
Perhaps the Intermediate Value Theorem1

Wim Veldman
(Institute for Mathematics, Astrophysics and Particle Physics, Faculty of Science,

Radboud University Nijmegen, the Netherlands
W.Veldman@science.ru.nl)

Abstract: In the context of intuitionistic real analysis, we introduce the set F con-
sisting of all continuous functions φ from [0, 1] to R such that φ(0) = 0 and φ(1) = 1.
We let I0 be the set of all φ in F for which we may find x in [0, 1] such that φ(x) = 1

2
. It

is well-known that there are functions in F that we can not prove to belong to I0, and
that, with the help of Brouwer’s Continuity Principle one may derive a contradiction
from the assumption that I0 coincides with F . We show that Brouwer’s Continuity
Principle also enables us to define uncountably many subsets G of F with the property
I0 ⊆ G ⊂ (I0)

¬¬.
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1 Introduction

We let F be the set of all continuous functions φ from [0, 1] to R such that
φ(0) = 0 and φ(1) = 1. We let I0 be the set of all functions φ in F that assume
the value 1

2 , that is, there exists a number x in [0, 1] such that φ(x) = 1
2 . If the

statement “there exists a number x in [0, 1] such that φ(x) = 1
2” be constructively

true, as we intend it to be, we must be able to approximate a number with the
promised property with any degree of accuracy, and, therefore, for every n, we
must be able to find rational numbers p, q in [0, 1] such that p < q and q−p < 1

2n

and there exists x in [p, q] such that φ(x) = 1
2 .

Under this very natural constructive interpretation the classical Intermediate
Value Theorem, that is, the statement that the sets I0 and F coincide, is false:
sometimes, the point where a given function in F would assume the value 1

2

can not be located and one does not have the slightest idea where it might be
found. When asked to provide an example to make this clear, the constructive
mathematician may give and often does give something like the following answer:

Consider the class J1 consisting of all functions φ in F such that φ is
linear on [0, 1

3 ] and on [23 , 1], and constant on [13 ,
2
3 ].

Suppose that φ belongs to the class J1. Observe that φ is completely
determined once we have chosen y := φ(1

3 ). Note that, if y > 1
2 , then

φ assumes the value 1
2 at the point 1

6y , and at this point only, and this
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point is smaller than 1
3 , and if y < 1

2 , then φ assumes the value 1
2 at the

point x = 2
3 +

1
2−y

3(1−y) , and at this point only, and this point is greater
than 2

3 . If y = 1
2 , then φ assumes the value 1

2 at every point x in [13 ,
2
3 ].

Now suppose that φ belongs to the class J1 and that we find x in [0, 1]
such that φ(x) = 1

2 . By making a first approximation of the number x
we must be able to prove either x < 2

3 or x > 1
3 . Observe that, if x < 2

3

then y = φ(1
2 ) ≥ 1

2 and if x > 1
3 then y ≤ 1

2 .

If we now choose a number y for which we are unable to decide y ≥ 1
2

or y ≤ 1
2 , and make φ(1

3 ) = y, we will be unable, for the corresponding
function φ, to indicate x such that φ(x) = 1

2 .

There do exist real numbers y for which we are unable to decide y ≥ 1
2 or

y ≤ 1
2 , as appears from the following example in Brouwer’s style:

Consider y := lim
n→∞ yn, where, for each n, yn = 1

2 + (−1)n 1
n , if, in the

first n digits of the decimal expansion of π, there does not occur an
uninterrupted seqence of 99 9’s, and yn = yn−1, if there does.

We have no proof that y ≥ 1
2 : the statement y ≥ 1

2 implies that, if there
exists an uninterrupted sequence of 99 9’s in the decimal expansion of
π, then the first such sequence will be concluded at an odd place in the
expansion, and we have no knowledge of this fact.

We also have no proof of the statement y ≤ 1
2 .

The statement that, for every real number y, either y ≤ 1
2 or y ≥ 1

2 , is
equivalent to the principle LLPO, the Lesser Limited Principle of Omniscience,
see [1]. Clearly, this ‘principle’, a weakening of the principle of the excluded
middle, is wrong, if one, as Brouwer proposed, interprets the logical constants
constructively.

If one nevertheless should accept LLPO as an axiom, (in a perhaps nostalgic
but not well-founded attempt to develop a kind of mathematics in between
classical and intuitionistic mathematics), the Intermediate Value Theorem, that
is, the statement that the sets F and I0 coincide, may be ‘proved’ by the method
of successive bisection, as is noticed in [1]. Of course, the idea to promote LLPO
to the status of an axiom is far from the mind of the constructive mathematician.

This paper finds its origin in the observation that for any function φ in the
class J1 the following holds true:

If φ(1
2 )#1

2 , then there exists x in [0, 1] such that φ(x) = 1
2 .

