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Abstract: The concept of continuity for mappings between metric spaces should co-
incide with that of uniform continuity in the case of a compact domain, and still give
rise to a category. In Bishop’s constructive mathematics both requests can be fulfilled
simultaneously, but then the reciprocal function has to be abandoned as a continuous
function unless one adopts the fan theorem. This perhaps little satisfying situation
could be avoided by moving to a point–free setting, such as formal topology, in which
infinite coverings are defined mainly inductively. The purpose of this paper is to discuss
the earlier situation and some recent developments.
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1 Compactness and uniform continuity

As laid out in [11], Bishop’s constructive mathematics [7, 8] simultaneously gen-
eralises three varieties of mathematics:

1. the ZFC–based, so–called classical mathematics;

2. Markov–style recursive mathematics; and

3. intuitionistic mathematics à la Brouwer.

In fact, the theorems of Bishop’s theory are valid in all these varieties, each of
which can be obtained from Bishop’s own by adding appropriate principles:

1. the law of excluded middle and the axiom of choice for classical mathematics;

2. Markov’s principle and Church’s thesis for recursive mathematics; and

3. Brouwer’s continuity principles for intuitionistic mathematics: that is, the
principle of continuous choice and the fan theorem.

(Note in this context that the axiom of choice implies a fragment of the law of
excluded middle [5], and that in the presence of the principle of continuous choice
the fan theorem for arbitrary bars is equivalent to its restriction to detachable
bars [31, Chapter 4, Section 7.4].)
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The three models of Bishop’s theory which we have listed above are mutually
inconsistent with particular respect to the issues of compactness and continuity.
In recursive and intuitionistic mathematics, every total function on the real
line that can be defined at all must be pointwise continuous (by the Kreisel–
Lacombe–Shoenfield–Tsejtin theorem and by Brouwer’s continuity principles,
respectively), while this is obviously false in classical mathematics. The uniform
continuity of a pointwise continuous function on, say, the unit interval varies
with the model in a different way, which not surprisingly is the same in which
the validity of the Heine–Borel covering principle depends on the model.

Before we start to discuss our main issue of uniform continuity, we recall the
intimately related status of compactness. Throughout this note, let X stand for
an inhabited metric space. We also adopt Bishop’s definition that X is compact
precisely when it is totally bounded and complete [7, Chapter 4, Section 4][8,
Chapter 4, Section 4]. This choice from the various classically equivalent for-
mulations of compactness includes, in Bishop’s framework, familiar “compact”
metric spaces like the unit interval. In contrast to classical mathematics, how-
ever, one cannot expect a Bishop–style constructive proof that if X is compact,
then X satisfies the Heine–Borel principle

HB every open covering of X has a finite subcovering.

The reason is that HB fails recursively already for X being the unit interval.
More specifically, a covering of the whole real line by a sequence of bounded
open intervals can be constructed in recursive mathematics such that every fi-
nite collection of these intervals has total length less than any given positive
number [11, Chapter 3, Theorem 4.1]. On the other hand, HB for arbitrary com-
pact X is not only valid classically, but also in intuitionistic mathematics. To be
more precise, one can prove in Bishop’s theory that if X is compact, then it is a
uniform quotient of the Cantor space 2N [11, Chapter 5, Theorem 1.4][31, Chap-
ter 7, Corollary 4.4], which satisfies HB precisely when Brouwer’s fan theorem
for arbitrary bars is valid [31, Chapter 4, Section 7.3]; whence X satisfies HB
intuitionistically whenever it is compact [11, Chapter 5][31, Chapter 6, Section
3, and Chapter 7, Section 4]. For those and other aspects of compactness in
constructive mathematics, we also refer to [19].

The uniform continuity principle

UC every pointwise continuous mapping on X is uniformly continuous

behaves just as HB, of which it is a classical consequence [18, 4.3.31–32]. In
fact, UC fails recursively for X being the unit interval, but holds classically
and intuitionistically whenever X is compact. More precisely, in the presence of
Church’s thesis and by means of a Specker sequence one can construct a pointwise
continuous function h from [0, 1] onto ]0, 1[ which lacks uniform continuity [11,
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Chapter 3, Section 3]. On the other hand, Brouwer’s fan theorem for arbitrary
bars guarantees the validity of UC for arbitrary compact X , through that of HB.

2 Bishop’s definition

With his particular way to put continuity, Bishop managed to handle the situa-
tion of UC. To explain this, we need to recall that Bishop understood X to be
locally compact if and only if every bounded subset of X is contained in a com-
pact subset [7, Chapter 4, Section 5][8, Chapter 4, Section 6]. Local compactness
is a notion depending on the metric, because so is the notion of boundedness.
Every compact space is locally compact, and every locally compact space is
complete and separable. The euclidean space of arbitrary dimension is locally
compact, and so is every closed interval.

