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New Bounds for Positive Roots of Polynomials?!
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Abstract: We consider a nonconstant polynomial P with real coefficients that has at
least one negative coefficient and derive new upper bounds for the real roots of P. We
compare our bounds with those obtained by other methods.
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1 Introduction

For the computation of real roots of univariate polynomials with real coefficients
it is important to have good approximations of the intervals containing the real
roots. Bounds estimates for real roots are useful for the location of the roots, in
particular for estimating the roots of hyperbolic polynomials [11]. There exist
several criteria for a polynomial to have only real roots, for example a theorem
of J. Eve [4].

The algorithms for the computation of real roots of polynomials over R are
based on an initial over—estimate of the modulus of the largest root (see D.
Lester et al. [9], C. K. Yap [12]). The effective computation of the real roots of
univariate polynomials with real coefficients is a basic problem and it has deep
connections with constructive and computational approaches in analysis (see E.
Bishop—D. Bridges [1], D. Bridges [2], Y. N. Moschovakis [10].

The effective computation of positive roots of univariate polynomials with
real coefficients is also relevant to iterative numerical processes (J. Herzberger
[6], N. Kjurkchiev [8]).

In this paper we derive new bounds for the positive roots of a polynomial P
with real coefficients. If

P(X) = aoX%4 - 40X —ap X £ kay, with a; >0

and we denote by A the greatest absolute value of the negative coefficients, our
bounds are given as functions of A, some of the positive coefficients ag, ..., am,
the degree d and s, where s < m. Our results give better upper bounds for
the positive roots than the estimates of J. B. Kioustelidis [7]. We also obtain
bounds for superunitary roots and compare them with results of Lagrange and
Longchamp.

1 C. S. Calude, H.Ishihara (eds.). Constructivity, Computability, and Logic. A
Collection of Papers in Honour of the 60th Birthday of Douglas Bridges.
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2 Bounds for all positive roots

In this section we derive upper limits for the real roots of a polynomial P as

functions of the size of the negative coefficients.

Theorem 1. Let

P(X) =zl b X4 — X N gy

JEML,...,mp

with by,...,by >0 and a; > 0 for all j & {by,...,bi}.

The number
Bi(P) = max{(kbl)l/ml,...,(kbk)l/mk}

is an upper bound for the positive roots of P.

Proof. Suppose z > 0. We have

|P(z)| > x4 — blmd_ml _— bkmd_mk
1 d d—m 1 d .
:E(l‘ —k'bll’ 1)_+_..._+_E(1. _k'bll’ k)
d—m1 demy
:mk_ (mml—kb1)+...+xk (mmk—k‘bk)

The parantheses in the last row are strictly positive as soon as
x> (kb)Y™ . (kb)Y /™
hence the number

Bi(P) = max{(kbl)l/mla---,(kbk)l/mk}

is an upper bound for the positive roots.

O

Remark 1 J. B. Kioustelidis [7] gives the following upper bound for the positive

real roots:
By(P) = 2-max{b;/™,...,b)/™}.

Like Theorem 1, Kioustelidis’ method also returns subunitary bounds, if they
exist. The bound By is obtained through the estimation of the unique positive

root of the associated polynomial

k
Pass(X) = X4 = b X
j=1

The estimation of the unique positive oot of polynomials with negative co-
efficients excepting the dominant one have important applications in financial

mathematics [6].
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For polynomials with an even number of variations of sign, a different bound is
given by the following

Theorem 2. Let P(X) € R[X] be such that the number of variations of signs
of its coefficients is even. If

P(X) = a1 XD — by X™ 4, X% — b, X™2 4 - 4 X% — b X™ 4 g(X),
with g(X) € Ry [X], ¢; >0, b; >0, di > m; > diy1 for all i, the number

1/(di—m1) 1/(dr—mi)
Bg(m:max{(b—l) (b_f»> }
C1 Ck

is an upper bound for the positive roots of the polynomial P for any choice of
Clyee.yCk.

