
Automatic Programming Methodologies for Electronic
Hardware Fault Monitoring

Ajith Abraham
(IITA Professorship Program, School of Computer Science and Engineering,

Chung-Ang University, Seoul, South Korea
ajith.abraham@ieee.org)

Crina Grosan

(Department of Computer Science
Babes-Bolyai University, Cluj-Napoca, 3400, Romania

cgrosan@cs.ubbcluj.ro)

Abstract: This paper presents three variants of Genetic Programming (GP) approaches for
intelligent online performance monitoring of electronic circuits and systems. Reliability
modeling of electronic circuits can be best performed by the stressor – susceptibility interaction
model. A circuit or a system is considered to be failed once the stressor has exceeded the
susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct
measurements or sensors, which after pre-processing and standardization are fed into the GP
models. Empirical results are compared with artificial neural networks trained using
backpropagation algorithm and classification and regression trees. The performance of the
proposed method is evaluated by comparing the experiment results with the actual failure
model values. The developed model reveals that GP could play an important role for future
fault monitoring systems.

Keywords: genetic programming, neural networks, decision trees, fault monitoring,
computational intelligence, electronic hardware
Categories: I.2.2, I.2.6, B.8.1, B.8.2

1 Introduction

Real time monitoring of the healthiness of complex electronic
systems/circuits/hardware is a difficult challenge to both human operators and expert
systems. When the electronic circuit or system is controlling a critical task fault
prediction will be very important. This paper proposes a stressor-susceptibility
interaction model for analyzing the hardware and three variants of genetic
programming methods for approximating the various complex functions to monitor
the performance of the system.

In the literature several fault monitoring/analysis methods have been proposed
[Abraham and Grosan, 2005]. Advances in integrated circuit technology have made
failure site localization extremely challenging. Charge-induced voltage alteration
(CIVA), low energy CIVA (LECIVA), light-induced voltage alteration (LIVA),
Seebeck effect imaging (SEI) and thermally-induced voltage alteration (TIVA) are
five recently developed failure analysis techniques which meet the challenge by
rapidly and non-destructively localizing interconnection defects on ICs. Yamada and

Journal of Universal Computer Science, vol. 12, no. 4 (2006), 408-431
submitted: 31/10/05, accepted: 15/3/06, appeared: 28/4/06 © J.UCS

Komoda proposed a failure analysis on a 0.18 μm CMOS device by combining
several fault localization techniques [Yamada and Komoda, 2004]. Mohsena and El-
Yazeed addresses the problem of fault diagnosis of analog circuits based on
dictionary approach [Mohsena and El-Yazeed, 2004]. The proposed approach first
identifies an adequate set of test frequencies to optimize the process of detection and
isolation of simulated fault scenarios. The circuit under test is then excited by an input
stimulus composed of a set of sinusoidal waveforms with the selected test
frequencies. The circuit response, at different fault scenarios, is preprocessed by an
autoregressive moving average model to yield a set of features formulating the fault
dictionary. Collected features are utilized to train and test a neural network based
classifier. Demonstrative results from soft fault simulation of two active circuit
examples prove the excellent effectiveness of the proposed algorithm.

El-Gamal and Abdulghafour proposed a fuzzy inference system for single analog
fault diagnosis [El-Gamal and Abdulghafour, 2004]. The ability of fuzzy logic to
encode structured knowledge in a numerical framework is exploited in isolating faults
in analog circuits. A training set that simulates the behaviour of the circuit due to a set
of anticipated single faults as well as the fault-free situation is first constructed. For
each anticipated fault, this set relates the circuit measurements to the corresponding
deviation in the faulty circuit element from its nominal. These measurements and the
deviations in circuit elements are both fuzzified into appropriate linguistic fuzzy
values. A fuzzy rule base for each fault that characterizes the circuit response by
linking symptoms to causes is built. The outputs of the fuzzy rule bases are then
defuzzified to recover crisp values for the deviations in circuit elements.

Blyzniuk et al. proposed a new methodology of probabilistic analysis of CMOS
physical defects in complex gates [Blyzniuk et al., 2001]. It is based on the developed
approach for the identification and estimation of the probability of actual faulty
functions resulting from shorts caused by spot defects in conductive layers of IC
layout. The aim of this methodology is realistic representation of physical defects in
fault models. The list of defects, identified faulty functions, defect coverage table,
conditional defect probabilities, and effectiveness and optimal sequence of test
patterns are the main output data of probabilistic-based faults characterization. The
experimental data obtained during complex gates characterization are used for the
estimation of the physical defects coverage by hierarchical defect simulation.

Dai and Xu proposed an analog circuit fault diagnosis method using a noise
measurement and analysis approach [Dai and Xu, 1999]. Compared to the
conventional circuit fault diagnosis methods, this method can discover hidden and
early circuit fault caused by the device defects.

SRAM's are frequently used as monitor circuits for defect related yield, due to the
ease of testing and the good correlation to the yield characteristics of logic circuitry.
For the identification of the failure/fault type and the nature of the defect causing the
failure, measured failbitmaps are mapped onto a failbitmap catalog obtained from
defect-fault simulation. Often this mapping is not unique. A given failbitmap can be
caused by several faults or defects. Schienle et al. demonstrated the application of
current signature analysis for a stand-alone 16kx1 SRAM monitor circuit [Schienle et
al., 1999]. It is found that the resolution of the failbitmap-fault-defect catalog can be
improved considerably by additional current signature measurements.

409Abraham A., Grosan C.: Automatic Programming Methodologies ...

