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1 Introduction

Iterated function systems (IFS) are well-known in fractal geometry as a means
to describe sets of fractal nature [Edgar 1990, Falconer 1990]. Usually, an IFS
consists of a finite set of contracting mappings of a metric space M into itself and
defines in a unique way a (largest) fixed point which is also called its attractor.
This fixed point (or attractor) is a nonempty closed subset of M.

If one considers infinite iterated function systems (IIFS) (cf. [Fernau 1994a,
Fernau 1994b, Mauldin 1995, Mauldin and Urbański 1996]) unlike the case of
finite IFS the fixed point need not be closed. Thus, for IIFS, fixed point and
attractor, which we define as the closure of the fixed point2, in general, do not
coincide.

In a recent paper [Staiger 2005a] we provided a series of simple examples for
several levels of the non-coincidence of fixed point and attractors for infinite
iterated function systems using means of formal language theory. As a criterion
for the distinction we used a combination of Hausdorff dimension and Hausdorff
measure. The underlying space is the Cantor space (Xω, ρ), the contracting
mappings φw were defined by pre-multiplication with finite strings w ∈ X∗,
φw(ξ) := wξ for ξ ∈ Xω, and, therefore, the IIFS (φw)w∈W considered are most
simply described by formal languages W ⊆ X∗.

For languages simplicity can be expressed in terms of structure and com-
plexity. The structure we required in [Staiger 2005a] was prefix-freeness, that is,
for w, v ∈ W, w �= v the images φw(Xω) and φv(Xω) are disjoint. This results
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also in a simple topological structure of the fixed point. From the complexity
point of view, with three exceptions, the languages (examples) constructed in
[Staiger 2005a] were context-free languages having low complex acceptors (cf.
[Autebert et al. 1997]): they are accepted by one- or two-turn deterministic one-
counter automata.

In this paper, we continue this line of investigation to construct simple IIFS
in Cantor space which exhibit a certain level of distinction between fixed point
and attractor and which are described by prefix-free deterministic context-free
languages.

As an additional instance we investigate the possibility to obtain fixed points
and attractors which exhibit, besides the self-similarity induced by the generating
IIFS, a certain kind of finite self-similarity as described in the graph-directed con-
structions of [Bandt 1989, Mauldin and Williams 1988] (see also [Edgar 1990]).
In our special case of Cantor space such sets are also known as finite-state subsets
of Xω (see [Staiger 1983, Trakhtenbrot 1962]).

In our examples we shall use �Lukasiewicz languages (see [Staiger 2005b]).
Their construction exhibits interesting information-theoretic properties (see
[Kuich 1970, Staiger 2005b]), which in view of the close relation between the
entropy of languages and Hausdorff dimension (see [Staiger 1993]) could result
in IIFS whose fixed points have the desired properties and whose underlying lan-
guages can be constructed as deterministic context-free languages of low complex
structure.

2 Notation and Preliminary Results

Next we introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .}
we denote the set of natural numbers. Let X be an alphabet of cardinality
|X | = r. By X∗ we denote the set (monoid) of words on X , including the
empty word e, and Xω is the set of infinite sequences (ω-words) over X . For
w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This concatenation
product extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗ ∪ Xω. For
a language W let W ∗ :=

⋃
i∈IN W i be the submonoid of X∗ generated by W ,

and by Wω := {w1 · · ·wi · · · : wi ∈ W \ {e}} we denote the set of infinite strings
formed by concatenating words in W . Furthermore |w| is the length of the word
w ∈ X∗ and A(B) is the set of all finite prefixes of strings in B ⊆ X∗ ∪Xω. We
shall abbreviate w ∈ A(η) (η ∈ X∗ ∪ Xω) by w � η.

A language V ⊆ X∗ is called a prefix-free provided for arbitrary w, v ∈ V

the relation w � v implies w = v.
Further we denote by B/w := {η : w · η ∈ B} the left derivative or state of

the set B ⊆ X∗ ∪ Xω generated by the word w. We refer to B as finite-state
provided the set of states {B/w : w ∈ X∗} is finite. As usual a finite-state
language W ⊆ X∗ is called regular.
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In the case of ω-languages regular ω-languages, that is, ω-languages accepted
by finite automata, are the finite unions of sets of the form W ·V ω, where W and
V are regular languages (cf. e.g. [Staiger 1997a]). In particular, every regular
ω-language is finite-state, but, as it was observed in [Trakhtenbrot 1962], not
every finite-state ω-language is regular (cf. also [Staiger 1983]).

