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Abstract: This paper surveys some of the work that was inspired by Wagner’s general
technique to prove completeness in the levels of the boolean hierarchy over NP and
some related results. In particular, we show that it is DP-complete to decide whether
or not a given graph can be colored with exactly four colors, where DP is the second
level of the boolean hierarchy. This result solves a question raised by Wagner in 1987,
and its proof uses a clever reduction due to Guruswami and Khanna. Another result
covered is due to Cai and Meyer: The graph minimal uncolorability problem is also
DP-complete. Finally, similar results on various versions of the exact domatic number
problem are discussed.
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1 Introduction, Historical Notes, and Definitions

This paper surveys completeness results in the levels of the boolean hierarchy
over NP, with a special focus on Wagner’s work [Wag87]. His general technique
for proving completeness in the boolean hierarchy levels—as well as in other
classes such as PWP, the class of problems solvable via parallel access to NP—
inspired much of the recent results in this area. Quoting Papadimitriou, the
boolean hierarchy is “somewhat sparse in natural complete sets” (see p. 434
of [Pap94]). This statement certainly is true—in particular, if the number of
natural problems complete in higher boolean hierarchy levels is set off against
the number of natural NP-complete problems. However, even the higher levels
of the boolean hierarchy do contain very natural, beautiful complete problems,
and this survey’s goal is to present some of them. Of course, as there are only
few of them known, we should seek to find more. This line of research has been
intensely pursued since the late 1980s, and much work has been done in a number
of recent papers. The purpose of the present survey is to give an overview of this
progress of results.

But first, let us look back a bit further and start with the beginning. In the
1970s, Meyer and Stockmeyer [MS72] studied the problem Minimal, which for
a given boolean formula ¢ asks whether there is no shorter formula equivalent
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to . They noted that this problem can be accepted by a coNP machine access-
ing an NP oracle, thus creating the second level of the polynomial hierarchy,
which consists of the classes X% = NPNY and IT? = coNP™Y. Motivated by this
observation, they introduced the polynomial hierarchy in order to capture the
complexity of problems that appear to be beyond NP and coNP. Figure 1 shows
the inclusion structure of the polynomial hierarchy.

Definition 1 (Polynomial Hierarchy). The polynomial hierarchy is induc-
tively defined by:

A= U = =P

)

. P =P
— fori>0, AP, =P> XP  =NP> and I’ = coX?, , and

- PH= U5 .

Variants of the problem Minimal have been studied as well. Garey and
Johnson [GJ79] defined the minimum equivalent expression problem (MEE, for
short): Given a boolean formula ¢ and a nonnegative integer k, does there ex-
ist a boolean formula ¢ with at most k literals such that v is equivalent to ?
Stockmeyer [Sto77] considered the restriction of MEE to boolean formulas in dis-
junctive normal form (DNF), which we here denote by MEE-DNF. It is not hard to
see that both MEE and MEE-DNF are contained in X%, but the question of whether
MEE-DNF is X%-complete was open for more than two decades, and for MEE this
question is still open today. The best known lower bounds (i.e., hardness results)
for the three problems just defined are stated in Section 2.

In this paper, all hardness and completeness results are with respect to the
polynomial-time many-one reducibility, denoted by <P : For sets A and B, we
write A <P B if and only if there is a polynomial-time computable function f
such that for each x € X*, x € A if and only if f(z) € B. A set B is said to be
C-hard for a complexity class C if and only if A <P B for each A € C. A set B is
said to be C-complete if and only if B is C-hard and B € C.

Papadimitriou and Zachos [PZ83] introduced pNPIOUo8)] the class of prob-
lems solvable by O(logn) sequential Turing queries to NP. Kobler, Schoning,
and Wagner [KSW87] and, independently, Hemaspaandra [Hem87] proved that
pNPIO0oe)] oquals PWP, the class of problems solvable by parallel (a.k.a. truth-
table) access to NP. Wagner [Wag90| provided about half a dozen other char-
acterizations of this class, and he introduced the notation ©% for it. By defi-
nition, NP C ©F C AL It is known that if NP contains some problem that
is hard for ©%, then the polynomial hierarchy collapses to NP, see Meyer and
Stockmeyer [MS72, Sto77]. The class ©% is also closely related to the question of
whether NP has sparse Turing-hard sets [Kad89], and to various other topics; see,
e.g., [LS95, Kre88, HW91]. Wagner also introduced the classes 67 = p¥i-1[0Co)]
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Figure 1: The polynomial hierarchy

for each i > 1, as a straightforward generalization of ©% to higher levels of the

polynomial hierarchy.
In the 1980s, Papadimitriou and Yannakakis [PY84] noted that certain NP-

hard and coNP-hard problems seem to be not complete for NP or coNP:

— Exact problems such as Exact-4-Colorability: Given a graph, is it true that
it can be legally colored with ezactly four colors? (See Definition 3 below.)

— Critical Problems such as Minimal-3-Uncolorability: Given a graph, is it
true that it is not 3-colorable, yet deleting any of its vertices makes it 3-
colorable? (See Definition 10 in Section 4.)
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— Unique solution problems such as Unique-SAT: Given a boolean formula, is
it true that it has exactly one satisfying assignment?

