On Complements of Sets and the Efremovič Condition in Pre–apartness Spaces¹

Luminiţa Simona Vîţă (Department of Mathematics & Statistics University of Canterbury, Christchurch, New Zealand l.vita@math.canterbury.ac.nz)

Abstract: In this paper we study various properties of complements of sets and the Efremovič separation property in a symmetric pre–apartness space. Key Words: Pre–apartness spaces, Efremovič property Category: F.4.1

The constructive theory of apartness² (point-set and set-set) has been developed within the framework of Bishop's constructive mathematics BISH [1, 2, 3, 13] in a series of papers over the past five years [17, 5, 12, 14, 7]. In this paper we derive some basic properties of complements of sets in pre-apartness spaces and discuss a strong separation property.

Our starting point is a set X equipped with an inequality relation applicable to points of X, and a symmetric relation \bowtie applicable to subsets of X. The inequality satisfies two simple properties

$$\begin{aligned} x &\neq y \Rightarrow y \neq x \\ x &\neq y \Rightarrow \neg (x = y). \end{aligned}$$

For a point x of X we write $x \bowtie S$ as shorthand for $\{x\} \bowtie S$. There are three notions of complement applicable to a subset S of X :

- the logical complement

$$\neg S = \{x \in X : x \notin S\},\$$

- the **complement**

$$\sim S = \left\{ x \in X : \forall s \in S \left(x \neq s \right) \right\},\$$

- and the **apartness complement**

$$-S = \{ x \in X : x \bowtie S \}.$$

The pair (X, \bowtie) is called a **symmetric pre–apartness space** if the following axioms are satisfied.

¹ C. S. Calude, H. Ishihara (eds.). Constructivity, Computability, and Logic. A Collection of Papers in Honour of the 60th Birthday of Douglas Bridges.

 $^{^2}$ The motivation for this theory lay in the classical theory of nearness and proximity; see $[8,\,9,\,11].$

B1 $X \bowtie \emptyset$. **B2** $S \bowtie T \Rightarrow S \subset T$. **B3** $R \bowtie (S \cup T) \Leftrightarrow R \bowtie S \land R \bowtie T$. **B4** $-S \subset T \Rightarrow -S \subset T$.

Throughout this paper, unless otherwise specified, X will stand for a symmetric pre–apartness space.

Using the above system of axioms, one can easily show that

 $-S \subset \sim S \subset \neg S.$

The canonical example of a symmetric pre–apartness space is a uniform space (X, \mathcal{U}) where two sets S and T are apart if there exists an entourage $U \in \mathcal{U}$ such that we have $S \times T \subset \sim U$. In addition to the classical definition of a uniform space, in BISH we assume that the underlying set X comes equipped with an inequality relation, and the collection \mathcal{U} satisfies the following condition

 $\forall U \in \mathcal{U} \; \exists V \in \mathcal{U}(V^2 \subset U \land X \times X = U \cup \sim V).$

For more details on uniform spaces see, for instance, [7].

Two very useful properties that will be implicitly used in this paper are presented in the following lemma. The proof is straightforward and we will omit it.

Lemma 1. In any symmetric pre-apartness space we have

$$- (S \bowtie T \land A \subset S \land B \subset T) \Rightarrow A \bowtie B$$

$$- S \bowtie T \Rightarrow S \subset -T.$$

An interesting feature of the complements in a pre–apartness space is the following.

Lemma 2. For any subset S of X we have

 $-S = - \sim \sim S = - \sim -S.$

Proof. For the first equality, since

$$S \subset \sim \sim S, \tag{1}$$

the inclusion from right to left is clear; the reverse inclusion follows from $-S \subset \sim$ $(\sim \sim S)$ and B4. For the second equality, first note that since we have $-S \subset \sim S$ we immediately get $-\sim -S \subset -\sim \sim S$; for the reverse inclusion, using (1) for -S and the first equality, we get $-\sim \sim S \subset \sim -S$, and the desired conclusion now follows from B4.

The apartness complements in a pre–apartness space X form a base for a topology, the **apartness topology**, on X. The open sets in this topology are called **nearly open sets**. In other words, a set is open in this topology if it can be written as a union of apartness complements. The **closure** of a set S is defined by

$$\overline{S} = \{ x \in X : \forall U (x \in -U \Rightarrow S - U \neq \emptyset) \},\$$

and the **interior** of S, is

$$Int(S) = \{ x \in S : \exists U(x \in -U \subset S) \}.$$

Lemma 3. If X satisfies the decision condition³</sup>

A5 $x \in -S \Rightarrow \forall y \in X (x \neq y \lor y \in -S),$

then for any subset S of X we have

$$-S = -\overline{S}.$$

Proof. As $S \subset \overline{S}$, one inclusion is clear. Let now $x \in -S$; by A5, for any z in \overline{S} , either $z \neq x$ or $z \in -S$. If $z \in -S$, by definition of \overline{S} it follows that $S \cap -S \neq \emptyset$ —a contradiction, so the second alternative is ruled out; hence $-S \subset \overline{S}$. B4 now shows that $-S \subset -\overline{S}$.