In the sequel we assume the reader to be familiar with basic facts of language
theory (e.g. [Berstel and Perrin 1985, Hopcroft and Ullman 1979] or Vol. 1 of
[Rozenberg and Salomaa 1997])

For a language W ⊆ X∗ let sW : IN → IN where sW (n) := |W ∩ Xn| be its
structure function. The structure generating function corresponding to sW is

sW (t) :=
∑

i∈IN
sW (i) · ti. (1)

sW is a power series with convergence radius rad W := lim inf
n→∞

1
n
√

sW (n)
. It is

convenient to consider sW also as a function mapping [0,∞) to [0,∞)∪ {∞}. If
W �⊆ {e} then sW is a continuous and strictly increasing mapping on [0, rad W ).

The convergence radius rad W is closely related to the entropy of the language
(cf. [Kuich 1970, Staiger 1993, Staiger 2005b]),

HW = lim supn→∞
logr(1+sW (n))

n .

The parameter t1(W ) := sup{t : t ≥ 0∧sW (t) ≤ 1} ≤ rad W is important for the
calculation of rad W ∗. It fulfills the following (see [Kuich 1970, Staiger 1993]).

Lemma 1. It holds sW (t1(W )) = 1 or sW (rad W ) < 1.
If sW (rad W ) ≤ 1, then t1(W ) = rad W = rad W ∗. If sW (rad W ) > 1 then

rad W ∗ ≤ t1(W ).
If W is prefix-free then we have always rad W ∗ = t1(W ) and, moreover,

sW (rad W ∗) = 1 or rad W ∗ = rad W .

We consider the set Xω as a metric space (Cantor space) (Xω, ρ) of all ω-words
over the alphabet X where the metric ρ is defined as follows.

ρ(ξ, η) := inf{r−|w| : w � ξ ∧ w � η}

This space is a compact, and C(F ) := {ξ : A(ξ) ⊆ A(F )} is the closure of the
set F (smallest closed subset containing F ) in (Xω, ρ).

The mapping φw(ξ) := w · ξ is a contracting similitude if only w �= e. Thus
a language W ⊆ X∗ \ {e} defines a possibly infinite IFS (IIFS) in (Xω, ρ). Its
(maximal) fixed point is the ω-power Wω of the language W . It was observed in
[Staiger 1997b] that, in general, the IIFS (φw)w∈W has a great variety of fixed
points, that is, solutions of the equation

⋃
w∈W φw(F ) = F . All of these fixed

points are contained in Wω, and, except for the empty set ∅, their closure equals
C(Wω), which is the attractor of (φw)w∈W .
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If e /∈ W and W is prefix-free its ω-power satisfies Wω =
⋂

i∈IN W i · Xω,
that is, is a Gδ-set (a countable intersection of open sets) in (Xω, ρ). In gen-
eral, the topological structure of Wω can be more complex (cf. [Finkel 2001,
Staiger 1997a, Staiger 1997b]).

Next we recall the definition of the Hausdorff measure and Hausdorff di-
mension of a subset of (Xω, ρ) (see [Edgar 1990, Falconer 1990]). In the setting
of languages and ω-languages this can be read as follows (see [Staiger 1993,
Merzenich and Staiger 1994]). For F ⊆ Xω and 0 ≤ α ≤ 1 the equation

ILα (F ) := lim
l→∞

inf
{ ∑

w∈W

r−α·|w| : F ⊆ W · Xω ∧ ∀w(w ∈ W → |w| ≥ l)
}

(2)

defines the α-dimensional metric outer measure on Xω. The measure ILα satisfies
the following.

Corollary 2. If ILα (F ) < ∞ then ILα+ε (F ) = 0 for all ε > 0.

Then the Hausdorff dimension of F is defined as

dim F := sup{α : α = 0 ∨ ILα (F ) = ∞} = inf{α : ILα (F ) = 0} .