The symbol # denotes the constructive (positive) inequality or apartness
relation on the real numbers. For real numbers x, y, x#y if and only if we are
able to calculate n such that |x− y| > 1

2n .
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We now define, for any function φ in F : φ perhaps assumes the value 1
2 if and

only if there exists x in [0, 1] such that, if φ(x)#1
2 , then φ assumes the value 1

2 ,
that is, as soon as we find evidence that x positively fails to be a point where φ
assumes the value 1

2 , we will be able to calculate a number z in [0, 1] with the
property φ(z) = 1

2 .
We want the reader to understand the word “perhaps” as an expression of

caution. The statement: “φ perhaps assumes the value 1
2” is not as full a promise

as the statement: “φ assumes the value 1
2”. More precisely, if I say: “φ perhaps

assumes the value 1
2” I give you a number and you should try for yourself if φ

assumes the value 1
2 at the given point. In case you discover that the number I

gave you is no good, because the function φ assumes at that point a value apart
from 1

2 , you may come back and will be given a number at which the function
surely assumes the value 1

2 .
The class of all functions in F that perhaps assume the value 1

2 will be called
I1.

We just observed that every function in J1 belongs to I1.
We now may ask: do the sets F and I1 coincide or do there exist functions

φ in the set F for which we can not even prove that they perhaps assume the
value 1

2? It turns out that the sets F and I1 do not coincide and that there are
functions in F for which we can not prove that they belong to I1, as appears
from the following.

Consider the class J2 consisting of all continuous functions φ from [0, 1]
to R, such that φ(0) = 0 and φ(1) = 1 and φ is linear on [0, 1

5 ], on [25 ,
3
5 ]

and on [45 , 1], and φ is constant on [ 15 ,
2
5 ], and also on [35 ,

4
5 ].

Any member of the class J2 is determined once we have chosen y0 = φ(1
5 )

and y1 = φ(3
5 ).

Let us choose such y0 and y1 and let us consider the corresponding
function φ.

Assume that φ perhaps assumes the value 1
2 . We then determine x in

[0, 1] such that, if φ(x)#1
2 , then there exists y in [0, 1] with the property

φ(y) = 1
2 , and we distinguish two cases:

Case (i). x < 3
5 . Suppose that y0 < 1

2 . In that case, φ(x)#1
2 , and there

exists z such that φ(z) = 1
2 , and, therefore, either y1 ≤ 1

2 or y1 ≤ 1
2 , by

the argument that we used when discussing the class J1.
Case (ii). x > 2

5 . Suppose that y1 > 1
2 . In that case, φ(x)#1

2 , and there
exists z such that φ(z) = 1

2 , and, therefore, either y0 ≤ 1
2 or y0 ≤ 1

2 ,
again by the argument that we used when discussing the class J1.

We thus may conclude: Either: if y0 < 1
2 , then y1 ≤ 1

2 or y1 ≤ 1
2 , or: if

y1 >
1
2 , then y0 ≤ 1

2 or y0 ≤ 1
2 .
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The latter statement would follow from the (wrong) principle LLPO, but it
seems somewhat weaker. Nevertheless, it is false as well as LLPO itself. In order
to see this, the reader should study the following example:

Let y0 be the number y we defined a moment ago, and let y1 be defined
similarly: take the definition of y and replace “99 9’s” by “88 8’s”.

The reader may also verify that, for any function φ in the class J2,

if φ(1
2 )#1

2 , then either: φ(1
2 ) < 1

2 and, if φ( 7
10 )#1

2 , then φ assumes the
value 1

2 , or: φ(1
2 ) > 1

2 and, if φ( 3
10 )#1

2 , then φ assumes the value 1
2 , and,

therefore, if φ(1
2 )#1

2 , then φ perhaps assumes the value 1
2 .

We now define, for any function φ in F : φ perhaps perhaps assumes the value 1
2 if

and only if there exists x in [0, 1] such that, if φ(x)#1
2 , then φ perhaps assumes

the value 1
2 . The class of all functions in F that perhaps perhaps assume the

value 1
2 will be called I2.

Any function from the class J2 belongs to the class I2.
It will (perhaps) be clear now what we want to do: we want to iterate “per-

haps” and prove that we obtain larger and larger classes of functions. This result
may be taken as evidence for the great expressivity of the language of intuition-
istic mathematics.

The phenomenon of “perhapsity” also occurs in other contexts. It is useful to
mention two more examples. More information on these examples may be found
in [5], [6], and [9].

Let A be a decidable subset of the set N of the natural numbers. (We call
a subset A of N a decidable subset of N if and only if there exists α in N such
that, for every n, n ∈ A if and only if α(n) = 1. We do not require that the
function α is given by a finite algorithm). A is finite if and only if there exists n
such that, for all m > n, m does not belong to A. A is perhaps-finite if and only
if there exists n such that, for all m > n, if m belongs to A, then A is finite.

Let x be a real number. x is rational if and only if there exists a rational
number q such that x coincides with q. x is perhaps-rational if and only if there
exists a rational number q such that, if x#q, then x is rational.

The further contents of this paper are as follows. In Section 2, we introduce
Brouwer’s Continuity Principle. In Section 3, we prove that iterating “perhaps”
finitely many times gives rise to larger and larger sets of functions that we call
perhapsive extensions of I0. In Section 4, we prove that many infinite sequences
of perhapsive extensions of I0 have an upper bound, that may be used to obtain
further perhapsive extensions. In Section 5, we introduce stumps, the intuition-
istic substitute for classical countable ordinals, and use them to label perhapsive
extensions of I0. In Section 6 we make some concluding remarks.
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2 Brouwer’s Continuity Principle

We are contributing to intuitionistic analysis and adhere to the constructive
interpretation of the logical constants. In particular, a disjunctive statement
A ∨B is considered proven if and only if we either have a proof of A or a proof
of B, and a proof of an existential statement ∃x ∈ V [A(x)] should provide one
with an element x0 of the set V and a proof of A(x0).

