/11/05, appeared: 28/12/05 © J.UCS

elements in a list or multiset or indicating, whether sets are empty or not, re-
spectively, had to be excluded. In fact, as shown in [Sali and Schewe, 2005] it
is shown that taking these subattributes into account leads to non-existence of
finite axiomatisation. However, if the class of FDs is extended to weak func-
tional dependencies, i.e. disjunctions of FDs, there is again an axiomatisation
for the price of a significant increase in the complexity of the completeness proof.
The reason for this complexity is that the union constructor induces non-trivial
equivalences between subattributes. For instance, a set attribute with a union
attribute for its elements can be identified with a record attribute with set at-
tributes in each component.

As remarked in [Sali and Schewe, 2005] it may well be possible to add delib-
erately further subattribute relationships, e.g. a set attribute can be considered
a subattribute of a multiset attribute, which can be considered a subattribute of
a list attribute. Furthermore, a set value can always be considered as a multiset
value, which permits to apply FDs on multiset attributes to set values. This gives
rise to FDs with counting, as counting the elements in sets would be enabled.

In this paper we present an axiomatisation of FDs with counting, but for sake
of not repeating the complex technical proof work in [Sali and Schewe, 2005] we
exclude the union constructor. We repeat the preliminaries of our model of nested
attributes and subattributes in Section 2, to which we add the new restructuring
rules. In Section 3 we discuss FDs and the extensions regarding counting. Then
we present a set of derivation rules and proof their soundness and completeness.

2 Preliminaries

Let U be a finite set, the elements of which we will call simple attributes. Further
assume that for each A ∈ U we are given a countably infinite set dom(A), which
we call the domain of A or the sets of values of attribute A. Take another set
L of labels with U ∩ L = ∅ and assume that the symbol λ is neither a simple
attribute nor a label, i.e. λ /∈ U ∪ L.

Definition 1. The set N of (nested) attributes over U and L is the smallest set
with λ ∈ N, U ⊆ N, and satisfying the following properties:

– for X ∈ L and X ′
1, . . . , X

′
n ∈ N we have X(X ′

1, . . . , X
′
n) ∈ N;

– for X ∈ L and X ′ ∈ N we have X{X ′} ∈ N, X [X ′] ∈ N, and X〈X ′〉 ∈ N.

We call λ a null attribute, X(X ′
1, . . . , X

′
n) a record attribute, X{X ′} a set

attribute, X [X ′] a list attribute, and X〈X ′〉 a multiset attribute. We can then
extend the association dom from simple to nested attributes.

Definition 2. For each nested attribute X ∈ N we get a domain dom(X) as
follows:

2064 Schewe K.-D.: Functional Dependencies with Counting on Trees

– dom(λ) = {�};
– dom(X(X ′

1, . . . , X
′
n)) = {(v1, . . . , vn) | vi ∈ dom(X ′

i) for i = 1, . . . , n};
– dom(X{X ′}) = {{v1, . . . , vk} | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k},

i.e. each element in dom(X{X ′}) is a finite set with (pairwise different)
elements in dom(X ′);

– dom(X [X ′]) = {[v1, . . . , vk] | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k}, i.e.
each element in dom(X [X ′]) is a finite (ordered) list with (not necessarily
different) elements in dom(X ′);

– dom(X〈X ′〉) = {〈v1, . . . , vk〉 | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k}, i.e.
each element in dom(X〈X ′〉) is a finite multiset with elements in dom(X ′),
or in other words each v ∈ dom(X ′) has a multiplicity m(v) ∈ N in a value
in dom(X〈X ′〉).

In order to define functional dependencies on a nested attribute X ∈ N it
is crucial that we can define projection mappings on dom(X). For this we use
the notion of subattribute, i.e. we define a partial order ≥ on nested attributes
in such a way that whenever X ≥ Y holds, we obtain a canonical projection
πX

Y : dom(X) → dom(Y). However, this partial order has to be defined on
equivalence classes of attributes, as some domains may be identified.

Equivalence of attributes is simply induced by the rule that order in record
attributes is not important, i.e. X(X ′

1, . . . , X
′
n) ≡ X(X ′

σ(1), . . . , X
′
σ(n)) holds for

any permutation σ ∈ Sn, λ can be added or removed in record attributes, and
λ ≡ X() and X [λ] ≡ X〈λ〉 hold. Then, whenever an attribute X ′ appearing in
the definition of another nested attribute X is replaced by an equivalent one,
the result is equivalent to X – for further formal details see [Sali and Schewe,
2006]. In the following we identify N with the set of equivalence classes.