It should be mentioned that dim is countably stable and shift invariant, that is,

dim
⋃

i∈IN Fi = sup{dim Fi : i ∈ IN} and dim w · F = dim F . (3)

We list some relations of the Hausdorff dimension and measure for ω-power
languages to the properties of the structure generation functions of the corre-
sponding languages (see [Staiger 1993, Merzenich and Staiger 1994] or, in a more
general setting [Fernau and Staiger 2001]).

dim Wω = − logr rad W ∗ (4)

Proposition 3. If α = dim Wω then ILα (Wω) ≤ 1.
If, moreover, W is a regular language then 0 < ILα (Wω) ≤ ILα (C(Wω)) ≤ 1,

and if W is regular and prefix-free then ILα (Wω) = ILα (C(Wω)).

From [Staiger 1997b] we have the following connection between finite-state and
regular ω-powers.

Proposition 4. If V ω is finite-state then C(V ω) is regular and there is a regular
language W such that C(V ω) = C(Wω).

The following direct connections between the structure generation function
sW and Hausdorff measure ILα (Wω) or dim Wω are helpful.

Proposition 5. 1. If sW (r−α) < 1 then ILα (Wω) = 0.

2. If W is prefix-free and sW (r−α) = 1 then α = dim Wω.
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3 Properties of �Lukasiewicz languages

In this section we recall known and derive some new properties of �Lukasiewicz
languages. We start with the definition of the {C, B}-n-�Lukasiewicz language
(cf. [Staiger 2005b]). Let C, B ⊆ X∗ \ {e} be two disjoint languages. Then

�L = C ∪ B · �Ln (5)

is the n-�Lukasiewicz language derived from C and B. Closely related to �L is its
derived language defined as follows.

K =
⋃n−1

i=0
B · �Li . (6)

The languages �L and K have the following properties (see [Staiger 2005b]).

Proposition 6. Let C ∩ B = ∅.
1. �L ⊆ (C ∪ B)∗ · C ⊆ (C ∪ B)∗

2. A(�L∗) = A((C ∪ B)∗)

3. If C ∪ B is prefix-free then �L is also a prefix-free and K is the union of
n prefix-free languages B · �Li (i = 0, . . . , n − 1).

4. A(�L) = K∗ · A(C ∪ B) and if �L is prefix-free then K∗ ⊆ A(�L) \ �L.

5. (C ∪ B)∗ = �L∗ · K∗, and if C ∪ B is prefix-free every w ∈ (C ∪ B)∗ has a
unique factorisation w = v · u where v ∈ �L∗ and u ∈ K∗.

Since A(W ∗ \ {e}) = A(Wω) from Proposition 6.2 we have the following.

C((C ∪ B)ω) = C(�Lω) (7)

Under certain assumptions we can express (C ∪ B)ω in terms of �L and K.

Theorem 7. Let C, B ⊆ X∗ be disjoint, C ∪ B prefix-free and �L and K defined
as in Eqs. (5) and (6), respectively. Then

(C ∪ B)ω = �Lω ∪ �L∗ · Kω and (8)

ILα ((C ∪ B)ω) = ILα (�Lω) +
∑
i∈IN

s�L(r−α)i · ILα (Kω) (9)

Before we proceed to the proof we need some preparatory considerations which
can be found e.g. in [Staiger 1997b].

Let W δ := {ξ : A(ξ)∩W is infinite }. This δ-limit and the ω-power of W are
related via the following equations.

(W · V )δ = W · V δ ∪ W δ if e ∈ V (10)

(W ∗)δ = Wω ∪ W ∗ · W δ (11)
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Proof. First observe that, since C∪B is prefix-free, we have |A(ξ)∩(C∪B)| ≤ 1
and from Proposition 6.3 we have that |A(ξ)∩K| ≤ n for arbitrary ξ ∈ Xω. Thus
(C ∪ B)δ = Kδ = ∅ and from Eq. (11) ((C ∪ B)∗)δ = (C ∪B)ω and (K∗)δ = Kω

follow.
Now we apply Eq. (10) to Proposition 6.5, and we obtain Eq. (8) (C ∪B)ω =

�Lω ∪ �L∗ · Kω.
Since �L is also prefix-free, Proposition 6.4 implies �L∗ · Kω ∩ �Lω = ∅ and also

�Li ·Kω ∩ �Lj ·Kω = ∅ for i �= j. Then Property 2 of [Merzenich and Staiger 1994]
proves Eq. (9). �

Next we investigate the relations between (C ∪ B)ω and �Lω . It turns out that
the value of s�L(rad (C ∪ B)∗) plays a crucial rôle in this respect.