Catelani and Giraldi proposed a method for fault detection and fault isolation of
analog circuits by considering the response of the circuit under test which is obtained
by measuring the output voltage at an accessible node when a stimulus constituted by
a signal with a particular test frequency is applied at its input [Catelani and Giraldi,
1999]. In a fault condition, such a response represents the fault diagnosis equation for
the analog circuit. The theoretical formulation is confirmed by the results achieved for
an active low-pass filter.

Toczek et al. proposed a component fault isolation procedure for the robust fault
diagnosis of analog circuits [Toczek et al., 1998]. The procedure is divided into two
stages. The first stage is based on nonlinear analysis of circuit under test and
verification is performed with circuit model linearized in the neighbourhood of the
operating point, and the second stage is based on nonlinear analysis of circuit with
only some nonlinear devices modeled by piecewise-linear function. This economical
approach keeps the computation time within the acceptable limits in comparison with
entire PWL model approach and diagnosis is accomplished at low measurement cost.

Stressor is a physical entity influencing the lifetime of a component or circuit. A
stressor, indicating a physical entity x will be denoted as xψ . Stressors can be broadly

classified into three main groups [Brombacher, 1995]. First group contains the
electrical stressors, parameters related to the electrical behavior of the circuit. Second
group of stressors is the mechanical stressors, which are related to the mechanical
environment of the component. Third group of parameters influencing the lifetime of
components is related to the thermal environment of the component. Susceptibility of
a component to a certain failure mechanism is defined as the probability function
indicating the probability that a component will not remain operational for a certain
time under a given combination of stressors. The susceptibility related to the failure
mechanism y is usually defined as Sy (t, ψp, ψq,ψr).

The new technique of electronic system failure prediction using stressor-
susceptibility interaction [Abraham, 2000],[Abraham and Nath, 1999] is briefly
discussed in Section 2. This technique can be extended to simple electronic
components and for complicated electronic circuits and equipment. Section 3 presents
some of the common failure mechanisms in practical situations. The derivation of
stressor sets using Monte Carlo Analysis is given in Section 4 followed by Section 5
where we had derived a stressor-susceptibility model for a circuit. Section 6 gives
some theoretical background about the variants of genetic programming models used,
artificial neural networks and decision trees. In Section 7 we have reported the
experiment results and finally conclusions are provided in Section 8.

2 Stressor-Susceptibility Interaction

Failure probabilities require detailed analysis of both stressors and susceptibility.
Most components tend to have more than one failure mechanism, resulting in more
than one “failure probability”. It can be shown that there is a strong correlation
between the various failure mechanisms existing within a component.

410 Abraham A., Grosan C.: Automatic Programming Methodologies ...

Figure 1: Stressor-Susceptibility interaction for single failure mechanism.

Figure 1 illustrates the stressor - susceptibility interaction for a single failure
mechanism. The main source of problem is the overlap between stressor and
susceptibility density. The first step is to calculate the failure probability for this
stressor distribution on a failure mechanism with a single, one variable, time
independent catastrophic susceptibility model. This results in the probability function
as given below:

() () ψψψ
ψ

ψ dff yyfail ∫
∞

=

0

0,, (1)

To calculate the failure probability as a function of more complex susceptibility
model, it will be necessary to calculate the failure probability of a part of the
susceptibility model, for a certain stressor interval Δ, characterized by its mean value
ψo and the corresponding susceptibility density function at that point Sy(ψo).
Considering the probability that a part has failed at a lower susceptibility level, results
in the possibility to predict the failure probability per time interval of a certain failure
at stressor level ψ0 using (2).

()
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−Δ= ∫∫

Δ−∞ 0

0 0

,00,,)(1))()((

ψ

ψ
ψ ψψψβψψψ dfdfSf yfailyYyfail (2)

The last term is introduced to subtract failures caused by stressors at a lower
susceptibility level. As, most often, failure probabilities are very small, in many cases
the previous expression will simplify to (3).

))()(()(

0

00,, ψβψψψ
ψ

ψ dfSf yyyfail ∫
∞

Δ= (3)

411Abraham A., Grosan C.: Automatic Programming Methodologies ...

when ∫
Δ−

=−
0

0
1))(,1(

ψ
ψψ dyfailf (4)

Since the susceptibility is defined as the probability that a component will not remain
operational during a certain time, it is therefore possible to calculate the failure
probability during a certain observation time tobs.

))()((**)(

0

00,, ψψψψψ dfStf yyobsyfail ∫
∞

Ψ

Δ= (5)

The important requirement for using (5) is that the observation time tobs must be larger
than the total elapsed sampling time to obtain an ergodic description of the associated
stressors ttotal sample (tobs > ttotal sample); ffail, y,ψ, (t, ψ) is assumed to be constant during the
time interval tobs. From (5) it is possible to calculate the failure probability of a part
per fail mechanism per time interval using (6).

∫
∞

=
0

,,,),(ψψψ dtff yfailyfail (6)

Equation (6) can now be used to calculate the part failure probability per time interval

∑
=

=
n

i
ifailffailf

1
, (7)

Using the previous assumptions it is also possible to calculate the probability that a
component survives from time t to t+dt. Equation (8) can be used to calculate the
failure probability for one single failure mechanism within one single device.

)()()()(
1

)(

1
)(

)....(

ttftRtFtR

n

i
tatloperationaDevices

k

i
tttimeatloperationaDevices

tttR

Δ=Δ=
=

=
Δ+

=Δ+

∑

∑

 (8)

As for large series of components, the physical structures of the individual
components will be different for every component; the survival probability of such a
series of components will also show individual differences. The stress on a
component may vary with time due to circuit behavior and circuit use. The circuit
behavior will differ amongst a series of circuits due to physical differences in the
individual circuit components, the physical structure of a circuit, the use of a circuit
and the environment (electrical, thermal, etc.) of the circuit. To summarize the variety
of effects it is useful to describe stressors as stochastic signals with properties
depending on the influencing factors mentioned above. These assumptions make it
possible to derive the failure probability and reliability of a component using a
Markov approach. For Markov approach the following requirements should be
fulfilled:

412 Abraham A., Grosan C.: Automatic Programming Methodologies ...

• Susceptibility of all failure mechanisms in a component is known and is constant
in the time interval (t, t+Δt).