Definition 3. For X, Y ∈ N we say that Y is a subattribute of X (notation:
X ≥ Y), if ≥ is the smallest partial order on N satisfying the following properties:

– X ≥ λ for all X ∈ N;

– X(Y1, . . . , Yn) ≥ X(X ′
σ(1), . . . , X

′
σ(m)) for some injective σ : {1, . . . , m} →

{1, . . . , n} and Yσ(i) ≥ X ′
σ(i) for all i = 1, . . . , m;

– X{Y } ≥ X{X ′}, whenever Y ≥ X ′ holds;

– X [Y] ≥ X [X ′] ≥ X〈X ′〉, whenever Y ≥ X ′ holds;

– X〈Y 〉 ≥ X〈X ′〉 ≥ X{X ′}, whenever Y ≥ X ′ holds.

2065Schewe K.-D.: Functional Dependencies with Counting on Trees

()

X<X
1
(A,B)>

X<X 1(A)> X<X 1 (B)>

X<() >

X{X
1
(A,B)}

X{X
1
(A)} X{X

1
(B)}

X{() }

X[X
1
(A,B)]

X[X 1 (A)] X[X 1(B)]

Figure 1: Brouwerian algebra for S(X [X1(A, B)])

For X ≥ Y we obtain the desired canonical projection πX
Y : dom(X) →

dom(Y). Obviously, for record attributes the projection throws away some com-
ponents and recursively applies projection functions to the remaining ones, while
for lists, sets and multisets a projection function is applied to all elements. Note
that we also included the projection of a list onto a multiset by simply fo-
getting the order, and of a multiset to a set by forgetting multiplicities. It is
rather obvious to see that ≥ induces the structure of a Brouwerian algebra on
S(X) = {Y ∈ N | X ≥ Y }, the set of subattributes of the attribute X . That is,
S(X) is a distributive lattice with λ as bottom element, X as top element, and
relative pseudo-complements Y ← Z ={U | Y � U ≥ Z}. Figure 1 illustrates
such an algebra S(X [X1(A, B)]).

3 Functional Dependencies

In this section we will define functional dependencies on S(X), then extend them
to include the possibility of counting for sets, and finally derive a some sound
and complete system of derivation rules. We will use instances of X , which are
finite sets r ⊆ dom(X).

2066 Schewe K.-D.: Functional Dependencies with Counting on Trees

Definition 4. Let X ∈ N. A functional dependency (FD) on S(X) is an expres-
sion Y → Z with Y, Z ⊆ S(X). An instance r of X satisfies Y → Z (notation:
r |= Y→ Z) iff for all t1, t2 ∈ r with πX

Y (t1) = πX
Y (t2) for all Y ∈ Y we also have

πX
Z (t1) = πX

Z (t2) for all Z ∈ Z.

Our Definition 3 of subattributes already includes the projection of lists to
multisets and of multisets to sets. In addition, a set value may always be consid-
ered as a multiset value. Therefore, for a set attribute X{X ′} we may widen the
notion of functional dependency to include “lifted” dependencies Y → Z with
Y, Z ⊆ S(X〈〉), where we define X〈〉 = X〈X ′〉.

In doing so, X becomes a subattribute of X〈〉, and the “normal” FDs on
X are just a subset of the lifted ones. Furthermore, as πX〈〉

X (v) = v holds for
all v ∈ dom(X), the notion of satisfiability of such FDs remains unchanged. In
other words, it is sufficient to consider the “lifted” FDs just as FDs on X〈〉.

The extension adds FDs on sets including the possibility of counting, but
for the problem of axiomatisation it is sufficient to look at the FDs as defined
above. For this we first need the notion of reconsilable subattributes.

Definition 5. Two subattributes Y, Z ∈ S(X) are called reconsilable iff one of
the following holds:

1. Y ≥ Z or Z ≥ Y ;

2. X = X [X ′], Y = X [Y ′], Z = X [Z ′] and Y ′, Z ′ ∈ S(X ′) are reconsilable;

3. X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn), Z = X(Z1, . . . , Zn) and Yi, Zi ∈
S(Xi) are reconsilable for all i = 1, . . . , n.

Note that for the set- and multiset-constructor we can only obtain reconsil-
ability for subattributes in a ≥-relation.