To this end we recall the following properties of rad �L∗ which can be found
in Section 4 of [Staiger 2005b].

Proposition 8. Let C ∩ B = ∅ and C ∪ B prefix-free. Then

1. rad C ∪ B ≥ rad �L ≥ rad �L∗ ≥ rad (C ∪ B)∗

2. It holds rad �L∗ = rad (C ∪ B)∗ or rad �L∗ = rad �L.

3. s�L(t) ≤ sC∪B(t) ≤ 1 for 0 ≤ t ≤ rad (C ∪ B)∗.

4. If s�L(t) = 1 for some 0 ≤ t ≤ rad �L then we have also sC∪B(t) = 1.

As a corollary we obtain the following.

Corollary 9. If s�L(rad (C ∪ B)∗) < 1 then s�L(t) < 1 for 0 ≤ t ≤ rad �L.

For the sake of completeness we give a short proof.

Proof. If t ≤ rad (C ∪ B)∗ the assertion is trivial. In case t > rad (C ∪ B)∗ we
obtain from s�L(t) = 1 via Proposition 8.4 that sC∪B(t) = 1 which is impossible,
since sC∪B is strictly increasing. �

This much of preparations yields the following results. Observe that dim Wω =
− logr rad W ∗ in view of Eq. (4).

Lemma 10. Let C ∩ B = ∅ and C ∪ B prefix-free.

1. If s�L(rad (C ∪ B)∗) = 1 then dim �Lω = dim(C ∪ B)ω and ILα (�Lω) =
ILα ((C ∪ B)ω) for α = dim �Lω.

2. If rad C ∪ B = rad (C ∪ B)∗ then dim �Lω = dim(C ∪ B)ω.

3. If rad C∪B > rad (C∪B)∗ and s�L(rad (C∪B)∗) < 1 then dim �Lω < dim(C∪
B)ω and ILα (�Lω) = 0 for α = dim �Lω.
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Proof. The first property follows from Eq. (9) and Proposition 3, and the second
is an immediate consequence of Proposition 8.1.

In order to prove the third one observe that in view of Lemma 1 rad C ∪B >

rad (C ∪B)∗ implies sC∪B(rad (C ∪B)∗) = 1. Now by the results of the table in
Section 4.3 of [Staiger 2005b] s�L(rad (C∪B)∗) < 1 implies sB(rad (C∪B)∗) > 1

n .
Then sC(rad (C ∪ B)∗) < n−1

n and sC(rad (C ∪ B)∗)n−1 · sB(rad (C ∪ B)∗) <
(n−1)n−1

nn .
The functions sC(t), sB(t) are continuous and increasing in [0, rad C ∪ B).

Consequently, sC(rad (C ∪ B)∗ + ε)n−1 · sB(rad (C ∪ B)∗ + ε) < n−1
n for some

ε > 0 and Eq. (21) of [Staiger 2005b] gives the following estimate rad �L = sup{t :
sC(t)n−1 · sB(t) ≤ (n−1)n−1

nn } ≥ rad (C ∪ B)∗ + ε.
Now, Corollary 9 shows s�L(t) < 1 for 0 ≤ t ≤ rad �L whence, using again

Lemma 1 we obtain rad �L∗ = rad �L > rad (C ∪ B)∗.
Finally, the assertion ILα (�Lω) = 0 follows from s�L(rad �L∗) < 1. �

From the preceding consideration the following corollary is immediate.

Corollary 11. Let C ∩B = ∅ and C ∪B prefix-free. Then s�L(rad (C ∪B)∗) < 1
if and only if sC∪B(rad (C ∪ B)∗) < 1 or s�L(rad (C ∪ B)∗) = 1 and sB(rad (C ∪
B)∗) > 1

n .