We let N be the set of the natural numbers and use the letters m,n, . . . as
variables over this set.

We let N be the set of all infinite sequences of natural numbers, that is, the
set of all functions from N to N. We use α, β, . . . as variables over the set N .

For every α, for every n, we denote the value that α assumes at n by α(n).
For every α, for every n, we denote the finite sequence α(0), α(1), . . . , α(n−1)

by αn or α(n).
The following principle was sometimes used by Brouwer and is an axiom of

intuitionistic analysis.

Brouwer’s Continuity Principle:

For every binary relation R ⊆ N ×N, if for every α there exists m such
that αRm, then for every α there exist m,n such that for every β, if
αn = βn, then βRm.

If one wants to understand why this axiom is judged to be plausible, one
should think of the fact that, for the intuitionistic mathematician, an infinite
sequence α = α(0), α(1), α(2), . . . of natural numbers is not necessarily given by
means of the description of a method to find its values, but may be the result
of a free step-by-step-construction, and thus as a growing object that is always
incomplete and, in some sense, given by a black box.

Suppose now we are able to calculate, for every infinite sequence α of natural
numbers, a natural number m suitable for α, that is, such that αRm. We are
interpreting both the “for every α” and to the “there exists” seriously, that is,
constructively: given any infinite sequence whatsoever from the very large and
unsurveyable set N we know how to effectively discover a natural number suitable
for it. In particular we must be able to find a suitable number if the sequence
is being created step by step. A number m, suitable for an α that is given step
by step will be discovered and recognized as such at some moment of time,
and at that moment only finitely many values of α, say α(0), α(1), . . . , α(n− 1)
will be known. The number m will therefore suit every β that has its first n
values the same as α. One should not think that the number m is only suitable
for sequences that are created step by step. The intuitionistic mathematician
believes that also a sequence that obeys a rule that admits of a finite description
might be the result of a step-by-step-construction. One should not exclude the
possibility that a ‘black box’ has as its output the decimal expansion of π.
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Brouwer’s Continuity Principle is a bold assertion, inspired by some negative
mathematical experiences, as one may learn from studying [2]. Such a negative
experience is, for instance, the fact that a real function that has the value 0 at
every point x < 0 and the value 1 at every point x ≥ 0 cannot be considered to
be defined everywhere. So what does it mean to have positive evidence that the
function is defined everywhere?

Brouwer’s Continuity Principle has many consequences that are very surpris-
ing from a classical, that is: non-intuitionistic, point of view, see [7]. The result
of this paper is another illustration of this fact.

3 The first countably many perhapsive extensions of I0

3.1 The first perhapsive extension

Let G be a subset of F , such that I0 is a subset of G. We let G+ be the set of
all functions φ in F such that, for some x in [0, 1], if φ(x)#1

2 , then φ belongs to
G, and we call the set G+ the first perhapsive extension of G.

A subset G of F containing I0 will be called perhapsive if and only if G+

coincides with G.
Note that I1 coincides with (I0)+ and that I2 coincides with (I1)+.
For every subclass V of F we let V¬, the complement of V in F , be the set

of all φ in F that do not belong to V , where the word “not” is used in the
strong (and usual) sense that the assumption that φ belongs to V leads to a
contradiction. It is a fact, well-known from intuitionistic logic, that, for every
subclass V of F , V¬¬¬ coincides with V¬.

Lemma1. (i) For every subclass G of F containing I0, G is a subclass of (G)+.
(ii) For every subclass G of F containing I0, if G is a subclass of (I0)¬¬,

then G+ is a subclass of (I0)¬¬.
(iii) The set (I0)¬¬ is perhapsive.

Proof. (i) The proof is left to the reader.
(ii)Assume that φ belongs to G+. Find x in [0, 1] such that, if φ(x)#1

2 , then
φ belongs to G and distinguish two cases.

First Case. φ(x)#1
2 . Then φ belongs to G and thus to (I0)¬¬.

Second Case. φ(x) = 1
2 . Then φ belongs to I0 and thus to (I0)¬¬.

Now observe that ¬¬(φ(x)#1
2 or φ(x) = 1

2 ). Therefore ¬¬(φ belongs to
(I0)¬¬), and thus φ belongs to (I0)¬¬¬¬ and, therefore, also to (I0)¬¬.

(iii) The proof is left to the reader. �
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3.2 An invariance property

We shall make use of the fact that the class I0 and the classes one obtains
from I0 by repeatedly forming perhapsive extensions, enjoy a certain invariance
property. We first define this property.

Let a, b be elements of [0, 1] such that a < b and let ρ be an element of the
class F .

For every element ψ of F we let Ga,b,ρ[ψ] be the element of F such that

(i) for every x in [0, a] ∪ [b, 1], Ga,b,ρ[ψ](x) = ρ(x).