• All stressors ψa (t), ψb (t), … are known as stochastic signals for the time interval
(t, t+Δt).

• The failure probability (or reliability) is known at a certain (initial) time t.

Using these properties it is possible to calculate the reliability and failure probability
for components, derived from internal failure mechanisms for time t+Δt. For this
purpose the following relationships are used

P(t+Δt) = P(t) (Δt)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

→→

→→

yyxy

yxxx

PP

PP

tP

KK

KKKK

KKKK

KK

r
)((9)

where P(t) is the state probability vector of a component. This state probability vector
is defined as

=)(tP
r

Poperational (t): probability that part is operational at time t

Pa (t): probability that part fails due to failure mechanism a at time t

Pb (t): probability that part fails due to failure mechanism b at time t

Pn (t): probability that part fails due to failure mechanism n at time t

∑
=

=
n

j
j yP

1

1)(

P1 (t) = Poperational (t) = R(t)
P2….n (t) = Pfail, 2… n (t) = Ffail, 2…. n (t)
Px→ y = P(y(t+Δt) | x(t)) = fy(t) Δt Px (t)

It is possible to replicate this calculation process for a whole batch of circuits. In this
case, for every circuit the individual stressor/ susceptibility interaction is calculated
thus simulating batch behavior. Using this method, it is possible to derive the failure
probability for many parts in many practical situations, also in cases where
considerable differences (in stressors and susceptibility) exist within a batch.

3 From Failure Mechanisms to Stressor Sets and Susceptibility
Models

There are two different categories of failure mechanisms applicable to electronic
components [Chan, 1994], [Jenson, 1995]. First, the failure mechanisms that are
related to the electrical stress in a circuit [Klion, 1992].

413Abraham A., Grosan C.: Automatic Programming Methodologies ...

No. Failure Mechanism Influencing aspect or associated
stressors

1 Thermal failure (general) • Dissipated power
• Environmental temperature
• Thermal resistance
• Thermal capacitance

2 Current breakdown (hot spot
melting)

• Resistivity of the material
• Impurities/ mechanical distortions in the

material causing increase in current density.
• Thermal resistivity coefficient.

3 Power breakdown (thermal
cracks)

• Thermal expansion coefficient of the
materials.

• Thermal resistivity coefficients of the
materials.

4 Impact ionization • Electric field
5 Avalanche breakdown • Electric field (positive temperature

coefficient)
6 Zener breakdown • Electric field (negative temperature

coefficient)
7 Corrosion • Environmental temperature (negative

influence on susceptibility)
• Dissipated power
• D C Voltage

8 Electro-migration • Current density
• Environmental temperature

9 Secondary diffusion • Temperature
10 Switch on pulse power

dissipation
(for bipolar junctions)

• Voltage slope dV/dt
• Current slope dI/dt

11 Switch off pulse power
dissipation
(for bipolar junctions)

• Voltage slope dV/dt
• Maximum reverse junction current
• Applied reverse voltage
• Storage charge Q’s in the diode at the

moment of polarity reversal.
12 Forward bias second

breakdown
(for power transistors)

• Collector emitter voltage
• Slope of the base current during switching

on dIb/dt
• Slope of the collector current during

switching on dIc/dt
• Environmental temperature

13 Reverse bias second
breakdown
(for power transistors)

• Collector emitter voltage
• Discharge speed dIb/dt (optimum value)
• Stored charge at the moment of transistor

switch off (closely related to collector
current at the moment of switch off).

• Environmental temperature

Table 1: Some common failure mechanisms with associated causes and stressors

414 Abraham A., Grosan C.: Automatic Programming Methodologies ...

Second there are failure mechanisms related to the intrinsic aspects of a component
[Fuqua, 1987], [Arsenault and Roberts, 1980]. Table 1 shows some of the typical
failure mechanisms and their causes with associated stressors. There are two possible
ways to obtain stressor sets for practical circuits [Brombacher, 1995]. The first
possibility involves usage of computer simulation models to derive all circuit signals
using one single simulation. Second possibility is to derive stressor sets from practical
measurements. In those cases where sufficient systems are available it is possible to
do a statistical evaluation of the individual stressor functions existing in individual
systems. As the stressor sets are dependent on the conditions of use and the operation
modes of a system it is important that the measured stressor is based on all the
possible operation modes of a circuit and all the possible transitions between the
various operation modes. This can become a quite tedious job as the entire operation
is to be repeated for a number of systems to obtain an accurate statistical mean
stressor model. Accurate description of a stressor set needs a sampling frequency of at
least twice the highest frequency in the stressor frequency spectrum. Accurate
description of a stressor set will require a number of samples sufficient to cover all the
different states of the system. As a signal has often more than one quasi-stationary
states, each characterized by their stressor set, it is possible to derive the overall
stressor set function from the individual state stressor sets using (10)

)(,,1)(, xiystr
total

in

ixystr f
T

T
f Σ =

= (10)

fstr,y (x) is the stressor probability density function of quasi-stationary state i. Ti / Ttotal is
the fraction of time that the stressor is in quasi-stationary state i.

Figure 2: Monte Carlo analysis

415Abraham A., Grosan C.: Automatic Programming Methodologies ...