Proof. Suppose z > 0. We have

|P(z)] > cra™ — bia™ + - + cpatt — bpa™

=™ (™ —by) 4 2T (™ T = b)),

which is strictly positive for

{ <b1>1/(d1_m1) <bk>1/(dk_mk)}
r > max — yerey | — .
Cc1 Ck

Comparisons of Results

We first compare our bound Bj (P) with Kioustelidis’ bound By (P).
For k = 1 we have By = by/™ < 2b}/™ = B,.

For k > 2 and k < 2™ (1 < j < k) we always have B;(P) < Bs(P).
If we consider

P(X) = 4X" — X% +0.0004 X° — X* 4+ 0.00004 X* + 0.0000004 X — 1

we obtain
B;(P) = 0.96, By(P) = 1.64.

Note that the true upper bound for the postive roots of the polynomial P
is 0.928.

For polynomials with an even number of signs we also compare the bound
B;(P) given in Theorem 2.

L
“ Q1(X) =3X* - X34+ 7X2—-3X +0.001,
Q2(X)=X°-101X*+X?*-11X+0.1,
Q3(X) =3X7 — X6 4+ 7X5-3X2+0.001,
Q4(X) =10X° - 17X° +10X* - 13X + 1.

We have
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By, | By || Bs ||largest positive root
Q1]/1.256] 2 {|0.428 0.421
-1 2.02 [2.048(]1.024 1.003
Q3]|1.148] 2 1|0.753 0.725
(04]|1.357(2.283]|1.141 1.121

The bound B3(P) gives in many cases better results. For particular polyno-
mials, the method used in Theorem 2 can help to derive better limits for the
roots. For a given polynomial with real coefficients having at least one negative
cofficient there are, in general, several ways of choosing the positive coefficients
¢ty ---, cg. If bj/c; > 1 the optimal choice is for m; — d; maximal, while for
b;j/c; < 1 the optimal choice is for m; — d; minimal.

3 Bounds surpassing the unity

A well known result of Lagrange (see, for example, [3]) gives an upper bound for
the positive real roots of P as a function of the size of the negative coefficients
and the number m of positive coefficients preceding the first negative one. The
bound of Lagrange is

1+ (A/ag)"/ ™

where ag is the leading (positive) coefficient of P and A the largest abosolute
value of the negative coefficients.

We obtain new bounds for the positive roots considering all positive coefficients
preceding the first negative coefficients. We compare these bounds with results
on superunitary roots of Lagrange and Longchamp.

Theorem 3. Let P(X) = ap X%+ -+ + apn X4 —ap X 1. +qy €
R[X], with all a; >0, ag, am+1 > 0. Denote

A = max {a;; coeff (X?7%) < 0} .

The number

)

A 1/(m—s+2)
1+
fmax <2(sa0 + o+ +H2a50 + as_1)>

A 1/(m—s+1)
<2(a0 +a + ---+as)>

is an upper bound for the positive roots of P for any s € {1,2,...,m}.

Proof. Let z € R, z > 1. We have
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|P(z)| > |aoz? + -+ + amz?™™| — |ame1zd L F + ... F a4

> apz? 4+ -+ axt — Az 4 4 1)

d—m
-1 1
Z(agxs+---+as)md*s—Ax7 ()
z—1
(@t + - tay)(@— D2t —A A
= - T + .
z—1 z—1

The last right hand side of (1) is strictly positive provided that
(apz® +---+as)(x—1)z™ % > A. (2)
Now let 2 = 1+ y and note that 2/ > 1 + jy for all j € N. It follows that

(d02* + -+ a,)(& — g™
> (ag(1+sy) + -+ + as—1 (1 +y) + ap) y™ >

= (sag+ -+ 2a5_2 + as—1) ym—s+2 + (ag + - + as) ym—s+1_
Therefore (2) is satisfied if
(sag + -+ 2as_2 +as_1)y™ T2 > 4/2,

(a0+---+as71 +as)ymis+1 ZA/Q

These inequalities are satisfied as soon as

)