Theorem 6. The following axioms and rules are sound for the implication of
FDs on S(X):

reflexivity axiom:

Y→ Z
Z ⊆ Y (1)

subattribute axiom:

{Y } → {Z} Y ≥ Z (2)

join axiom:

{Y, Z} → {Y � Z} Y, Z reconsilable (3)

2067Schewe K.-D.: Functional Dependencies with Counting on Trees

λ axiom:

∅ → {λ} (4)

extension rule:
Y→ Z

Y→ Y ∪ Z
(5)

transitivity rule:
Y→ Z Z→ U

Y→ U
(6)

Proof. The proof is trivial except for the join axiom (3). Solet t1, t2 ∈ r for
some instance r ⊆ dom(X) with πX

Y (t1) = πX
Y (t2) and πX

Z (t1) = πX
Z (t2) for

reconsilable subattributes Y, Z ∈ S(X).

– In case Y ≥ Z we have Y � Z = Y and thus πX
Y �Z(t1) = πX

Y �Z(t2).

– In case X = X [X ′] we must have Y = X [Y ′] and Z = X [Z ′] with reconsilable
subattributes Y ′, Z ′ ∈ S(X ′). Furthermore, t1 = [t1,1, . . . , t1,n] and t2 =
[t2,1, . . . , t2,m]. This gives n = m, πX′

Y ′ (t1,j) = πX′
Y ′ (t2,j) and πX′

Z′ (t1,j) =
πX′

Z′ (t2,j) for all j = 1, . . . , n.

By induction we obtain πX′
Y ′�Z′(t1,j) = πX′

Y ′�Z′(t2,j) for all j = 1, . . . , n. From
this and Y � Z = X [Y ′ � Z ′] follows πX

Y �Z(t1) = πX
Y �Z(t2).

– In case X = X(X1, . . . , Xn) we must have Y = X(Y1, . . . , Yn) and Z =
X(Z1, . . . , Zn) with reconsilable subattributes Yi, Zi ∈ S(Xi) for i = 1, . . . , n.
Furthermore, t1 = (t1,1, . . . , t1,n) and t2 = (t2,1, . . . , t2,n), which implies
πXi

Yi
(t1,i) = πXi

Yi
(t2,i) and πXi

Zi
(t1,i) = πXi

Zi
(t2,i) for all i = 1, . . . , n. By induc-

tion we obtain πXi

Yi�Zi
(t1,i) = πXi

Yi�Zi
(t2,i) for all i = 1, . . . , n. From this and

Y � Z = X(Y1 � Z1, . . . , Yn � Zn) follows πX
Y �Z(t1) = πX

Y �Z(t2). �

In order to show that the axioms and rules in Theorem 6 are also complete,
we consider conincidence ideals.

Definition 7. A coincidence ideal on S(X) is a subset F ⊆ S(X) with the
following properties:

1. λ ∈ F;

2. if Y ∈ F and Z ∈ S(X) with Y ≥ Z, then Z ∈ F;

3. if Y, Z ∈ F are reconsilable, then Y � Z ∈ F.

2068 Schewe K.-D.: Functional Dependencies with Counting on Trees

The name “coincidence ideals” was chosen, because these ideals characterise
sets of subattributes, on which two complex values coincide – the proof of this
simple fact is analogous to the soundness proof above. The corresponding defini-
tion in [Sali and Schewe, 2005] is much lengthier, as it contains a lot of additional
properties that only make sense, if the union constructor is present. We first show
a simple decendence lemma for coincidence ideals.

Lemma8. Let F be a coincidence ideal on S(X).

1. If X = X(X ′
1, . . . , X

′
n), then Fi = {Yi ∈ S(X ′

i) | X(λ, . . . , Yi, . . . , λ) ∈ F} is
a coincidence ideal.

2. If X = X [X ′], such that X ′ is not a union attribute, and F �= {λ}, then
G = {Y ∈ S(X ′) | X [Y] ∈ F} is a coincidence ideal.

Proof. We only show property 3 of Definition 7 – the other two properties are
trivial.

If Y
(1)
i , Y

(2)
i ∈ Fi are reconsilable, then also X(λ, . . . , Y

(j)
i , . . . , λ) ∈ F (j =

1, 2) are reconsilable, which gives X(λ, . . . , Y
(1)
i �Y

(2)
i , . . . , λ) ∈ F for their join.

By definition Y
(1)
i � Y

(2)
i ∈ Fi follows.

If Y (1), Y (2) ∈ G are reconsilable, then also X [Y (j) (j = 1, 2) are reconsilable,
which gives X [Y (1)�Y (2)] ∈ F for their join. By definition Y (1)�Y (2) ∈ G follows.

�

Unfortunately, this decendence property does not hold for the set- and the
multiset-constructors. So, we need a direct construction for these constructors,
which will use distinguished values.