(ii) for every x in [a, b], Ga,b,ρ[ψ](x) = ρ(a) + (ρ(b) − ρ(a))ψ(x)

Now let G be a subclass of F . We say that G has the invariance property if
and only if, for all a, b in [0, 1] such that a < b, for every ρ in F such that for
every x in [0, a], for every y in [b, 1], ρ(x) < 1

2 < ρ(y) and ρ(a) + ρ(b) = 1, for
every ψ in F , ψ belongs to G if and only if Ga,b,ρ[ψ] belongs to G.

Lemma2. (i) The class I0 has the invariance property.
(ii) For every subclass G of F , if G has the invariance property, then G+ has

the invariance property.

Proof. Assume that a, b are elements of [0, 1], such that a < b, and that ρ is an
element of F such that for every x in [0, a], for every y in [b, 1], ρ(x) < 1

2 < ρ(y)
and ρ(a) + ρ(b) = 1, and let ψ be an element of F .

(i) Suppose that ψ belongs to I0. Find x such that φ(x) = 1
2 , and note that

Ga,b,ρ[ψ](a+ (b − a)x) = 1
2 , and, therefore, Ga,b,ρ[ψ] belongs to I0.

Suppose that Ga,b,ρ[ψ] belongs to I0. Find x such that Ga,b,ρ[ψ](x) = 1
2 and

note that x belongs to [a, b]. Therefore, ψ(x−ab−a ) = 1
2 and ψ belongs to I0.

Now assume in addition that G is a subclass of F enjoying the invariance
property.

(ii) Suppose that ψ belongs to G+. Find x in [0, 1] such that, if ψ(x)#1
2 ,

then ψ belongs to G. Note that, if Ga,b,ρ[ψ](a+(b− a)x)#1
2 , then ψ(x)#1

2 , and,
therefore, ψ belongs to G, and, by the additional assumption, Ga,b,ρ[ψ] belongs
to G. Clearly, Ga,b,ρ[ψ] belongs to G+.

Suppose that Ga,b,ρ[ψ] belongs to G+. Find x in [0, 1] such that, if ψ(x)#1
2 ,

then Ga,b,ρ[ψ] belongs to G. Note that, for every y in [0, a], for every z in [b, 1],
ρ(y) < 1

2 < ρ(z) and that ρ is continuous at the points a, b, and find m such
that, for every y in [0, a + 1

2m ] ∪ [b − 1
2m , 1], φ(y)#1

2 . Now either x belongs to
[0, a+ 1

2m ] ∪ [b− 1
2m , 1] or x belongs to [a, b], and

we may distinguish two cases.
Case (a). φ(x)#1

2 . Now, Ga,b,ρ[ψ] belongs to G, and by the additional assump-
tion, also ψ belongs to G and thus to G+.
Case (b). x belongs to [a, b]. Note that, if ψ(x−ab−a )#1

2 , then Ga,b,ρ[ψ](x)#1
2 , and,
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therefore, Ga,b,ρ[ψ] belongs to G, and, by the additional assumption, ψ belongs
to G. Clearly, ψ belongs to G+. �

3.3 I0 is not perhapsive

The first thing that we want to prove is the fact that, in the presence of Brouwer’s
Continuity Principle, the assumption that I0 is perhapsive, (that is: (I0)+ co-
incides with I0), leads to a contradiction. This is of course no different from
proving that Brouwer’s Continuity Principle is incompatible with LLPO, but
we prove the result in a form that will turn out to be useful in the sequel.

We take some preparatory steps.
Let N

∗ be the set of all finite sequences of natural numbers. We use the
symbol ∗ to denote the operation of concatenating finite sequences of natural
numbers, that is, for all s, t in N

∗, s ∗ t denotes the finite sequence one obtains
by putting t behind s.

For every s in N
∗, for every α, we define: α passes through s if and only if

there exists n such that αn = s.
For every natural number n we let n be the element of N with the constant

value n, that is, for all i, n(i) = n.
For every s in N we define an element φs of F , as follows.

(i) For all n, φ0n is an element of F that is linear on each of the segments
[0, 1

3 ], [13 ,
2
3 ] and [23 , 1] and takes the value 1

2 at the points 1
3 and 2

3 .

(ii) For all n, p in N, for all s in N
∗, φ0n∗〈2p+1〉∗s is an element of F that

is linear on each of the segments [0, 1
3 ], [13 ,

2
3 ] and [23 , 1] and takes the

value 1
2 + 1

2n at the points 1
3 and 2

3 .

(iii) For all n, p in N, for all s in N
∗, φ0n∗〈2p+2〉∗s is an element of F

that is linear on each of the segments [0, 1
3 ], [13 ,

2
3 ] and [23 , 1] and takes

the value 1
2 − 1

2n at the points 1
3 and 2

3 .

For every α in N we define an element φα of F by: for every x in [0, 1],
φα(x) = lim

n→∞φαn(x).
Note that, for each α, φα is well-defined and belongs to J1.

Lemma3. (i) For each α, φα belongs to (I0)+.
(ii) The assumption that, for each α, φα belongs to I0, leads to a contradic-

tion.