Before displaying more properties of complements, we introduce the **Efre-movič condition**:

$$S \bowtie T \Rightarrow \exists E \left(S \bowtie E \land T \bowtie \sim E \right).$$

This is the strongest of all the separation properties normally considered for a pre–apartness space X. In the classical theory of proximity spaces this property is part of the axioms system, and the topology induced by the proximity relation turns out to be $T_{3.5}$ —that is completely regular.

Proposition 4. Every uniform space satisfies the Efremovič condition.

Proof. Let $S \bowtie T$ in X, and construct a 3-chain (U_1, U_2, U_3) of entourages such that $S \times T \subset \sim U_1, U_{i+1}^2 \subset U_i$, and $X \times X = U_i \cup \sim U_{i+1}, i = 1, 2$. Let

$$E = \left\{ x \in X : \exists s \in S \left((s, x) \in U_2 \right) \right\}.$$

Consider $s \in S$ and $y \in \sim E$. Then either $(s, y) \in U_2$, or $(s, y) \in \sim U_3$. In the first case, the definition of E shows that $y \in E$ —a contradiction. So the second must be the case, that is $S \times \sim E \subset \sim U_3$ and therefore $S \bowtie \sim E$. On the other hand, if $t \in T, x \in E$, then either $(x, t) \in U_2$, or $(x, t) \in \sim U_3$. In the first case, as $x \in E$, there exists $s \in S$ such that $(s, x) \in U_2$, and hence $(s, t) \in U_2^2 \subset U_1$, which is absurd. Hence $E \times T \subset \sim U_3$. Thus $E \bowtie T$.

The following lemma provides us with yet another very useful property of pre–apartness spaces.

Lemma 5. If X satisfies the Efremovič condition, then for all $S, T, A \subset X$ we have

 $\mathbf{B4}_s \ S \bowtie T \land -T \subset \sim A \Rightarrow S \bowtie A.$

Proof. Let $S \bowtie T$ and $-T \subset A$. Using symmetry and the Efremovic property, there exists E such that $S \bowtie E$ and $E \bowtie T$. Then $E \subset -T$ and therefore $\sim -T \subset E$; so

$$A \subset \sim \sim A \subset \sim -T \subset \sim E.$$

Since $S \bowtie \sim E$, we conclude that $S \bowtie A$.

³ The strange labelling of this condition comes from the system of axioms for a pointset apartness. See, for instance, [5].

Note that if we rewrite axiom B4 as

$$x \in -S \land -S \subset \sim T \Rightarrow x \in -T,$$

then the property in the above lemma is a generalisation of B4, and this is why we refer to it as the **B4–strong** condition.

Proposition 6. If X satisfies the decision condition A5, then $S \bowtie T$ implies

(i) $\overline{T} \subset S.$ (ii) $T \subset Int(\sim S).$

If X also satisfies the B_{4s} condition, then we have

(iii) $S \bowtie T \Leftrightarrow \overline{S} \bowtie \overline{T}$.

Proof. Let $x \in \overline{T}$ and let $y \in S$. As $S \subset -T$, by A5, either $x \neq y$ or $x \in -T$. The latter alternative is ruled out, so $x \in \sim S$.

To prove statement (ii), first note that for any set S we have $\operatorname{Int}(\sim S) = -S$. Indeed, as $-S \subset \sim S$, it is clear that $-S \subset \operatorname{Int}(\sim S)$. Conversely, if $x \in \operatorname{Int}(\sim S)$, then there exists $U \subset X$ such that $x \in -U \subset \sim S$. A direct application of B4 now shows that $x \in -S$. Using symmetry, we have $T \bowtie S$, so $T \subset -S = \operatorname{Int}(\sim S)$. The implication from right to left in (iii) is clear. Conversely, since $S \bowtie T$ and, by Lemma 3, $-T = -\overline{T}$, B4_s immediately implies that $S \bowtie \overline{T}$. Another application of Lemma 3 and B4_s gives us the desired conclusion.

The Efremovič condition on a space is a very powerful tool. ¿From a constructive point of view though, because this is a strong existential statement, we prefer to avoid it and use, wherever possible, the properties derived from it. B4_s and its consequences have numerous applications in the development of our theory (see [4, 14, 16], to quote only a few). For instance, since we have seen that $x \bowtie S \Leftrightarrow x \bowtie \sim S$ (Lemma 1), we wonder if the same property holds for pairs of sets as well⁴. There does not seem to be much hope in proving it without additional conditions, but it is immediate from B4_s: for if $S \bowtie T$, then since $-T \subset \sim T = \sim \sim T$, we see from B4_s that $S \bowtie \sim \sim T$.

We conclude this note with a result presenting various forms of the Efremovič property.

Proposition 7. The following statements are equivalent in a symmetric preapartness space X that satisfies A5.