4 Monte Carlo Analysis for Stressor Sets

In a Monte Carlo Analysis (MCA), a logical model of the system being analyzed is
repeatedly evaluated, each run using different values of the distributed parameters.
The selection of parameter values is made randomly, but with probabilities governed
by the relevant distribution functions. Statistical exploration covers the tolerance
space by means of the generation of sets of random parameters within this tolerance
space. Each set of random parameters represents one circuit. Multiple circuit
simulations, each with a new set of random parameters, explore the tolerance space.
Statistically the distribution of all random selections of one parameter represents the
parameter distribution. Although the number of simulations required for MCA is quite
large, this analysis method is useful, especially because the number of parameters in
the failure prediction of circuits is often too large to allow the use of other techniques.
Figure 2 illustrates the MCA. With MCA it is possible to simulate the behavior of a
large batch of circuits and derive stressor sets. The next phase will be the combination
of the derived stressor sets with the component susceptibilities in order to decide
whether a component will fail or not. As for the failure prediction, the most important
aspect is to prevent failures; susceptibility will be expressed using the susceptibility
limit. To distinguish circuits where failures are possible any circuit in the MCA
causing to exceed a susceptibility limit are marked as fail. Circuits where no stressors
exceed susceptibility limit are marked as pass.

Figure 3: Stressor - susceptibility interaction model

5 Modelling Stressor Sets and Susceptibility

The analysis was carried out on a power circuit and the main cause of the failure of
the circuit was a Schottky diode. The main failure mechanisms are leakage current
and excess crystal temperature. Using the procedure described earlier, it was possible
to derive a complete individual stressor set for the failure mechanism of this diode as
follows.

416 Abraham A., Grosan C.: Automatic Programming Methodologies ...

Parameter Susceptibility limit

T crystal 125o Celsius
dV/dt 109 V/s
dI/dt 0.51 x 109 A/s

I (reverse) -1.5 A

Figure 3 illustrates the joint stressor – susceptibility interaction model in terms of
voltage and current. The susceptibility limit for leakage current is set at -1.5A.

6 Computational Intelligence Paradigms Used

Following intelligent techniques are used in the experiments: Linear Genetic
programming (LGP), Multi Expression Programming (MEP), Gene Expression
Programming (GEP), Artificial Neural Networks (ANN) and Classification and
Regression Trees (CART). Each of them is described in the following sub-sections.

6.1 Linear Genetic Programming (LGP)

Linear genetic programming is a variant of the GP technique that acts on linear
genomes [Banzhaf et al., 1998]. Its main characteristics in comparison to tree-based
GP lies in that the evolvable units are not the expressions of a functional
programming language (like LISP), but the programs of an imperative language (like
C/C ++). The basic unit of evolution here is a native machine code instruction that
runs on the floating-point processor unit (FPU). Since different instructions may have
different sizes, here instructions are clubbed up together to form instruction blocks of
32 bits each. The instruction blocks hold one or more native machine code
instructions, depending on the sizes of the instructions. A crossover point can occur
only between instructions and is prohibited from occurring within an instruction.
However the mutation operation does not have any such restriction. LGP uses a
specific linear representation of computer programs. Instead of the tree-based GP
expressions of a functional programming language (like LISP) programs of an
imperative language (like C) are evolved. A LGP individual is represented by a
variable-length sequence of simple C language instructions. Instructions operate on
one or two indexed variables (registers) r, or on constants c from predefined sets. The
result is assigned to a destination register, for example, ri = rj* c. A sample LGP
program is given below:

void LGP(double v[8]) {
[0] = v[5] + 73;
v[7] = v[3] – 59;
if (v[1] > 0)
if (v[5] > 21)
v[4] = v[2] . v[1];
v[2] = v[5] + v[4];
v[6] = v[7] . 25;
v[6] = v[4] – 4;

417Abraham A., Grosan C.: Automatic Programming Methodologies ...

v[1] = sin(v[6]);
if (v[0] > v[1])
v[3] = v[5] . v[5];
v[7] = v[6] . 2;
v[5] = v[7] + 115;
if (v[1] <= v[6])
v[1] = sin(v[7]);
}

A LGP can be turned into a functional representation by successive replacements of
variables starting with the last effective instruction. The maximum number of
symbols in a LGP chromosome is 4 * Number of instructions.

Evolving programs in a low-level language allows us to run those programs
directly on the computer processor, thus avoiding the need of an interpreter. In this
way the computer program can be evolved very quickly. An important LGP parameter
is the number of registers used by a chromosome. The number of registers is usually
equal to the number of attributes of the problem. If the problem has only one attribute,
it is impossible to obtain a complex expression such as the quartic polynomial. In that
case, we have to use several supplementary registers. The number of supplementary
registers depends on the complexity of the expression being discovered. An
inappropriate choice can have disastrous effects on the program being evolved. LGP
uses a modified steady-state algorithm. The initial population is randomly generated.
The following steps are repeated until a termination criterion is reached: Four
individuals are randomly selected from the current population. The best two of them
are considered the winners of the tournament and will act as parents. The parents are
recombined and the offspring are mutated and then replace the losers of the
tournament.

We used a LGP technique that manipulates and evolves a program at the machine
code level. The settings of various linear genetic programming system parameters are
of utmost importance for successful performance of the system. The population space
has been subdivided into multiple subpopulation or demes. Migration of individuals
among the subpopulations causes evolution of the entire population. It helps to
maintain diversity in the population, as migration is restricted among the demes.
Moreover, the tendency towards a bad local minimum in one deme can be countered
by other demes with better search directions. The various LGP search parameters are
the mutation frequency, crossover frequency and the reproduction frequency. The
crossover operator acts by exchanging sequences of instructions between two
tournament winners. Steady state genetic programming approach was used to manage
the memory more effectively.