Proof. (i) Let α belong to N and assume φα(1
2 )#1

2 . Find m such that |φα(1
2 )−

1
2 | > 1

2m and then find n, p such that α passes through either 0n ∗ 〈2p + 2〉 or
0n ∗ 〈2p+ 1〉. If α passes through 0n ∗ 〈2p+ 2〉, then φα assumes the value 1

2 at
the point x = 2

3 + 1
3(2n+1) , and if α passes through 0n∗〈2p+1〉, then φα assumes
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the value 1
2 at the point x = 1

3(1+2n−1) . Thus we see that, if φα(1
2 )#1

2 , then φα

assumes the value 1
2 and φα belongs to I0. Therefore, for each α, φα belongs to

(I0)+.
(ii) Assume that, for each α, φα belongs to I0. Then, for each α, we may

determine i < 2 such that, if i = 0, then there exists x in [0, 2
3 ] such that

φα(x) = 1
2 , and, if i = 1, then there exists x in [13 , 1] such that φα(x) = 1

2 .
Applying Brouwer’s Continuity Principle, we find n, i such that, either i = 0
and, for every α, if αn = 0n, then there exists x in [0, 2

3 ] such that φα(x) = 1
2 ,

or i = 1 and, for every α, if αn = 0n, then there exists x in [13 , 1] such that
φα(x) = 1

2 . It follows that either for every α, if αn = 0n, then, for each p, if p
is the least n such that α(n) �= 0, then α(p) is odd, or for every α, if αn = 0n,
then, for each p, if p is the least n such that α(n) �= 0, then α(p) is even. Both
alternatives are wrong, as we see from the examples 0(n)∗〈2〉∗0 and 0(n)∗〈1〉∗0.
�

3.4 Positive nonperhapsity

Let G be a subset of F containing I0. We call the set G positively nonperhapsive
if and only if

there exists a mapping s �→ ψs from N
∗ to F such that, for every α in

N , for every x in [0, 1], lim
n→∞ψαn(x) exists, and, if one defines a mapping

α �→ ψα from N to F by: for each α, for each x in [0, 1], ψα(x) =
lim
n→∞ψαn(x), then, for every α, ψα belongs to G+ and not for every α,
ψα belongs to G.

We have just seen that I0 itself is positively nonperhapsive. We want to
show that also I1 is positively nonperhapsive. Actually, we shall prove that the
first perhapsive extension of a positively nonperhapsive set is itself positively
nonperhapsive.

Suppose that we defined, for each s in N
∗, an element ψs of F , in such a way

that, for every α in N , for every x in [0, 1], lim
n→∞ψαn(x) exists. We define, for

each s in N
∗, another element of F that we want to call ψ+

s .

(i) For all n, ψ+
0n

is an element of F that is linear on each of the segments

[0, 1
5 ], [15 ,

4
5 ] and [45 , 1] and takes the value 1

2 at the point 1
5 and at the

point 4
5 .

(ii) For all n, p in N, for all s in N
∗, ψ+

0n∗〈2p+1〉∗s is an element of F that

is linear on the segments [0, 1
5 ] , [25 ,

4
5 ] and [45 , 1], takes the value 1

2 + 1
2n

at the points 2
5 and 4

5 , and the value 1
2 − 1

2n at 1
5 and satisfies: for all x

in [15 ,
2
5 ], ψ+

0n∗〈2p+1〉∗s(x) = 1
2 + 1

2n−1 (ψs(5x− 1) − 1
2 ).
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(iii) For all n, p in N, for all s in N
∗, ψ+

0n∗〈2p+2〉∗s is an element of F that

is linear on the segments [0, 1
5 ] , [15 ,

3
5 ] and [45 , 1], takes the value 1

2 − 1
2n

at the points 1
5 and 3

5 , and the value 1
2 + 1

2n at 4
5 and satisfies: for all x

in [35 ,
4
5 ], ψ+

0n∗〈2p+2〉∗s(x) = 1
2 + 1

2n−1 (ψs(5x− 3) − 1
2 ).

Note that, for every α, lim
n→∞ψ+

αn(x) exists. We thus may define a mapping

α �→ ψ+
α from N to F by: for each α, for each x in [0, 1], ψ+

α (x) = lim
n→∞ψ+

αn(x).

Also note that, for every α, for every p, n, ψ+
0n∗〈2p+1〉∗α = G 1

5 ,
2
5 ,ψ

+
0n∗〈2p+1〉

[ψα]

and ψ+
0n∗〈2p+2〉∗α = G 3

5 ,
4
5 ,ψ

+
0n∗〈2p+2〉

[ψα].

Lemma4. For every subset G of F containing I0, if G has the invariance prop-
erty and G is positively nonperhapsive, then G+ is positively nonperhapsive.

Proof. Let G be a subset of F containing I0 that is positively nonperhapsive
and enjoys the invariance property. Find a mapping s �→ ψs from N

∗ to F such
that, for every α in N , for every x in [0, 1], lim

n→∞ψαn(x) exists, and, if one

defines a mapping α �→ ψα from N to F by: for each α, for each x in [0, 1],
ψα(x) = lim

n→∞ψαn(x), then, for every α, ψα belongs to G+ and not for every α,
ψα belongs to G.

Consider the mapping s �→ ψ+
s that we defined just before this theorem. We

make two claims:

(i) For every α, ψ+
α belongs to G++.

(ii) Not for every α, ψ+
α belongs to G+.

Let us first prove the first claim. Assume that α belongs to N and that
ψ+
α (1

2 )#1
2 . Find n, p such that α passes through either 0n∗〈2p+2〉 or 0n∗〈2p+1〉.