Definition 9. Let X be a nested attribute such that the union-constructor
only appears in X inside a list-constructor. For each Y ∈ Sr(X) we define the
distinguished value τX

Y ∈ dom(X) as follows:

1. τλ
λ = �;

2. τA
A = a and τA

λ = a′ for a simple attribute A and a, a′ ∈ dom(A), a �= a′;

3. τ
X(X1,...,Xn)
X(Y1,...,Yn) = (X1 : τX1

Y1
, . . . , Xn : τXn

Yn
);

4. τ
X{X′}
X{Y } = {τX′

Y } and τ
X{X′}
λ = ∅;

5. τ
X〈X′〉
X〈Y 〉 = 〈τX′

Y , τX′
Y 〉, τ

X〈X′〉
X{Y } = 〈τX′

Y 〉, and τ
X〈X′〉
λ = 〈〉;

6. τ
X[X′]
X[Y] = [τX′

Y , τX′
Y , τX′

Y], τ
X[X′]
X〈Y 〉 = [τX′

Y , τX′
Y], τ

X[X′]
X{Y } = [τX′

Y], and τ
X[X′]
λ = [].

2069Schewe K.-D.: Functional Dependencies with Counting on Trees

Note that item 3 in Definition 9 includes the case X(λ, . . . , λ) = λ. Using
these distinguished values we first show some elementary properties for them,
which are used in a second step to prove the main result for the case of the set-
and the multiset-constructors. A proof without the restructuring rules was given
in [Hartmann et al., 2006].

Lemma10. Let X be a nested attribute such that the union-constructor appears
in X only immediately inside a list-constructor. Let G ⊆ S(X) be an ideal on X.
Then we have:

1. If we have πX
Y (τX

Z) = πX
Y (τX

Y), then Z ≥ Y .

2. For Y, Z ∈ S(X) and Z� = (Y ← Z)← (Y Z) we have πX
Y (τX

Z) = πX
Y (τX

Z�).

Proof. For the first statement there is nothing to show for Y = λ, Z ≥ Y or
Y = X{λ}. We then use structural induction on X :

For a simple attribute X = A we have Y = A and Z = λ, so πX
Y (τX

Z) = a′ �=
a = πX

Y (τX
Y).

For X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn) and Z = X(Z1, . . . , Zn) we have
πX

Y (τX
Z) = (πX1

Y1
(τX1

Z1
), . . . , πX1

Y1
(τXn

Zn
)) and πX

Y (τX
Y) = (πX1

Y1
(τX1

Y1
), . . . , πX1

Y1
(τXn

Yn
)),

hence πXi

Yi
(τXi

Zi
) = πXi

Yi
(τXi

Yi
) for all i = 1, . . . , n. By induction we get Zi ≥ Yi for

all i = 1, . . . , n, thus Z ≥ Y .
For X = X{X ′} and Y = X{Y ′} we must have Z = X{Z ′} or Z = λ.

Then we get πX
Y (τX

Z) = {πX′
Y ′ (τX′

Z′)} in the first case, and πX
Y (τX

Z) = ∅ in the
second case. Furthermore, we get πX

Y (τX
Y) = {πX′

Y ′ (τX′
Y ′)}. Hence Z �= λ, and by

induction we get Z ′ ≥ Y ′, which implies Z ≥ Y .
Analogously, for X = X〈X ′〉 and Y = X〈Y ′〉 we must have Z = X〈Z ′〉,

Z = X{Z ′} or Z = λ, which gives πX
Y (τX

Z) = 〈πX′
Y ′ (τX′

Z′), πX′
Y ′ (τX′

Z′)〉 in the first
case, πX

Y (τX
Z) = 〈πX′

Y ′ (τX′
Z′)〉 in the second, and πX

Y (τX
Z) = 〈〉 in the third case.

As we have πX
Y (τX

Y) = 〈πX′
Y ′ (τX′

Y ′), πX′
Y ′ (τY ′

Z′)〉, we must have Z = X〈Z ′〉 and
by induction Z ′ ≥ Y ′, which implies Z ≥ Y . The case for X = X〈X ′〉 and
Y = X{Y ′} is handled analogously.

Finally, the list case, i.e. X = X [X ′] also follows analogously.
For the second statement there is nothing to prove for Y = λ or Y ≥ Z. The

latter one gives Z� = (Y ← Z) ← (Y Z) = λ ← Z = Z. Now proceed by
induction on X and assume λ �= Y �≥ Z. Note that the cases X = λ and X a
simple attribute are already covered.