As with compactness, Bishop again made an appropriate choice when he
defined in [7, Chapter 4, Section 5][8, Chapter 4, Section 6] that

a mapping on a locally compact metric space is continuous precisely when
it is uniformly continuous on every compact subset of its domain.

Besides excluding the recursive counterexample h mentioned above, this defi-
nition of continuity works quite well for mappings on locally compact metric
spaces—to which Bishop explicitly restricted his attention—at least as far as
composition is concerned.

Contrary to common belief, namely, the composition ψ ◦ ϕ : X → Z of two
continuous mappings ϕ : X → Y and ψ : Y → Z between metric spaces is
again continuous provided that continuity is understood in Bishop’s sense. This
is because in Bishop’s definition of continuity the domains of all the mappings
under consideration, which in our case are X and Y , must be locally compact.
In fact, we only need the intermediate metric space Y to be locally compact.

To see this, consider a compact subset X0 of X . By definition, ϕ is uniformly
continuous on X0; whence ϕ (X0) is totally bounded: the image of a totally
bounded subset under a uniformly continuous mapping is totally bounded [11,
Chapter 2, Proposition 4.3]. In particular, ϕ (X0) is a bounded subset of Y . Since,
in addition, Y is locally compact, there is a compact subset Y0 of Y that contains
ϕ (X0). As ψ is uniformly continuous on Y0, also ϕ◦ψ is uniformly continuous on
X0: the composition of two uniformly continous mappings is uniformly continous.

A drawback of Bishop’s concept of continuity is that it does not include the
reciprocal function, for the lack of a locally compact domain. Although x �→ 1/x
as defined on ]0, 1] is uniformly continuous on every compact subset of ]0, 1] (by
[11, Chapter 2, Lemma 3.3], any such subset is bounded away from 0), it falls
short from being continuous in Bishop’s sense: as a whole, its domain is not
locally compact, because it is not complete.
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Without requiring the intermediate metric space to be locally compact, form-
ing compositions fails drastically to preserve uniform continuity on compact sub-
sets. Let g be the uniformly continuous function on [0, 1], constructed by means
of Church’s thesis [11, Chapter 6, Corollary 2.9], that maps [0, 1] onto ]0, 1].
Although 1/x is uniformly continuous on every compact subset of ]0, 1], the
composition 1/g of g with 1/x, which is defined on [0, 1], cannot be uniformly
continous. In fact, 1/g is unbounded, because g has infimum 0.

The example of this function g shows furthermore that one cannot prove
in Bishop’s framework that uniformly continuous images of compact spaces are
again compact, as is the case in classical mathematics. (The problem is the
preservation of completeness.) This observation necessitates once more Bishop’s
request that a continuous function have a locally compact domain, and somehow
hints at the variant of continuity we remember next.

3 Bridges’s modification

Following an idea of Bishop, Bridges healed the defect that the former’s concept
of continuity is no longer closed under composition as soon as the precondition is
dropped that the domains be locally compact. The solution is to require instead
more from the functions. Bridges defined in [9, Chapter 2, Section 7] that

a mapping on an arbitrary metric space is continuous if and only if it is
uniformly continuous near every subset of the domain which is a compact
image.

This definition requires two explanations: first, a compact image is the image of
a compact space under a uniformly continuous mapping; secondly, a mapping f
on X is called uniformly continuous near a subset X0 of X if for every ε > 0
there is δ > 0 such that f (y) is within ε of f (x) for each x ∈ X0 and for all the
y ∈ X which not necessarily belong to X0 but still are within δ of x.

Bridges thus arrived at a concept of continuity for mappings between ar-
bitrary metric spaces which is closed under composition, and coincides with
Bishop’s for every mapping whose domain is locally compact [9, Chapter 2, Sec-
tion 7]. Every compact space is a compact image, and if a mapping is uniformly
continuous near a subset, then it is uniformly continous on this subset. Hence
Bridges’s variant of continuity entails uniform continuity on compact subsets (in
fact, on compact images) for mappings between arbitrary metric spaces.

Unlike uniform continuity on compact subsets, Bridges’s modified concept
still excludes the function 1/x—at least unless one accepts the fan theorem (see
below). However, Bridges’s notion of continuity differs from Bishop’s original one
inasmuch as while “only” the lack of a locally compact domain as required in
the definition excludes 1/x from the latter, one can give a more concrete reason
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in the case of the former. More specifically, ]0, 1] is a compact image recursively,
thanks to the presence of the function g recalled above. Hence if one exclusively
works in the recursive setting, and assumes that 1/x be uniformly continuous
near compact images, then it would be uniformly continuous on the whole of
]0, 1], which is absurd.