N 1/(m—s+2)
>
Y 2 max (2(8a0+..-—|—+2as—2+as—1)>

A 1/(m—s+1)
(2(ao+a1+---+as)> '

This proves that

A 1/(m—s+2)
1+
max <2(sa0 + o+ +H2a50 + as_1)>

A 1/(m—s+1)
(2(a0+a1 +---+as>

is an upper bound for the positive roots of the polynomial P. O
When s = 1, respectively s = m in Theorem 3 we obtain:

)
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Corollary 4. The numbers

A 1/(m4+1) A 1/m
M, =1 — _
1 +max{<2a0> ’(2(a0+a1)> )

A 1/2
My =1 + max ( > )
2(mag + - -+ +2am—2 + @pm-1)

)
2(ap+ a1 + -+ an)
are upper bounds for the positive roots of the polynomial P.

We also note the classical bounds of Lagrange and Longchamp:

1/(m+1)
Li=1+ <é> )
Qo
(cf. L. S. Grinstein [5])

A
o+ -+ +am—1

and compare them with our bounds in Corollary 4.

Ly=1+

We have, for example,

{Ll < M; if a0<2mA,

Ly < My if (a0+---+am)2<2(ma0+---+am,1)A.

Comparison with classical bounds

We compare our bounds M;(P) and M»(P) with the classical bounds of J.—L.
Lagrange and M. Longchamp.

Let
Pi(X)=X5+10X*-61X%+1,
P3(X)=4X0 + X° 4+ X* - 3% X3 —4X?4+ X -5,
P3(X)=X"+3X5-3X*+2X3-4X%2+X -2.5,
Py(X)=X°+3X%+2X" + X6 —4X* 4+ X3 —4X? - 3.
We have
Ly | Ly | My | M, ||largest positive root

P |[8.81| 62 [6.52(6.52 4.27

P>|[2.08] 2 [1.85[1.52 1.16

P5|[2.57| 2 [2.25]1.63 1.12

Py||2.41]1.66(2.18|1.42 1.07
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The following table gives the values of the bounds discussed in the previous

section:

B, | B, |Bs||largest positive root
P ]|7.81{15.62(6.1 4.27
P»]|2.86] 2.07 | — 1.19
P3]|1.81]2.88 | — 1.12
P,||1.64]2.63 |— 1.07

Notice that the bound B;(P) is also useful for the estimation of polynomials
with real roots surpassing the unity.

References

10.

11.
12.

. E. BisHopr, D. BRIDGEs: Constructive Analysis, Springer Verlag, Berlin

(1985).

D. BriDGES: Computability — A Mathematical Sketchbook, Springer Verlag,
New York (1994).

W. BURNSIDE, A. PANTON: Elementary Theory of Equations, Dover, New
York (2005).

J. EVE: The evaluation of polynomials, Numer. Math., 6, 17-21 (1964).

L. S. GRINSTEIN: Upper limits to the real roots of polynomial equations,
Amer. Math. Monthly, 60, 608-615 (1953).

J. HERZBERGER: Construction of bounds for the positive root of a general
class of polynomials with applications, in Inclusion Methods for nonlinear
problems with applications in engineering, economics and Physiscs (Munich,
2000), Comput. Suppl., 16, Springer, Vienna (2003).

J. B. KIousTELIDIS: Bounds for positive roots of polynomials, J. Comput;
Appl. Math., 16, 241-244 (1986).

N. KJurkCHIEV: Note on the estimation of the order of convergence of some
iterative methods, BIT, 32, 525-528 (1992).

D. LESTER, S. CHAMBERS, H. LEE Lu: A constructive algorithm for find-
ing the exact roots of polynomials with computable real coefficients, Theor.
Comput. Sci., 279, 51-64 (2002).

Y. N. MoscHOVAKIS: Computability, Amer. Math. Soc., 102, 752-755
(1995).

W. NuJ: A note on hyperbolic polynomials, Math. Scand., 23, 69-72 (1968).
C. K. YAP: Fundamental problems of algorithmic algebra, Oxford University
Press (2000).