For X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn) and Z = X(Z1, . . . , Zn) we
have by induction πXi

Yi
(τXi

Zi
) = πXi

Yi
(τXi

Z�
i

) for all i = 1, . . . , n with Z�
i = (Yi ←

Zi)← (Yi Zi). This implies

πX
Y (τX

Z) = (X1 : πX1
Y1

(τX1
Z1

), . . . , πXn

Yn
(τXn

Zn
))

= (X1 : πX1
Y1

(τX1

Z�
1

), . . . , πXn

Yn
(τXn

Z�
n

)) = πX
Y (τX

Z�) .

2070 Schewe K.-D.: Functional Dependencies with Counting on Trees

For X = X{X ′} and Y = X{Y ′} we must have Z = X{Z ′} with Y ′ �≥ Z ′.
By induction we get πX′

Y ′ (τX′
Z′) = πX′

Y ′ (τX′
Z′�)) with Z ′� = (Y ′ ← Z ′)← (Y ′ Z ′).

This implies

πX
Y (τX

Z) = {πX′
Y ′ (τX′

Z′)} = {πX′
Y ′ (τX′

Z′�)} = πX
Y (τX

Z�) .

For X = X〈X ′〉 and Y = X{Y ′} we must have Z = X{Z ′} with Y ′ �≥ Z ′

or Z = X〈Z ′〉. In both cases we have Z ′� = (Y ′ ← Z ′) ← (Y ′ Z ′), and
by induction πX′

Y ′ (τX′
Z′) = πX′

Y ′ (τX′
Z′�)). As Z� = X{Z ′�} in the first case, and

Z� = X〈Z ′�〉 in the second one, this implies

πX
Y (τX

Z) = {πX′
Y ′ (τX′

Z′)} = {πX′
Y ′ (τX′

Z′�)} = πX
Y (τX

Z�) .

For X = X〈X ′〉 and Y = X〈Y ′〉 we must have Z = X{Z ′} or Z = X〈Z ′〉
with Y ′ �≥ Z ′. By induction we have πX′

Y ′ (τX′
Z′) = πX′

Y ′ (τX′
Z′�)) with Z ′� = (Y ′ ←

Z ′) ← (Y ′ Z ′). This implies (with x = 1 or 2 in the first or second case,
respectively):

πX
Y (τX

Z) = 〈πX′
Y ′ (τX′

Z′)︸ ︷︷ ︸
x-times

〉 = 〈πX′
Y ′ (τX′

Z′�)︸ ︷︷ ︸
x-times

〉 = πX
Y (τX

Z�) .

The case for lists is analogous to the one for multisets, except that we get
three cases involving lists of length one, two or three. �

We now use Lemma 10 to prove the main result for coincidence ideals. Note
that an analogous result for the relational data model would have been com-
pletely trivial.

Theorem 11. Let F ⊆ S(X) be a coincidence ideal. Then there exist t1, t2 ∈
dom(X) such that πX

Y (t1) = πX
Y (t2) holds iff Y ∈ F.

Proof. We use induction on X . The case X = λ is trivial.
For a simple attribute X = A we either have F = {λ} or F = {A, λ}. In the

former case take t1 = a and t2 = a′ for a, a′ ∈ dom(A) with a �= a′. In the latter
case take t1 = t2 = a.

For X = X(X1, . . . , Xn) take the coincidence ideals Fi on Xi constructed in
Lemma 8. By induction we find t1i, t2i ∈ dom(Xi) with πXi

Yi
(t1i) = πXi

Yi
(t2i) iff

Yi ∈ Fi. So take t1 = (X1 : t11, . . . , Xn : t1n) and t2 = (X1 : t21, . . . , Xn : t2n).
For Y = X(Y1, . . . , Yn) ∈ F we have

πX
Y (t1) = (X1 : πX1

Y1
(t11), . . . , Xn : πXn

Yn
(t1n))

= (X1 : πX1
Y1

(t21), . . . , Xn : πXn

Yn
(t2n)) = πX

Y (t2) .

For Y = X(Y1, . . . , Yn) /∈ F there is at least one Yi /∈ Fi, which gives

πX
Y (t1) = (X1 : πX1

Y1
(t11), . . . , Xn : πXn

Yn
(t1n))

�= (X1 : πX1
Y1

(t21), . . . , Xn : πXn

Yn
(t2n)) = πX

Y (t2) .

2071Schewe K.-D.: Functional Dependencies with Counting on Trees

For X = X{X ′} consider first the case F = {λ}. For this take t1 = {v} with
v ∈ dom(X ′) and t2 = ∅. For Y = X{Y ′} /∈ F we get πX

Y (t1) = {πX′
Y ′ (v)} �= ∅ =

πX
Y (t2).