6.2 Multi Expression Programming (MEP)

MEP genes are (represented by) substrings of a variable length [Oltean and Grosan,
2003]. The number of genes per chromosome is constant. This number defines the
length of the chromosome. Each gene encodes a terminal or a function symbol. A
gene that encodes a function includes pointers towards the function arguments.
Function arguments always have indices of lower values than the position of the
function itself in the chromosome. The proposed representation ensures that no cycle

418 Abraham A., Grosan C.: Automatic Programming Methodologies ...

arises while the chromosome is decoded (phenotypically transcripted). According to
the proposed representation scheme, the first symbol of the chromosome must be a
terminal symbol. In this way, only syntactically correct programs (MEP individuals)
are obtained. An example of chromosome using the sets F= {+, *} and T= {a, b, c, d}
is given below:
1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6
The maximum number of symbols in MEP chromosome is given by

Number of symbols = (n + 1) * (number of genes – 1) + 1

where n is the number of arguments of the function with the greatest number of
arguments. The maximum number of effective symbols is achieved when each gene
(excepting the first one) encodes a function symbol with the highest number of
arguments. The minimum number of effective symbols is equal to the number of
genes and it is achieved when all genes encode terminal symbols only.

The translation of a MEP chromosome into a computer program represents the
phenotypic transcription of the MEP chromosomes. Phenotypic translation is obtained
by parsing the chromosome top-down. A terminal symbol specifies a simple
expression. A function symbol specifies a complex expression obtained by connecting
the operands specified by the argument positions with the current function symbol.
For instance, genes 1, 2, 4 and 5 in the previous example encode simple expressions
formed by a single terminal symbol. These expressions are:
E1 = a,
E2 = b,
E4 = c,
E5 = d,

Gene 3 indicates the operation + on the operands located at positions 1 and 2 of
the chromosome. Therefore gene 3 encodes the expression: E3 = a + b. Gene 6
indicates the operation + on the operands located at positions 4 and 5. Therefore gene
6 encodes the expression: E6 = c + d. Gene 7 indicates the operation * on the operands
located at position 3 and 6. Therefore gene 7 encodes the expression: E7 = (a + b) * (c
+ d). E7 is the expression encoded by the whole chromosome.

There is neither practical nor theoretical evidence that one of these expressions is
better than the others. This is why each MEP chromosome is allowed to encode a
number of expressions equal to the chromosome length (number of genes). The
chromosome described above encodes the following expressions:
E1 = a,
E2 = b,
E3 = a + b,
E4 = c
E5 = d,
E6 = c + d,

419Abraham A., Grosan C.: Automatic Programming Methodologies ...

E7 = (a + b) * (c + d).
The value of these expressions may be computed by reading the chromosome top

down. Partial results are computed by dynamic programming and are stored in a
conventional manner. Due to its multi expression representation, each MEP
chromosome may be viewed as a forest of trees rather than as a single tree, which is
the case of GP.

6.3 Gene Expression Programming (GEP)

The individuals of gene expression programming [Ferreira, 2001] are encoded in
linear chromosomes which are expressed or translated into expression trees (branched
entities). Thus, in GEP, the genotype (the linear chromosomes) and the phenotype
(the expression trees) are different entities (both structurally and functionally) that,
nevertheless, work together forming an indivisible whole. In contrast to its analogous
cellular gene expression, GEP is rather simple. The main players in GEP are only
two: the chromosomes and the Expression Trees (ETs), being the latter the expression
of the genetic information encoded in the chromosomes. As in nature, the process of
information decoding is called translation. And this translation implies obviously a
kind of code and a set of rules. The genetic code is very simple: a one-to-one
relationship between the symbols of the chromosome and the functions or terminals
they represent. The rules are also very simple: they determine the spatial organization
of the functions and terminals in the ETs and the type of interaction between sub-ETs.
GEP uses linear chromosomes that store expressions in breadth-first form. A GEP
gene is a string of terminal and function symbols. GEP genes are composed of a head
and a tail. The head contains both function and terminal symbols. The tail may
contain terminal symbols only. For each problem the head length (denoted h) is
chosen by the user. The tail length (denoted by t) is evaluated by: t = (n - 1)h +
1,where n is the number of arguments of the function with more arguments. Let us
consider a gene made up of symbols in the set S:

S = {×, /,+,-, a, b}

In this case n = 2. If we choose h = 10, then we get t = 11, and the length of the gene
is 10 + 11 = 21. Such a gene is given below:

CGEP = + × ab - +aab + ababbbababb

The expression encoded by the gene CGEP is:

E = a + b × ((a + b) - a)

GEP genes may be linked by a function symbol in order to obtain a fully
functional chromosome. In the current version of GEP the linking functions for
algebraic expressions are addition and multiplication. A single type of function is
used for linking multiple genes. GEP uses mutation, recombination and transposition.
GEP uses a generational algorithm. The initial population is randomly generated. The
following steps are repeated until a termination criterion is reached: A fixed number
of the best individuals enter the next generation (elitism). The mating pool is filled by
using binary tournament selection. The individuals from the mating pool are
randomly paired and recombined. Two offsprings are obtained by recombining two
parents. The offspring are mutated and they enter the next generation. There are some

420 Abraham A., Grosan C.: Automatic Programming Methodologies ...

problems regarding multigenic chromosomes. Generally, it is not a good idea to
assume that the genes may be linked either by addition or by multiplication. Providing
a particular linking operator means providing partial information to the expression
which is discovered. But, if all the operators {+, -, ×, /} are used as linking operators,
then the complexity of the problem substantially grows (since the problem of
determining how to mix these operators with the genes is as difficult as the initial
problem). Furthermore, the number of genes in the GEP multigenic chromosome
raises a problem. As can be seen in [Ferreira, 2001], the success rate of GEP increases
with the number of genes in the chromosome. But, after a certain value, the success
rate decreases if the number of genes in the chromosome is increased. This happens
because we cannot force a complex chromosome to encode a less complex
expression. A large part of the chromosome is unused if the target expression is short
and the head length is large. Note that this problem arises usually in systems that
employ chromosomes with a fixed length.