4 The �Lukasiewicz Construction

This last section is devoted to the construction of the our examples. In
[Staiger 2005a] we considered twelve cases for the relations between the dimen-
sions α = dim V ω, α̂ = dim C(V ω) and the corresponding measures ILα (V ω) and
ILα̂ (C(V ω)) of the fixed point and the attractor of IIFS derived from a language
V ⊆ X∗ \ {e}. What concerns ILα (V ω) and ILα̂ (C(V ω)) we distinguished only
the three cases of null measure, non-null finite measure and infinite measure.
Due to the constraints α ≤ α̂ and ILα (V ω) ≤ 1 < ∞ (see Proposition 3) in total
twelve cases are possible.

As it was mentioned above the examples found in [Staiger 2005a] are, with the
exception of three cases, context-free languages accepted by deterministic one-
or two-turn one-counter automata. Only the following ones (L9, L10 and L11 in
[Staiger 2005a]) were not supported by examples of context-free languages:

1. α = α̂, ILα (Lω
9 ) = 0 and 0 < ILα̂ (C(Lω

9 )) < ∞
2. α < α̂, ILα (Lω

10) = 0 and ILα̂ (C(Lω
10)) = 0, and

3. α < α̂, ILα (Lω
11) > 0 and ILα̂ (C(Lω

11)) = 0

In the subsequent part of this section we investigate in which cases the results of
Section 3 might be helpful to generate less complex examples than L9, L10 and
L11 mentioned just now.
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4.1 The limitations of the construction

First we focus on the the case finite-state fixed points V ω. This issue was not
taken into account in [Staiger 2005a]. Only in the case of regular prefix-free
languages V where α = α̂ and 0 < ILα (V ω) = ILα (C(V ω)) < ∞ we have a
finite-state (even regular) fixed point V ω in [Staiger 2005a].

If V ω is finite-state then C(V ω) is a regular ω-language and in view of Propo-
sition 4 we can find a regular language W ⊆ X∗ such that C(V ω) = C(Wω). Thus
0 < ILα̂ (C(V ω)) ≤ 1 for α̂ = dim C(V ω).

Consequently, for our levels of distinction between fixed point V ω and at-
tractor C(V ω), we may find examples of finite-state fixed points V ω only if
0 < ILα̂ (C(V ω)) < ∞.

Next we turn to the limitations of the construction of �Lukasiewicz languages.
We start with a prefix-free language V and split it into disjoint nonempty parts
C and B, choose an n ∈ IN, n ≥ 2 and define �L according to Eq. (5). Then
Eq. (7) shows C(V ω) = C(�Lω) independently of the splitting and the choice of
the parameter n ∈ IN.

What concerns the relation between the dimensions and the measures of �Lω

and V ω Lemma 10.1 shows that for s�L(rad V ∗) = 1 these values coincide. Con-
sequently, in this case the �Lukasiewicz construction does not yield ω-languages
with new parameters.

In order to obtain languages �L for which at least one of the values dim �Lω

and dim V ω or ILα (�Lω) and ILα (V ω) differ we have to choose our splitting in
such a way that s�L(rad V ∗) < 1. Then by Corollary 9 and Proposition 5.1 we get
necessarily ILα (�Lω) = 0 for α = dim �Lω. Thus it it not to expect to simplify the
example of language L11 of [Staiger 2005a] (see also Item 3 above).

Moreover, if s�L(rad V ∗) < 1 then Lemma 10 shows that rad V ∗ = rad V

implies dim �Lω = dim V ω, and rad V ∗ < rad V implies dim �Lω < dim V ω ≤
dim C(�Lω).

4.2 Examples

The examples presented here are simple deterministic context-free languages (cf.
[Autebert et al. 1997]) and yield, in two cases, finite-state fixed points. The third
case has ILα̂ (C(V ω)) = 0. As mentioned before, we can address only two of the
above mentioned three items.

We start with an extra example of a �Lukasiewicz language �L showing that �Lω

is finite-state, α = dim �Lω < α̂ = dim C(�Lω), ILα (�Lω) = 0 and ILα̂ (C(�Lω)) = 1.
Here the language L7 in Example 7 of [Staiger 2005a] which is accepted by a
deterministic two-turn one-counter automaton defines a fixed point Lω

7 which is
not finite-state.