So assume now F �= {λ}. In this case let G = {Y ∈ S(X ′) | X{Y } ∈ F},
which is an ideal on S(X ′), but not a coincidence ideal. Then define t1 = {τX′

Z |
Z ∈ S(X ′)} and t2 = {τX′

Z | Z ∈ G}. For Y ∈ G, i.e. X{Y } ∈ F, we have
Z� = (Y ← Z)← (Y Z) ≤ Y Z ≤ Y ∈ G and πX′

Y (τX′
Z) = πX′

Y (τX′
Z�) by item

2 of Lemma 10. This implies

πX
X{Y }(t1) = {πX′

Y (τX′
Z) | Z ∈ S(X ′)} = {πX′

Y (τX′
Z) | Z ∈ G} = πX

X{Y }(t2).

For Y /∈ G, i.e. X{Y } /∈ F, assume πX
X{Y }(t1) = πX

X{Y }(t2). Then in particular

πX′
Y (τX′

Y) = πX′
Y (τX′

Z) holds for some Z ∈ G. Item 1 of Lemma 10 implies Z ≥ Y ,
from which we get the contradiction Y ∈ G.

For X = X〈X ′〉 and F = {λ} take t1 = 〈v〉 with v ∈ dom(X ′) and t2 = 〈〉. For
Y1 = X{Y ′} /∈ F or Y2 = X〈Y ′〉 /∈ F we get πX

Y1
(t1) = {πX′

Y ′ (v)} �= ∅ = πX
Y1

(t2),
and πX

Y2
(t1) = 〈πX′

Y ′ (v)〉 �= 〈〉 = πX
Y2

(t2).
So assume now F �= {λ}. In this case let Go = {Y ∈ S(X ′) | X〈Y 〉 ∈ F} and

Gu = {Y ∈ S(X ′) | X{Y } ∈ F}, which are both ideals on S(X ′) with Go ⊆ Gu,
but not coincidence ideals. Let Y1, . . . , Yk be the minimal elements in the filter
S(X ′) − Go, and let Yk+1, . . . , Ym be the minimal elements in S(X ′) − Gu. For
each Yi (i = 1, . . . , m) let Y ′

i1, . . . , Y
′
ixi

be the maximal proper subattributes of
Yi. Then Yi generates a Boolean algebra Bi ⊆ S(X ′) with top element Yi, bottom
element Y ′

i1
 · · · Y ′

ixi
, and containing all Y ′

ij (j = 1, . . . , xi) [Hartmann et al.,
2006, Lemma 22].

For X ∈ Bi let di(Z) be the distance of Z from Yi in Bi. Then for i = 1, . . . , k

define t1i = 〈τX′
Z | Z ∈ Bi, di(Z) even〉, and t2i = 〈τX′

Z | Z ∈ Bi, di(Z) odd〉.
For i ∈ {k + 1, . . . , m} let ı̂ ∈ {1, . . . , k} with Yı̂ ≤ Yi. If the distance between
Yi and Yı̂ is odd, define t1i = 〈τX′

Z | Z ∈ Bi, di(Z) even〉 and t2i = 〈τX′
Z | Z ∈

Bi, di(Z) odd〉. Otherwise define t1i = 〈τX′
Z | Z ∈ Bi, di(Z) odd〉 and t2i =

〈τX′
Z | Z ∈ Bi, di(Z) even〉. Finally, take multiset union � to define tj =

⊎m
i=1 tji

(j = 1, 2).
As shown in [Hartmann et al., 2006, Lemma 23] πX

X〈Y 〉(t1i) �= πX
X〈Y 〉(t2i)

holds iff Yi ≤ Y , i.e. t1i and t2i coincide exactly on the multiset subattributes
outside the principal filter generated by X〈Yi〉. From this, using [Hartmann et al.,
2006, Lemma 24] we conclude that πX

X〈Y 〉(t1) = πX
X〈Y 〉(t2) holds iff y �≥ Yi for all

i = 1, . . . , m. Due to the choice of the Yi and the fact that for i ∈ {k +1, . . . , m}
there always exists some ı̂ ∈ {1, . . . , k} with Yı̂ ≤ Yi we obtain πX

X〈Y 〉(t1) =
πX

X〈Y 〉(t2) iff Y ∈ Go.
Now take a maximal Y ∈ Gu−Go. Then Y is a maximal proper subattribute

of some Yi with i ∈ {k+1, . . . , m}, and due to the construction we have t1ı̂ ⊆ t2i

and t2ı̂ ⊆ t1i. As we have πX
X{Y }(t1i) �= πX

X{Y }(t2i) iff Y ≥ Yi, we conclude

2072 Schewe K.-D.: Functional Dependencies with Counting on Trees

πX
X{Y }(t1) = πX

X{Y }(t2) iff Y �≥ Yi for all i = k + 1, . . . , m. Due to the choice of
the Yi we finally obtain πX