Suppose that α passes through 0n∗ 〈2p+2〉. Find β such that α = 0n∗ 〈2p+
2〉 ∗β and note that ψ+

α = G 3
5 ,

4
5 ,ψ

+
0n∗〈2p+2〉

[ψβ ]. As ψβ belongs to G+ and G+ has,

like G itself, the invariance property, see Lemma 2, also ψ+
α belongs to G+.

Suppose that α passes through 0n∗ 〈2p+1〉. Find β such that α = 0n∗ 〈2p+
1〉 ∗β and note that ψ+

α = G 1
5 ,

2
5 ,ψ

+
0n∗〈2p+1〉

[ψβ ]. As ψβ belongs to G+ and G+ has,

like G itself, the invariance property, see Lemma 2, also ψ+
α belongs to G+.

We thus see that, if ψ+
α (1

2 )#1
2 , then ψ+

α belongs to G+. Therefore, ψ+
α belongs

to G++.

We now prove the second claim. Assume that, for all α, ψ+
α belongs to G+.

Then, for each α we may determine i < 2 such that, if i = 0, then there exists
x in [0, 3

5 ] such that, if ψ+
α (x)#1

2 , then ψ+
α belongs to G, and, if i = 1, then

there exists x in [25 , 1] such that, if ψ+
α (x)#1

2 , then ψ+
α belongs to G. Applying

Brouwer’s Continuity Principle, we find n, i such that, either i = 0 and, for
every α, if αn = 0n, then there exists x in [0, 3

5 ] such that, if ψ+
α (x)#1

2 , then ψ+
α
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belongs to G or i = 1 and, for every α, if αn = 0n, then there exists x in [25 , 1]
such that, if ψ+

α (x)#1
2 , then ψ+

α belongs to G.
Let us first assume that we are in the first of these two cases, that is,

i = 0. Observe that, for every β, for all x in [0, 3
5 ], ψ+

0n∗〈2p+2〉∗β < 1
2 , and

therefore, ψ+
0n∗〈2p+2〉∗β belongs to G. Note that, for every β, ψ+

0n∗〈2p+2〉∗β =
G 3

5 ,
4
5 ,ψ

+
0n∗〈2p+2〉

[ψβ ]. Using the fact that G has the invariance property, we find

that, for every β, ψβ belongs to G and thus a contradiction.
If we are in the second case, that is, i = 1, we also obtain a contradiction, in

almost the same way. �

3.5 The first countably many perhapsive extensions of I0

Let us define a sequence I0, I1, I2, . . . of subclasses of F by: I0 is the class of
all functions in F that assume the value 1

2 and, for each n, In+1 = (In)+.
We call In the n-th perhapsive extension of I0.

Theorem 5. (i) For each n, In ⊆ In+1 ⊆ (I0)¬¬.
(ii) For each n, In+1 is not a subset of In.

Proof. (i) Use Lemma 1 and induction.
(ii) Use Lemmas 3 and 4 and induction. �

4 Forming limits

Lemma6. Let A0,A1,A2, . . . be a sequence of subclasses of F such that, for
each n, I0 ⊆ An ⊆ (I0)¬¬ and An is positively nonperhapsive and enjoys the
invariance property, and, for each n, there exists p such that (An)+ ⊆ Ap. Then
also I0 ⊆ ⋃

n∈N

An ⊆ (I0)¬¬ and
⋃

n∈N

An is positively nonperhapsive and enjoys

the invariance property.

Proof. Let s �→ φ0
s, s �→ φ1

s, s �→ φ0
s, . . . be a sequence of mappings from N

∗

to F such that, for each n, for each α, for each x in [0, 1], lim
p→∞φnαp(x) exists,

and if one defines a mapping α �→ ψnα from N to F by: for each x in [0, 1],
φnα(x) = lim

p→∞φnαp(x), then (i) for each α, φnα belongs to (An)+ and (ii) not for

every α, φnα belongs to An.
We now define another mapping from N

∗ to F , giving it the name s �→ ψs,
as follows:

(i) For all n, ψ0n is an element of F that is linear on each of the segments
[0, 1

3 ], [13 ,
2
3 ] and [23 , 1] and takes the value 1

2 at the points 1
3 and 2

3 .
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(ii) For all n, p in N, for all s in N
∗, φ0n∗〈p+1〉∗s is an element of F that

is linear on the segments [0, 1
3 ], and [23 , 1] and takes the value 1

2 − 1
2n at

the point 1
3 and the value 1

2 + 1
2n at the point 2

3 , and satisfies: for all x
in [13 ,

2
3 ], φ0n∗〈p+1〉∗s(x) = 1

2 + 1
2n−1 (φp(3x− 2) − 1

2 ).

Note that, for every α, lim
n→∞ψαn(x) exists. We thus may define a mapping

α �→ ψα from N to F by: for each α, for each x in [0, 1], ψα(x) = lim
n→∞ψαn(x).

Also note that, for every α, for every p, n, ψ0n∗〈p+1〉∗α = G 1
3 ,

2
3 ,ψ0n∗〈p+1〉

[φpα].
We make two claims:

(i) For every α, ψα belongs to (
⋃

n∈N

An)+.

(ii) Not for every α, ψα belongs to
⋃

n∈N

An.