6.4 Artificial Neural Networks (ANN)

Artificial Neural Networks have been developed as generalizations of mathematical
models of biological nervous systems. A neural network is characterised by the
network architecture, the connection strength between pairs of neurons (weights),
node properties, and updating rules. The updating or learning rules control weights
and/or states of the processing elements (neurons). Normally, an objective function is
defined that represents the complete status of the network, and its set of minima
corresponds to different stable states of the network. It can learn by adapting its
weights to changes in the surrounding environment, can handle imprecise
information, and generalise from known tasks to unknown ones. Each neuron is an
elementary processor with primitive operations, like summing the weighted inputs
coming to it and then amplifying or thresholding the sum. Learning typically occurs
by example through training, where the training algorithm iteratively adjusts the
connection weights (synapses). Backpropagation (BP) is one of the most famous
training algorithms for multilayer perceptrons. BP is a gradient descent technique to
minimize the error E for a particular training pattern. For adjusting the weight (ijw)

from the ith input unit to the jth output, in the batched mode variant the descent is based

on the gradient E∇ (
ijδw

δE
) for the total training set:

)1(nijΔwα*
ijδw

δEε*(n)ijΔw −+−= (11)

The gradient gives the direction of error E. The parameters ε and α are the learning
rate and momentum respectively [Abraham, 2005].

6.5. Classification and Regression Trees (CART)

Tree-based models are useful for both classification and regression problems
[Breiman et al., 1984]. In these problems, there is a set of classification or predictor
variables (Xi) and a dependent variable (Y). The Xi variables may be a mixture of

421Abraham A., Grosan C.: Automatic Programming Methodologies ...

nominal and / or ordinal scales (or code intervals of equal-interval scale) and Y a
quantitative or a qualitative (i.e., nominal or categorical) variable.

The CART methodology is technically known as binary recursive partitioning.
The process is binary because parent nodes are always split into exactly two child
nodes and recursive because the process can be repeated by treating each child node
as a parent. The key elements of a CART analysis are a set of rules for:

• splitting each node in a tree;
• deciding when a tree is complete; and
• assigning each terminal node to a class outcome (or predicted value for

regression)
CART's binary decision trees are more sparing with data and detect more

structure before further splitting is impossible or stopped. Splitting is impossible if
only one case remains in a particular node or if all the cases in that node are exact
copies of each other (on predictor variables). CART also allows splitting to be
stopped for several other reasons, including that a node has too few cases. Once a
terminal node is found we must decide how to classify all cases falling within it. One
simple criterion is the plurality rule: the group with the greatest representation
determines the class assignment. CART goes a step further: because each node has
the potential for being a terminal node, a class assignment is made for every node
whether it is terminal or not. The rules of class assignment can be modified from
simple plurality to account for the costs of making a mistake in classification and to
adjust for over- or under-sampling from certain classes. A common technique among
the first generation of tree classifiers was to continue splitting nodes (growing the
tree) until some goodness-of-split criterion failed to be met. When the quality of a
particular split fell below a certain threshold, the tree was not grown further along that
branch. When all branches from the root reached terminal nodes, the tree was
considered complete. Once a maximal tree is generated, it examines smaller trees
obtained by pruning away branches of the maximal tree. Once the maximal tree is
grown and a set of sub-trees is derived from it, CART determines the best tree by
testing for error rates or costs. With sufficient data, the simplest method is to divide
the sample into learning and test sub-samples. The learning sample is used to grow an
overly large tree. The test sample is then used to estimate the rate at which cases are
misclassified (possibly adjusted by misclassification costs). The misclassification
error rate is calculated for the largest tree and also for every sub-tree. The best sub-
tree is the one with the lowest or near-lowest cost, which may be a relatively small
tree. Cross validation is used if data are insufficient for a separate test sample.

In the search for patterns in databases it is essential to avoid the trap of over
fitting or finding patterns that apply only to the training data. CART's embedded test
disciplines ensure that the patterns found will hold up when applied to new data.
Further, the testing and selection of the optimal tree are an integral part of the CART
algorithm. CART handles missing values in the database by substituting surrogate
splitters, which are back-up rules that closely mimic the action of primary splitting
rules. The surrogate splitter contains information that is typically similar to what
would be found in the primary splitter.

422 Abraham A., Grosan C.: Automatic Programming Methodologies ...

7 Experiment Results and Performance Analysis

The experiment system consists of two stages: model construction (training) and
performance evaluation. The stressor – susceptibility interaction model was analyzed
in detail (as illustrated in Figure 3) and the main causes of failures were identified.
Analysis showed that the main cause of the failure was excess junction temperature
and leakage current. A mathematical model was built relating the failure probability,
leakage current and junction temperature. A failure simulation was carried out and the
data set was generated. We attempted to predict the component temperature and
leakage current for a given voltage and current. Data was generated by simulating
circuit failure. 80% of the randomly selected data was used for training and remaining
for testing and validation purposes. All the training data were standardized before
training. The input parameters considered are the Voltage (V) and Current (I).
Predicted outputs are the junction temperature and leakage current.