X{Y }(t1) = πX
X{Y }(t2) iff Y ∈ Gu, and hence πX

Z (t1) =
πX

Z (t2) iff Z ∈ F.
Finally, let X = X [X ′]. If we have F = {λ}, take t1 = [v] with v ∈ dom(X ′)

and t2 = []. For Y1 = X{Y ′} /∈ F, Y2 = X〈Y ′〉 /∈ F or Y3 = X [Y ′] /∈ F we
get πX

Y1
(t1) = {πX′

Y ′ (v)} �= ∅ = πX
Y1

(t2), πX
Y2

(t1) = 〈πX′
Y ′ (v)〉 �= 〈〉 = πX

Y2
(t2), and

πX
Y3

(t1) = [πX′
Y ′ (v)] �= [] = πX

Y3
(t2).

So assume now F �= {λ}. In this case take F′ = S(X〈X ′〉) ∩ F, which is a
coincidence ideal on S(X〈X ′〉). Using the construction above we obtain multisets
t′1, t

′
2 ∈ dom(X〈X ′〉) with π

X〈X′〉
Z (t′1) = π

X〈X′〉
Z (t′2) iff Z ∈ F′. Now let Y1, . . . , Yk

be the maximal element in S(X ′) such that X [Yi] ∈ F for all i = 1, . . . , k. In
particular, X〈Yi〉 ∈ F′.

For k = 0 there is nothing to show. For k = 1 we can order the elements in t′1
and t′2 in such a way that we obtain lists t1 and t2 with πX

X[Y1]
(t1) = πX

X[Y1]
(t2).

Then obviously πX
Z (t1) = πX

Z (t2) holds iff Z ∈ F.
Now assume k > 1. Then Y1, . . . , Yk must be pairwise not reconsilable. As

the elements in t′1 and t′2 all have the form τ = τX′
Y for some Y ∈ S(X ′), we will

now replace them by elements τ̂ defined with respect to Y1, . . . , Yk such that for
t̂j = 〈τ̂ | τ ∈ tj〉 (j = 1, 2) we still have π

X〈X′〉
Z (t̂1) = π

X〈X′〉
Z (t̂2) iff Z ∈ F′,

and t̂1 and t̂2 can be ordered in a way that the resulting lists t1 and t2 satisfy
πX

X[Yi]
(t1) = πX

X[Yi]
(t2) for all i = 1, . . . , k, which will complete our proof.

In order to achieve these two properties we temporarily identify list values
with record values – all occurring lists have the length one, two or three with
identical elements. Furthermore, we may flatten nested record values. Then split
t′1 and t′2 into multisets containing only tuples of the same length, so without
loss of generality we may assume that all τ have the form (τ1, . . . , τn), and each
Yi has the form X ′(Yi1, . . . , Yin). Now take � such that all X ′(Yi(�+1), . . . , Yin)
are pairwise reconsilable. In particular, for j ≤ � the Yij (i = 1, . . . , k) must
be set or multiset attributes. Split t′1 and t′2 into submultisets containing tuples
with equal projections on the last n− � components.

Let these elements be τ
(j)
i = (v(j)

1i , . . . , v
(j)
�i , v�+1, . . . , vn) with i = 1, . . . , m

and j = 1, 2. Now define τ̂
(j)
i = (

⋃m
i=1 v

(j)
1i , . . . ,

⋃m
i=1 v

(j)
�i , v�+1, . . . , vn), where

⋃
has to be understood as either set or multiset union. This obviously satisfies the
first of the two desired properties.

For the second desired property we know that t′1 and t′2 in such a way that
we obtain lists t

(i)
1 and t

(i)
2 such that πX

X[Yi]
(t(i)1) = πX

X[Yi]
(t(i)2), but the order

may be different for different i ∈ {1, . . . , k}. However, elements τ1, τ2 that must
appear in different positions for different i ∈ {1, . . . , k} give rise to the same
τ̂1 = τ̂2, which gives us the second desired property and hence the theorem. �

2073Schewe K.-D.: Functional Dependencies with Counting on Trees

With this central result on coincidence ideals we are now able to finalise the
proof for the axiomatisation showing that the axioms and rules in Theorem 6
are complete. The idea of the proof is simply to follow the corresponding proof
for the relational model. However, the use of Theorem 11 will be central, while
in the relational model the corresponding construction was trivial.