Let us first prove the first claim. Assume that α belongs to N and that
ψα(1

2 )#1
2 . Find n, p such that α passes through 0n ∗ 〈p + 1〉. Find β such that

α = 0n ∗ 〈p + 1〉 ∗ β and note that ψα = G 1
3 ,

2
3 ,ψ0n∗〈p+1〉

[φpβ ]. As φpβ belongs to
(Ap)+ and (Ap)+ has, like Ap itself, the invariance property, see Lemma 2, also
ψα belongs to (Ap)+. As, for some n, (Ap)+ is a subclass of An, ψα also belongs
to

⋃

n∈N

An. We thus see that, for every α, if ψα(1
2 )#1

2 , then ψα belongs to
⋃

n∈N

An.

It follows that, for every α, ψα belongs to (
⋃

n∈N

An)+.

We now prove the second claim. Assume that, for every α, ψα belongs to
⋃

n∈N

An. Using Brouwer’s Continuity Principle, we find p, n such that, for every

α, if αn = 0n, then ψα belongs to Ap. It follows that, for every β, ψ0n∗〈p〉∗β =
G 1

3 ,
2
3 ,ψ0n∗〈p+1〉

[φpβ ] belongs to Ap. As Ap has the invariance property, it follows
that, for every β, φpβ belongs to Ap. Contradiction. �

We define: Iω =
⋃

n∈N

In. We also define a sequence Iω, Iω+1, Iω+2, . . . of

subsets of F by: Iω+n+1 = (Iω+n)+. (We are of course identifying Iω+0 and
Iω.)

Theorem 7. (i) Iω is positively non-perhapsive.
(ii) For each n, Iω+n is positively nonperhapsive and a proper subclass of

Iω+n+1.

Proof. (i) is an easy consequence of Lemma 6.
(ii) now follows by Lemma 4. �

We may go further, of course, and, in the next Section, we discuss how to do
so in a systematic way.
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5 Labeling perhapsive extensions by means of stumps

Stumps are certain decidable subsets of the set N
∗. The definition of the set of

stumps is inductive, as follows.
For every s in N

∗, for every subset A of N
∗, we let s∗A be the set of all finite

sequences s ∗ t, where t belongs to A.
We let 〈 〉 denote the empty sequence, the only element of N

∗ of length 0.

(i) The empty set ∅ is a stump, sometimes called the empty stump.

(ii) For each infinite sequence S0, S1, S2, . . . of stumps, the set {〈 〉} ∪
⋃

n∈N

〈n〉 ∗ Sn is again a stump. The stumps S0, S1, S2, . . . are called the

immediate substumps of the stump {〈 〉} ∪ ⋃

n∈N

〈n〉 ∗ Sn.

(iii) Every stump is obtained from the empty stump by the repeated
application of the generating operation mentioned under (ii).

We use σ, τ , . . . as variables over the set of stumps.
For each non-empty stump σ, for each n, we let σn be the set of all t in N

∗

such that 〈n〉 ∗ t belongs to σ. Note that σn is the n-th immediate substump of
σ.

One may give proofs and define functions by induction on the set of stumps.
We use the name Stump for the set of stumps.

First Principle of Induction and Recursion on the set of stumps:

(i) Let P be a subset of the set Stump of stumps. If ∅ belongs to P , and
each non-empty stump σ with the property that, for each n, σn belongs to
P , belongs itself to P , then every stump belongs to P , that is, P coincides
with Stump.

(ii) Let G be a set and let GN be the set of all infinite sequences of
elements of G. Let g be an element of G and let F be an operation from
GN to G.
There exists an operation H from the set Stump to the set G such that
H(∅) = g and, for each non-empty stump σ, H(σ) = F(λn ∈ N.H(σn)).

We define binary relations<,≤ on the set Stump by simultaneous recursion:

(i) For every stump τ , ∅ ≤ τ , and, for no stump σ, σ < ∅.
(ii) For every non-empty stump σ, for every stump τ , σ ≤ τ if and only
if, for all m, σm < τ .

(iii) For every stump σ, for every non-empty stump τ , σ < τ if and only
if, for some n, σ ≤ τn.
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One now may prove that < is a transitive relation on Stump satisfying the
following

Second Principle of Induction on the set of stumps:

Let P be a subset of the set Stump of stumps. If each stump σ with the
property that every stump τ < σ belongs to P belongs itself to P , then
every stump belongs to P .

Now we want to use stumps in order to label perhapsive extensions of I0.
First, we define, for every subset G of F containing I0, for every m, a subset

G(m) of F , as follows, by induction: G(0) = G, and, for eachm, G(m+1) = (G(m))+.
We define, for each stump σ, a subset P(σ, I0) of F , calling it the σ-th per-

hapsive extension of I0, as follows, by induction:

(i) P(∅, I0) = I0

(ii) For each non-empty stump σ, P(σ, I0) =
⋃

m,n∈N

P(σn, I0)(m)

Theorem 8. (i) For each stump σ, I0 ⊆ P(σ, I0) ⊆ (I0)¬¬ and P(σ, I0) is
positively non-perhapsive.

(ii) For every non-empty stump σ, for every n, P(σn, I0) is a proper subset
of P(σ, I0).

(iii) For all stumps σ, τ , if σ ≤ τ , then P(σ, I0) is a subset of P(τ, I0), and,
if σ < τ , then P(σ, I0) is a proper subset of P(τ, I0).