Parameter Value

Population size 500
Mutation frequency 90%
Crossover frequency 60%

Number of demes 10
Initial 80

Program size
maximum 256

Table 2: Parameters used by LGP

Parameter Value
Population size 500

Number of mutations per chromosome 4
Crossover probability 0.9

Code length 40
Number of generations 300

Table 3: Parameters used by MEP

Parameter Value
Population size 500

Mutation probability 0.05
Crossover probability (one point crossover) 0.3

Number of genes 3, 4, 5 and 6
Genes recombination 0.1
Genes transposition 0.1

Inversion 0.1

Table 4: Parameters used by GEP

423Abraham A., Grosan C.: Automatic Programming Methodologies ...

• ANN Training

We used a feedforward neural network with 2 hidden layers in parallel, 2 input
neurons corresponding to the input variables and 2 output neurons. Initial weights
were randomized between +0.3/-0.3 and learning rate and momentum used were 0.1
and 0.1, respectively. The training was terminated after 3500 epochs.

7.1 Performance and Results Achieved

Parameters used by the three GP variants are depicted in Tables 2-4. Figures 4 and 6
illustrate the fitness values of the evolved models using LGP for junction temperature
and leakage current prediction. Figures 5 and 7 depict the average code length and
best code length (program size) for the two prediction models using LGP. As
illustrated in Figure 8, the MEP models converged after 300 generations. Following
are the evolved functions using MEP. Table 5 summarizes the comparative
performance of LGP, MEP, GEP, ANN and CART. For the test data, LGP and neural
networks performed well for junction temperature and leakage current approximation
respectively.

Leakage current model

(((cos(x[1] - (x[0] * x[0]) - (x[1] > (x[0] * x[0]) ? x[1] : (x[0] * x[0]) - (x[1] - (x[0] *
x[0]))))) > x[1] ? (cos(x[1] - (x[0] * x[0]) - (x[1] > (x[0] * x[0]) ? x[1] : (x[0] * x[0]) -
(x[1] - (x[0] * x[0]))))) : x[1]) / (sin(x[0] * x[0] + x[0]))) < ((fabs(0.060518)) / 0.0605182)
? (((cos(x[1] - (x[0] * x[0]) - (x[1] > (x[0] * x[0]) ? x[1] : (x[0] * x[0]) - (x[1] - (x[0] *
x[0]))))) > x[1] ? (cos(x[1] - (x[0] * x[0]) - (x[1] > (x[0] * x[0]) ? x[1] : (x[0] * x[0]) -
(x[1] - (x[0] * x[0]))))) : x[1])/(sin(x[0]*x[0]+ x[0]))) : ((fabs(0.0605182))/ 0.060518)

Temperature model

0.80123294778283 > (fabs((x[0] + Log2(x[0])) / ((Lg(x[0])) > x[0] ? (Lg(x[0])) : x[0]))) ?
0.80123294778283 : (fabs((x[0] + Log2(x[0])) / ((Lg(x[0])) > x[0] ? (Lg(x[0])) : x[0])))

424 Abraham A., Grosan C.: Automatic Programming Methodologies ...

Root Mean Squared Error (RMSE)

LGP MEP GEP ANN DT

Training data

Junction
Temperature

0.00948 0.00593 0.0237 0.0069 0.0180

Leakage
Current

0.00493 0.00829 0.0194 0.00589 0.0221

Test data

Junction
Temperature

0.00911 0.01034 0.0200 0.01278 0.028

Leakage
Current

0.00493 0.010032 0.0236 0.00359 0.034

Table 5: Performance comparison among the different paradigms

Figures 9-16 illustrate the performance (RMSE and correlation coefficient) of GEP
for leakage current and junction temperature approximation. The best temperature
approximation (lowest RMSE) and correlation coefficient was obtained using a
chromosome size of 75 (Figures 9 and 10) and using a gene size of 5 (Figures 11 and
12). The best leakage current approximation (lowest RMSE) and correlation
coefficient was obtained using a chromosome size of 75 (Figures 13 and 14) and
using a gene size of 5 (Figures 15 and 16).

Figure 4: LGP evolved models for temperature

425Abraham A., Grosan C.: Automatic Programming Methodologies ...

Figure 5: LGP program size growth for the temperature model

Figure 6: LGP evolved models for leakage current

Figure 7: LGP program size growth for leakage current

426 Abraham A., Grosan C.: Automatic Programming Methodologies ...

Figure 8: MEP training for the two models

Figure 9: GEP temperature approximation error for different chromosome sizes

Figure 10: GEP correlation coefficient for temperature approximation for different
chromosome sizes

427Abraham A., Grosan C.: Automatic Programming Methodologies ...

Figure 11: GEP temperature approximation error for different gene sizes

Figure 12: GEP temperature approximation correlation coefficient for different gene
sizes

Figure 13: GEP leakage current approximation error for different chromosome sizes

428 Abraham A., Grosan C.: Automatic Programming Methodologies ...

Figure 14: GEP correlation coefficient for leakage current approximation for
different chromosome sizes

Figure 15: GEP leakage current approximation error for different gene sizes

Figure 16: GEP leakage current approximation correlation coefficient for different
gene sizes

429Abraham A., Grosan C.: Automatic Programming Methodologies ...

8 Conclusions

In this paper, we attempted to predict the failures of electronic circuits and systems
using three variants of genetic programming and the performance were compared
using artificial neural networks and decision trees. The proposed GP models seems to
work very well with LGP giving the optimal performance for modelling leakage
current and junction temperature. Compared to neural network and decision trees, an
important advantage of the GP models is its simplicity in implementing directly in the
hardware itself. As depicted in Section 7 (MEP evolved functions), the massive neural
network could be replaced by simple functions using hardware or light software.