Theorem 12. The set of axioms and rules in Theorem 6 is complete for the
implication of FDs on S(X).

Proof. Let Σ be a set of FDs on S(X) and assume Y → Z /∈ Σ+. Then there
exists a subattribute Z ∈ Z with Y → {Z} /∈ Σ+. Thus, Z /∈ Ȳ = {Z ′ | Y →
{Z ′} ∈ Σ+}. We show that F = Ȳ is a coincidence ideal on S(X):

1. λ ∈ F follows immediately from the reflexivity axiom (1), the λ axiom (4),
and the transitivity rule (6).

2. For Z1 ∈ F and Z1 ≥ Z2 the subattribute axiom (2) and the transitivity rule
(6) imply Z2 ∈ F.

3. For reconsilable Z1, Z2 ∈ F the join axiom (3) and the transitivity rule (6)
imply Z1 � Z2 ∈ F.

Now apply Theorem 11, which gives us r = {t1, t2} ⊆ dom(X) with πX
Y (t1) =

πX
Y (t2) iff Y ∈ F. In particular, πX

Y (t1) = πX
Y (t2) for all Y ∈ Y, and πX

Z (t1) �=
πX

Z (t2). That is, r �|= Y→ {Z} and hence also r �|= Y→ Z.
Finally, we show r |= Σ, for which we distinguish two cases:

– If U ⊆ F, then πX
U (t1) = πX

U (t2) for all U ∈ U. The reflexivity axiom and the
transitivity rule allow us to derive Y → V ∈ Σ+, which means V ⊆ F and
thus πX

V (t1) = πX
V (t2) for all V ∈ V, i.e. r |= U→ V.

– If U ⊆ F, then there is some U ∈ U with πX
U (t1) �= πX

U (t2), which immediately
implies r |= U→ V.

Hence we get r |= Σ∗, which finally gives Y→ Z /∈ Σ∗. �

4 Concluding Remarks

In this paper we took up an open problem formulated in [Sali and Schewe,
2005] and added non-trivial restructuring rules to Brouwerian algebras of nested
attributes. This addition adds counting to functional dependencies (FDs), as
counting the number of elements in sets, multisets and lists would be enabled. We
then presented a finite axiomatisation for such extended FDs, which generalises
the main result in [Hartmann et al., 2006].

2074 Schewe K.-D.: Functional Dependencies with Counting on Trees

We did, however, exclude the union constructor, which was added in [Sali
and Schewe, 2005] and which widens the possibilities to exploit counting subat-
tributes in functional dependencies. It is an open problem, whether the axioma-
tisation for weak functional dependencies in [Sali and Schewe, 2005] can also be
generalised to this case.

References

[Abiteboul et al., 2000] Abiteboul, S., Buneman, P., and Suciu, D. (2000). Data
on the Web: From Relations to Semistructured Data and XML. Morgan Kauf-
mann Publishers.

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Founda-
tions of Databases. Addison-Wesley.

[Arenas and Libkin, 2004] Arenas, M. and Libkin, L. (2004). A normal form for
XML documents. ACM Transactions on Database Systems, 29(1):195–232.

[Hartmann et al., 2006] Hartmann, S., Link, S., and Schewe, K.-D. (2006). Ax-
iomatisation of functional dependencies in the presence of records, lists, sets and
multisets. Theoretical Computer Science. to appear.

[Sali and Schewe, 2005] Sali, A. and Schewe, K.-D. (2005). Weak functional
dependencies on trees with restructuring. submitted for publication.

[Sali and Schewe, 2006] Sali, A. and Schewe, K.-D. (2006). Counter-free keys
and functional dependencies in higher-order datamodels. Fundamenta Infor-
maticae. to appear.

[Thalheim, 1991] Thalheim, B. (1991). Dependencies in Relational Databases.
Teubner-Verlag.

[Thalheim, 2000] Thalheim, B. (2000). Entity-Relationship Modeling: Founda-
tions of Database Technology. Springer-Verlag.

[Vincent et al., 2004] Vincent, M., Liu, J., and Liu, C. (2004). Strong functional
dependencies and their application to normal forms in XML. ACM Transactions
on Database Systems, 29(3):445–462.

[Wang and Topor, 2005] Wang, J. and Topor, R. (2005). Removing XML data
redundancies using functional and equality-generating dependencies. In Dob-
bie, G. and Williams, H., editors, Database Technologies 2005 – Sixteenth Aus-
tralasian Database Conference, volume 39 of CRPIT, pages 65–74. Australian
Computer Society.

2075Schewe K.-D.: Functional Dependencies with Counting on Trees