Bridges’s modified concept also shows a possible defect from the predicative
perspective. While the compact subsets of a metric space form the completion of
the finite subsets with respect to the Hausdorff metric, it is questionable whether
the subsets that are compact images form a set. In all, one might still miss
the definitive concept of continuity for constructive mathematics à la Bishop.
We should anyway appreciate the elegant way in which Bishop circumvented
problematic cases, such as the function 1/x, due to which way he enabled his
theory to accommodate recursive mathematics as well.

4 The fan theorem

An equivalent of the fan theorem for detachable bars [11, Chapter 6, Corollary
2.8][6], the positivity principle

PP every uniformly continuous real–valued function on a compact metric space
that attains only positive values has positive infimum,

rules out recursive phenomena like the aforementioned function g. Hence PP is
likely to enable 1/x to lie within the realm of continous functions.

Waaldijk [30] has indeed shown that over Bishop’s theory the fan theorem
for detachable bars is necessary and sufficient for bringing 1/x into the modified
concept of continuity worked out by Bridges. We now summarise Waaldijk’s
proof, which is based on the observation that PP can be put equivalently as

every compact image contained in ]0,+∞[ is bounded away from 0.

In this form, PP implies that 1/x is continuous in Bridges’s sense, for it is uni-
formly continuous on every set of the form ]r,+∞[ with r > 0. Conversely, PP
follows from the assumption that 1/x is uniformly continuous near every compact
image contained in ]0,+∞[. In fact, if f : X → ]0,+∞[ is uniformly continuous
and X is compact, then f (X) is a compact image contained in ]0,+∞[. In par-
ticular, 1/x is uniformly continous on f (X), so that 1/f is uniformly continuous
on X , and thus bounded—that is, f has positive infimum.

Referring to this observation, Waaldijk [30] proposes that the fan theorem for
detachable bars be added to Bishop–style constructive mathematics. However, if
this would be accepted, then the recursive model had to be abandoned. This is
not only because PP is incompatible with the presence of recursive functions like
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g, but also since this version of the fan theorem conflicts directly with Church’s
thesis [11, Chapter 5, Proposition 3.1].

As the classical contrapositive of weak König’s lemma, the fan theorem for
detachable bars is classically valid, which the principle of continuous choice, in
the sense of [11, p. 107], is not. This other cornerstone of intuitionistic mathe-
matics is not only inconsistent with Church’s thesis, but also with classical logic
[11, Chapter 5, Proposition 2.1, Theorem 2.2].

So adding only the fan theorem, without continuous choice, would cause fewer
doubts than moving to full–fledged intuitionism, at least from the classical point
of view. Can different frameworks for constructive mathematics still cope in a
satisfying way with the phenomenon of continuity, but without invoking the fan
theorem and thus without renouncing recursive mathematics?

5 The point–free perspective

In the point–free setting of formal topology à la Martin–Löf and Sambin (see
[28] for a comprehensive survey), HB for compact intervals as proved by Ced-
erquist and Negri [12] is a consequence of the restriction to inductively generated
coverings which is characteristic of Martin–Löf type theory [21, 22, 23], the back-
ground of formal topology. Building upon this formal version of HB, Palmgren
has recently answered our question in the affirmative [26].

To this end, Palmgren has shown that every function on the real line which is
continuous in Bishop’s sense can be represented by a continuous mapping—that
is, a morphism of formal topologies—on the formal topology of the real numbers.
Before we can explain this part of Palmgren’s work, we need to recall how the
real numbers can be put as a formal topology, following Negri and Soravia [24].

The initial data is the set S of all pairs (p, q) of rational numbers with p < q,
which are called basic opens of this formal topology. Each (p, q) ∈ S is thought
to represent the open interval ]p, q[⊆ R. In this interpretation, a formal real is a
subset ξ of S that behaves as if the ]p, q[ with (p, q) ∈ ξ were a neighbourhood
filter of some x ∈ R.

This construction meets the intended meaning of a real number in Bishop’s
theory, which is cast into axioms in [10]. Moreover, every constructively reason-
able model of R, such as the located Dedekind cuts, is isomorphic to the formal
reals, by assigning the formal real x = {(p, q) ∈ S : p < x < q} to each x ∈ R.
Note that the basic opens are the primitive objects, and the formal reals the
derived ones.