- (i) $S \bowtie T \Rightarrow \exists E(S \bowtie E \land \sim E \bowtie T \land \sim E \cap \neg E = \emptyset).$ (ii) $S \bowtie T \Rightarrow \exists E(S \bowtie E \land \neg E \bowtie T).$
- (iii) $S \bowtie T \Rightarrow \exists E(S \bowtie E \land \sim E \bowtie T).$

Proof. To prove that (i) implies (ii), let E be as in (i) and get F such that $F \bowtie \sim E$ and $\sim F \bowtie T$. Now, for each $x \in \neg E$ and each $z \in F \subset - \sim E$, by A5 we have either $z \neq x$ or $x \in - \sim E$. Last case is ruled out, so $x \in \sim F$, that is $\neg E \subset F \bowtie T$.

Since $\sim E \subset \neg E$, it is immediate that (ii) implies (iii).

2162

⁴ Pre–apartness spaces satisfying a similar property $S \bowtie T \Leftrightarrow S \bowtie \neg \neg T$ are called **firm**. See [6].

Now consider E as in (iii). Keeping in mind that the Efremovič condition (via $B4_s$) implies $S \bowtie E \Rightarrow S \bowtie \sim E$, take $F = \sim E$, and so we get $S \bowtie F$ and $T \bowtie \sim \sim E = \sim F$. Since $- \sim E \subset \sim E$ we have $\neg F = \neg \sim E \subset \neg - \sim E$, and hence

$$\neg F \cap - \sim F \subset \neg - \sim E \cap - \sim (\sim \sim E) = \neg - \sim E \cap - \sim E = \emptyset,$$

and the implication from (iii) to (i) obtains.

Acknowledgements

The author thanks the Royal Society of New Zealand for supporting her as a New Zealand Science & Technology Postdoctoral Research Fellow (contract number UOCX0215) during the writing of this paper, and the editors of this volume for their helpful comments and suggestions.

References

- 1. E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
- E. Bishop, D. Bridges, *Constructive Analysis*, Grundlehren der Math. Wissenschaften 279, Springer-Verlag, Heidelberg-Berlin-New York, 1985.
- D. Bridges, F. Richman, Varieties of Constructive Mathematics, London Math. Soc. Lecture Notes 97, Cambridge Univ. Press, 1987.
- D. Bridges, L. Vîţă, 'Separatedness in Constructive Topology', Documenta Math. 8, 567–576, 2003.
- D. Bridges, L. Vîţă, 'Apartness spaces as a foundation for constructive topology', Ann. Pure Appl. Logic, 119, 61–83, 2003.
- D. Bridges, L. Vîţă, 'Proximal connectedness', preprint, University of Canterbury, 2005.
- D. Bridges, P. Schuster, L. Vîţă, 'Apartness, topology, and uniformity: a constructive view', in: Computability and Complexity in Analysis (Proc. Dagstuhl Seminar 01461, 11–16 November 2001), Math. Log. Quart. 48, Suppl. 1, 16–28, 2002.
- P. Cameron, J.G. Hocking, S.A. Naimpally, Nearness—a better approach to topological continuity and limits, Mathematics Report #18–73, Lakehead University, Canada, 1973.
- 9. H. Herrlich, 'A concept of nearness', Gen. Topology Appl. 4, 191-212, 1974.
- 10. H. Ishihara, R. Mines, P. Schuster, L. Vîţă, 'Quasi-apartness and neighbourhood spaces', preprint, University of Canterbury, 2005.
- S.A. Naimpally, B.D. Warrack, *Proximity Spaces*, Cambridge Tracts in Math. and Math. Phys. 59, Cambridge at the University Press, 1970.
- P. Schuster, L. Vîţă, D. Bridges, 'Apartness as a relation between subsets', in: *Combinatorics, Computability and Logic* (Proceedings of DMTCS'01, Constanţa, Romania, 2–6 July 2001; C.S. Calude, M.J. Dinneen, S. Sburlan (eds.)), DMTCS Series 17, Springer-Verlag, London, 203–214, 2001.
- 13. A.S. Troelstra, D. van Dalen, *Constructivism in Mathematics: An Introduction* (two volumes), North Holland, Amsterdam, 1988.
- L. Vîţă, 'Proximal and uniform convergence on apartness spaces', Math. Logic Quarterly, 49(3), 255-259, 2003.
- L. Vîţă, 'On proximal convergence in uniform spaces', Math. Logic Quarterly, 49(6), 550-552, 2003.
- 16. L. Vîţă, 'Extending strongly continuous mappings between apartness spaces', to appear in Archives for Math. Logic.

Vita L.S.: On Complements of Sets and the Efremovic Condition ...

- L. Vîţă, D. Bridges, 'A constructive theory of point-set nearness', in Proceedings of Topology in Computer Science: Constructivity; Asymmetry and Partiality; Digitization, Seminar in Dagstuhl, Germany, 4–9 June 2000; Springer Lecture Notes in Computer Science, **305**, 473–489, 2003.
- 2164