2121Staiger L.: Hausdorff Measure and Lukasiewicz Languages



Example 1. (see also Example 6 of [Staiger 1993]) Let X := {a, b} and define
�L1 = {a} ∪ b · �L1

3. Then C ∪ B = {a, b} is a regular language, rad {a, b}∗ = 1
2

and dim C(�L1
ω) = 1.

Now, since sC∪B(1
2 ) = 1 and sB(1

2 ) = 1
2 > 1

3 , Corollary 11 and Lemma 10.3
yield dim �L1

ω < 1 and ILα (�L1
ω) = 0.

�L1
ω = ({a} ∪ b · �L1

3) · �L1
ω = {a, b} · �L1

ω proves that �L1
ω/w = �L1

ω for all
w ∈ {a, b}∗. Thus �L1

ω is finite-state.
Finally, C(�L1

ω) = {a, b}ω, whence ILα̂ (C(�L1
ω)) = 1. �

The next example addresses Item 1. It provides a �Lukasiewicz language �L for the
case that ILα (�Lω) = 0 and ILα (C(�Lω)) = 1 where, additionally, �Lω is finite-state.

Example 2. We let X := {a, b} and we start with C ∪ B = V where V is the
�Lukasiewicz language defined by V = {a} ∪ b · V 2. This language has rad V =
rad V ∗ = 1

2 and sV (1
2 ) = 1 (see [Kuich 1970]).

We define �L2 = (V \ {a}) ∪ a · �L2
3. Since sB(1

2 ) = 1
2 > 1

3 , from Corollary 11
and Lemma 10.2 we have α = dim �L2

ω = dim V ω = 1 and ILα (�L2
ω) = 0.

In order to show that �L2
ω is finite-state we calculate �L2

ω = ((V \ {a}) ∪ a ·
�L2

3)· �L2
ω = V · �L2

ω. This yields {a, b}· �L2
ω = a · �L2

ω∪b ·V 2 · �L2
ω = V · �L2

ω = �L2
ω.

As in the previous example we have also C(�L2
ω) = {a, b}ω and, therefore,

ILα (C(�L2
ω)) = 1.

Finally, we show that the language �L2 is a simple deterministic context-free
language giving a corresponding grammar ({a, b}, {S, A}, S, P ) with rules P :

S → a · SSS | b · AA

A → a | b · AA

�

The last example provides a �Lukasiewicz language �L for which α = dim �Lω <

α̂ = dim C(�Lω) and ILα (�Lω) = ILα̂ (C(�Lω)) = 0, thus addressing Item 2.

Example 3. We start with the language V := {d̃ 3|w|w : w ∈ {a, b}∗ \ {e}} ⊆
{a, b, d, d̃}∗ from Example 2 of [Staiger 2005a]. For this language, it is shown
that rad V > rad V ∗ = 1√

2
, sV (rad V ∗) = 1, α̂ = dim V ω = dim C(V ω) = 1

4 and
ILα̂ (V ω) = ILα̂ (C(V ω)) = 0

If we split V = C ∪ B with B := {d̃3a, d̃3b} and C := V \ B we have
sB(rad V ∗) = 1

2 . Then according to Corollary 11 and Lemma 10.3 the language
�L3 defined by �L3 = C ∪ B · �L3

3 satisfies dim �L3
ω < α̂ = dim C(�L3

ω) and
ILα (�L3

ω) = 0.
Again we show that the language �L3 is a simple deterministic context-free

language by giving a corresponding grammar ({a, b, d, d̃}, {S, S′, A, B}, S, P ):

P : S → d̃3 · S′ S′ → a · S3 | b · S3 | d̃3 · AB

A → d̃3 · AB | a | b B → a | b
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As it is clear from the discussion above the ω-language �L3
ω in Example 3

cannot be finite-state. �

4.3 Concluding Remark

On the one hand, our Examples 2 and 3 improve the results of Examples 9 and
11 of [Staiger 2005a], because the languages L9 and L11 given there were not
even context-free, and on the other hand, Examples 1 and 2 give a new insight
by constructing languages �L for which the fixed point �Lω is finite-state. This
is another indication for the fact observed in [Kuich 1970, Staiger 2005b] that
�Lukasiewicz languages have remarkable information-theoretic properties.
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