The developed models should be also reliable during worst conditions. Our future
research will be targeted in evaluating the developed GP models for robustness and
handling of noisy and approximate data that are typical in circuits. The problem
modeling using stressor– susceptibility interaction method can be widely applied to a
wide range of electronic circuits or systems. However, it requires intense knowledge
on the circuit behavior to model the various dependent input parameters to predict the
results accurately.

Acknowledgements

This research was supported by the International Joint Research Grant of the IITA
(Institute of Information Technology Assessment) foreign professor invitation
program of the MIC (Ministry of Information and Communication), Korea.

Authors would like to thank the anonymous referees for the technical suggestions
and remarks which helped to improve the contents and the quality of presentation.

References

[Abraham and Grosan, 2005] Abraham, A, and Groşan, C., Genetic Programming Approach for
Fault Modeling of Electronic Hardware, 2005 IEEE Congress on Evolutionary
Computation (CEC'05), Edinburgh, UK, IEEE Press, ISBN 0-7803-9364-3, pp. 1563-
1569, 2005.

[Abraham, 2005] Abraham, A., Artificial Neural Networks, Handbook for Measurement
Systems Design, Peter Sydenham and Richard Thorn (Eds.), John Wiley and Sons Ltd.,
London, ISBN 0-470-02143-8, pp. 901-908, 2005.

 [Abraham, 2000] Abraham A., A Soft Computing Approach for Fault Prediction of Electronic
Systems, In Proceedings of The Second International Conference on Computers in
Industry, Published by The Bahrain Society of Engineers, Majeed A Karim et al (Eds.),
pp. 83-91, 2000.

[Abraham and Nath, 1999] Abraham A. and Nath B., Failure Prediction of Critical Electronic
Systems in Power Plants Using Artificial Neural Networks, First International Power and
Energy Conference, INTPEC99, Australia, November 1999.

[Chan, 1994] Chan A.H., A formulation of environmental stress testing and screening,
Proceedings of the Annual Reliability and Maintainability Symposium (IEEE Reliability
Society), pp 99-104, January 1994.

[Arsenault and Roberts, 1980] Arsenault J.E. and Roberts J.A., Reliability and maintainability
of electronic systems, Computer Science press, Maryland, 1980.

430 Abraham A., Grosan C.: Automatic Programming Methodologies ...

[Banzhaf et al., 1998] Banzhaf. W., Nordin. P., Keller. E. R., Francone F. D., Genetic
Programming: An Introduction on The Automatic Evolution of Computer Programs and
its Applications, Morgan Kaufmann Publishers, Inc., 1998.

[Brombacher, 1995] Brombacher A.C, Reliability by Design, Wiley, 1995.
[Jenson, 1995] Jenson F., Electronic Component Reliability, Wiley, 1995.
[Klion, 1992] Klion J., Practical Electronic Reliability Engineering, VNR Edition, 1992.
[Fuqua, 1987] Fuqua N.B., Reliability Engineering for Electronic Design, Marcel Dekker,

1987.
[Oltean and Grosan, 2003] Oltean M. and Grosan C., Evolving Evolutionary Algorithms using

Multi Expression Programming. Proceedings of the 7th European Conference on Artificial
Life, Dortmund, Germany, pp. 651-658, 2003.

[Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, R., and Stone, C. J, Classification and
Regression Trees, Chapman and Hall, New York, 1984.

[Ferreira, 2001] Ferreira C., Gene Expression Programming: A new adaptive algorithm for
solving problems — Complex Systems, Vol. 13, No. 2, pp. 87–129, 2001.

[Yamada and Komada, 2004] Yamada Y. , and Komoda H., An example of fault site
localization on a 0.18 μm CMOS device with combination of front and backside
techniques, Microelectronics Reliability, Volume 44, No. 5 , pp. 771-778, 2004.

[Adel Mohsena and El-Yazeedb, 2004] A.K. Adel Mohsena and M.F. Abu El-Yazeedb,
Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model,
AEU - International Journal of Electronics and Communications, Volume 58, No. 3 , pp.
212-217, 2004.

[El-Gamal and Abdulghafour, 2003]M. A. El-Gamal and M. Abdulghafour, Fault isolation in
analog circuits using a fuzzy inference system, Computers & Electrical Engineering,
Volume 29, No. 1 , pp. 213-229, 2003.

[Blyzniuk et al., 2001] M. Blyzniuk, I. Kazymyra, W. Kuzmicz, W. A. Pleskacz, J. Raik and R.
Ubar, Probabilistic analysis of CMOS physical defects in VLSI circuits for test coverage
improvement, Microelectronics Reliability, Volume 41, No. 12, pp. 2023-2040, 2001.

[Dai and Xu, 1999] Yisong Dai and Jiansheng Xu, Analog circuit fault diagnosis based on
noise measurement, Microelectronics and Reliability, Volume 39, No. 8, pp. 1293-1298,
1999.

[Schienle et al., 1999] M. Schienle, Th. Zanon and D. Schmitt-Landsiedel, Improved SRAM
failure diagnosis for process monitoring via current signature analysis, Microelectronics
Reliability, Volume 39, Nos. 6-7, pp. 1009-1014, 1999.

[Catelani and Giraldi, 1999] M. Catelani and S. Giraldi, A measurement system for fault
detection and fault isolation of analog circuits, Measurement, Volume 25, No. 2, pp. 115-
122, 1999.

[Toczek et al., 1998] W. Toczek, R. Zielonko and A. Adamczyk, A method for fault diagnosis
of nonlinear electronic circuits, Measurement, Volume 24, No. 2, pp. 79-86, 1998.

431Abraham A., Grosan C.: Automatic Programming Methodologies ...