Proof. The proofs are straightforward inductive arguments. One proves (i) using
Lemmas 4 and 6. (ii) and (iii) then follow easily. �

6 Concluding remarks

6.1 It suffices to consider weakly monotone functions

Let Fmon be the class of all functions φ in F satisfying the condition of weak
monotonicity: for all x, y in [0, 1], if x ≤ y then φ(x) ≤ φ(y). Note that our
arguments would go through if we should have restricted ourselves to Fmon
rather than F . In particular, if ψ, ρ both belong to Fmon and a, b are elements of
[0, 1] such that a < b, then also the function Ga,b,ρ[ψ], as defined in Subsection
3.2, belongs to Fmon.

6.2 The proper formal context

We have kept the style of this paper a bit informal. All results, however, may be
formulated, for instance, in the language of the formal system BIM, (for Basic
Intuitionistic Mathematics), introduced in [10]. We then would not take the
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notion of a function from [0, 1] to R as primitive. We would define a continuous
function from [0, 1] to R as an enumeration of natural numbers, each of them
coding a pair 〈t, u〉 of rational intervals. Of course, the enumeration has to satisfy
certain natural conditions. The set F then would be introduced as a certain
subset of Baire space N .

6.3 On (I0)¬¬

Does the set F coincide with the set (I0)¬¬?
We have no satisfying answer to this question. If one assumes Markov’s Prin-

ciple in the form: “for every α, if ¬¬∃n[α(n) = 0], then ∃n[α(n) = 0]”, one may
prove this statement. For suppose that φ belongs to (I0)¬. Using Markov’s Prin-
ciple one may assume that, for every x in [0, 1], φ(x)#1

2 . Under this assumption
one may construct, using the method of successive bisection, a point x such that
φ(x) = 1

2 . Contradiction. Clearly then, every φ in F belongs to (I0)¬¬.
The intuitionistic mathematician does not see sufficient reason to defend

Markov’s Principle as an axiom for analysis. Some Russian constructivist do,
however, see [1].

6.4 On
⋃

σ∈Stump

P(σ, I0)

Does the set F coincide with the set
⋃

σ∈Stump

P(σ, I0)?

Note that
⋃

σ∈Stump

P(σ, I0) is a subset of (I0)¬¬, so this question is related to

the previous one. The answer to this question must be no. We give an outline of
the argument. If these two sets coincide, and we have really constructive evidence
that they do, we must be able to find a function g from F to Stump such that
for every φ in F , φ belongs to P(g(φ), I0). It is important now that the set F , as
a subset of Baire space N , is strictly analytic, that is, there exists a continuous
mapping h from Baire space N onto F . As a consequence, by an intuitionistic
version of a famous boundedness theorem from descriptive set theory, see [8],
there will exist a stump τ such that, for every φ in F , g(φ) ≤ τ , and F will be
a subset of P(τ, I0). This conclusion contradicts Theorem 8.

Combining this observation with the previous remark 6.3, we see that
Markov’s Principle implies that the sets (I0)¬¬ and

⋃

σ∈Stump

P(σ, I0) do not

coincide.

6.5 Almost(I0)

We now introduce the name Almost(I0) for the set
⋃

σ∈Stump

P(σ, I0). This ter-

minology agrees with the terminology used in [8]. We want to sketch a charac-
terization of this set.
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First, one may prove that, for every φ in F , φ belongs to I1 = (I0)+ if and
and only if there exists a sequence x0, x1, x2, . . . of elements of [0, 1] with the
properties:

(i) for each n, either xn = xn+1 or xn#xn+1,

(ii) for each n, φ(xn)#1
2 if and only if, for some m ≥ n, xm#xm+1, and

(iii) there is at most one number n such that xn#xn+1.

(The classical mathematician would say: “the sequence x0, x1, x2, . . . is con-
vergent and φ assumes the value 1

2 at the point x = lim
n→∞xn”. From a construc-

tive point of view however, a sequence with the property (iii) is not necessarily
convergent.)

Next, one may prove that, for every k, for every φ in F , φ belongs to Ik =
(I0)(k) if and and only if there exists a sequence x0, x1, x2, . . . of elements of
[0, 1] with the properties:

(i) for each n, either xn = xn+1 or xn#xn+1,

(ii) for each n, φ(xn)#1
2 if and only if, for some m ≥ n, xm#xm+1, and

(iii) there are at most k numbers n such that xn#xn+1.

In [5], [6], [8] and [9] study is made of decidable subsets of N that are almost-
finite. It follows from Brouwer’s Thesis on bars that a decidable subset A of N

is almost-finite if and only if, for every strictly increasing γ in N , there exists
n such that γ(n) does not belong to A. One could say that A is almost-finite if
and only if we are sure that every attempt to prove that A has an infinite subset
will fail after finitely many steps.

One now may show that, for every φ in F , φ belongs to Almost(I0) if and
and only if there exists a sequence x0, x1, x2, . . . of elements of [0, 1] with the
properties:

(i) for each n, either xn = xn+1 or xn#xn+1,

(ii) for each n, φ(xn)#1
2 if and only if, for some m ≥ n, xm#xm+1, and

(iii) the set of all numbers n such that xn#xn+1 is an almost-finite subset
of N.
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