Now let f : R → R be a continuous function in Bishop’s sense. Palmgren sets
(p, q)Af (r, s) precisely when f (]p, q[) ⊆ ]r, s[, and shows that one thus gets an
continuous mapping Af ⊆ S × S on the formal topology of the real numbers:
that is, a relation whose required properties reflect how a continuous function f
acts on the open intervals represented by the basic opens.
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As any continuous mapping of this kind, Af induces a function af on the
formal reals. This is given by assigning to every formal real ξ the formal real
af (ξ) with (r, s) ∈ af (ξ) if and only if (p, q)Af (r, s) for some (p, q) ∈ ξ. By
the definition of Af , we have af (x) = f (x) for every x ∈ R, in which sense f is
represented by Af .

After all this, Palmgren proves that, by virtue of the aforementioned formal
variant of HB, a function on a compact interval of formal reals is uniformly
continuous whenever it is induced by a continuous mapping from the formal
topology of this compact interval to that of the real line. In addition, the contin-
uous mappings between formal topologies are automatically closed under com-
position, which essentially is the composition of relations, and include 1/x in a
natural way. Indeed, the continuous mapping A1/x corresponding to 1/x is given
by setting (p, q)A1/x (r, s) precisely when either q < 0 or 0 < p and both r ≤ 1/q
and 1/p ≤ s: that is, in intuitive terms, 0 /∈ ]p, q[ and ]1/q, 1/p[ ⊆ ]r, s[.

Curi [16] has lifted Palmgren’s achievements from the context of real intervals
to arbitrary formal metric spaces. Apart from any talk of uniform continuity,
Palmgren and Curi have thus established, via formal topology, a link between
Martin–Löf type theory and Bishop–style constructive mathematics. To perform
this task was overdue inasmuch as the former had originally been intended as a
formal system for the latter: as “a full scale system for formalizing intuitionistic
mathematics as developed, for example, in the book by Bishop” [21, 23].2

The feasibility of an undertaking like this was already clear from Bishop’s
book [7], which is generally free of truly impredicative moves that would have
made impossible to formalise it in a predicative system like Martin–Löf’s. Also,
the constructive Zermelo–Fraenkel set theory (CZF) founded by Aczel [1, 2,
3, 5] both was designed as a predicative framework for Bishop’s constructive
mathematics and could still be interpreted within type theory.

6 Sets of points

One issue, however, was sometimes felt to be problematic until recently: already
the reals, let alone the points of any more involved space, might not form a set
in the sense of type theory, and thus might lie beyond its range. Now it has been
done away, as follows, with the objection that the point spaces right at the basis
of analysis might not be sets.

First, Curi arrived at the conclusion that the points of a locally compact
regular formal topology form a set [14, 15, 17]. This class of formal topologies
is the point–free counterpart of that of locally compact Hausdorff spaces; it
2 Martin–Löf’s first book [20], however, was written independently of Bishop’s [7],

which “the author [Martin–Löf] did not get access to until after this manuscript
[Martin–Löf’s] was finished” [20, p. 13].
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includes all formal metric spaces, and thus the formal real line. More generally,
all points of a regular formal topology are maximal (Sambin [28, p. 363]), so
that they form a set, as Palmgren showed in [25]. Curi and Palmgren have then
generalised their results to sets of continuous mappings [16, 27], of which the
sets of points they considered before are particular cases.

Aczel [4] gave a variant of Palmgren’s type–theoretic construction in CZF,
by which he could weaken Curi’s hypothesis of local compactness to the one
of set presentability. A fragment of CZF suffices to show that every complete
separable metric space is a set [13], which result confirms in an unexpected
way Bishop’s intuition to concentrate on separable metric spaces in constructive
analysis. In [7, Appendix A], Bishop even argued for his view of the concept
of an nonseparable metric space as an instance of “pseudo-generality” from the
constructive perspective.

7 Inductive definitions

It is in order to remember that the predominant role of inductive definitions
within Martin–Löf type theory originated in nothing but the intention to elimi-
nate the fan theorem [20], if not Brouwer’s choice sequences in general. On the
other hand, it is the peculiar character of choice sequences, the seminal con-
cept of intuitionistic analysis, on which the intuitionistic argument for the fan
theorem is based [11, Chapter 5, Section 3].

As we have indicated in [29], the fan theorem is another instance of the
somewhat heuristic argument that uniformisation principles of a certain kind
be constructively acceptable (our prime example was countable choice). This
argument reads as follows: “if the only conceivable way to constructively verify a
∀∃–statement is to prove the corresponding ∃∀–statement, then both statements
are to be identified with each other.”

By the exclusive use of inductive definitions, one can avoid any such reference
to heuristics, because to construct an object following the prescribed rules is
then by definition the only way to build it, along which the object can thus
legitimately be decomposed into its parts. We have seen above how inductive
definitions, standing behind the validity of HB in the point–free setting of formal
topology, help to circumvent the unwanted phenomena of continuity that seem
to be unavoidable in any point–set setting like Bishop’s.
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