Motivated by this observation, they introduced the class of differences of NP
sets:
DP ={A - B| A,B € NP}.

All the above problems are in DP.

The complexity of colorability problems has been studied intensely, see,
e.g., [AH77a, AH77b, Sto73, GJS76, Wag87, KVI91, Rot00, GRW01la, GRW01b,
Rot03].

Definition 2 (Colorability Problem). For any graph G with vertex set V(G)
and edge set E(G), a k-coloring of G is a partition V(G) = V1UVaU- - UV} of the
vertex set V(G) into k disjoint sets. A k-coloring is called legal if for 1 <14 < k,
every set V; is an independent set, i.e., there is no edge in E(G) between any pair
of vertices in V;. Define x(G) to be the chromatic number of G, i.e., the smallest
number of colors needed to legally color G. For each k, we further define

k-Colorability = {G| G is a graph with x(G) < k}.

The problem 2-Colorability is in P, yet 3-Colorability is NP-complete,
see Stockmeyer [Sto73]. We now define the exact versions of colorability prob-
lems.

Definition 3 (Exact Colorability Problems). Let Mj be a set that con-
sists of k integers, and let ¢ be a positive integer. Define

Exact-Mj-Colorability = {G | G is a graph with x(G) € My},
Exact-t-Colorability = {G| G is a graph with x(G) = t}.

Merging, unifying, and expanding the results that originally were obtained
independently by Cai and Hemaspaandra [CH86] and by Gundermann, Wagner,
and Wechsung [Wec85, GW8T], Cai et al. [CGH"88, CGH"89] generalized DP
by introducing the boolean hierarchy over NP.! To define this hierarchy, we use
the symbols A and V, respectively, to denote the complex intersection and the
complex union of set classes:

CAD={ANB|Ae€Cand B € D};
CVD={AUB|A€cCand B € D}.

! As a historical note, Cai and Hemaspaandra [CH86] introduced the boolean hierarchy
as “hardware over NP.” Gundermann, Wagner, and Wechsung independently studied
this hierarchy, motivated mainly by “counting classes with finite acceptance types,”
see [Wec85, GW87] (and also [GNWY0] for a follow-up paper along these lines of
research). Out of these early papers grew a close collaboration between the two
groups of researchers and the joint work by Cai et al. [CGH'88, CGH"89], which
provides the perhaps most comprehensive list of results on the boolean hierarchy.
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Definition 4 (Boolean Hierarchy over NP).  The boolean hierarchy over
NP is inductively defined by:
BHy(NP) =P, BH;(NP)=NP, BHy(NP)= NP AcoNP = DP,
BH(NP) = BH;_2(NP) V BHy(NP) for k& > 3, and

BH(NP) = | ) BH,(NP).
E>1

Figure 2 shows the inclusion structure of the boolean hierarchy. Note further
that BH(NP) C ©5 C A} C ¥F C PH. Kadin [Kad88] was the first to show
that a collapse of the boolean hierarchy implies a collapse of the polynomial
hierarchy. Both figures—Figure 1 for the polynomial hierarchy and Figure 2 for
the boolean hierarchy—are extended versions of figures from [Rot05].

@g _ PNP [O(log)]

BH(NP) = pN*lO®)]

coBH;(NP) BH;(NP)

Bl

coDP = coBH,(NP) BH,(NP) = DP

Bl

coNP = coBH; (NP) BH; (NP) = NP

o

P = BH,(NP)

Figure 2: The boolean hierarchy over NP

Theorem 5 (Kadin [Kad88]). If BH,(NP) = coBH(NP) for some k > 1,
then the polynomial hierarchy collapses to its third level: PH = XY N IT%.

The collapse consequence of Theorem 5 has been strenghtened later on; see
the survey by Hemaspaandra, Hemaspaandra, and Hempel [HHH9S].
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2 Some Results Obtained by Wagner’s Technique

Wagner [Wag87] established conditions sufficient to prove hardness for ©F and
for the levels of the boolean hierarchy over NP. We first state his sufficient con-
dition for proving ©5-hardness.

Lemma6 (Wagner [Wag87]).  Let A be some NP-complete set, and let B
be any set. If there exists a polynomial-time computable function g such that for
all p1,..., 0k in X* with (Vj:1<j <k)[pj1 € A = ¢; € A] it holds that

[{i| i € A}|| is odd <~ g(p1,...,vk) € B, (2.1)
then B is ©5-hard.

Using Lemma 6, Wagner proved dozens of problems ©%-complete, including
the following variants of the colorability problem:

Color.aa = {G| G is a graph such that x(G) is odd},
Colorequ = {(G, H) | G and H are graphs with x(G) = x(H)},
Colorieq = {(G, H) | G and H are graphs with x(G) < x(H)}.

Wagner’s technique has been applied to prove further natural problems,
which arise in a variety of contexts, ©F-hard or even ©}-complete.? For exam-
ple, Lemma 6 was useful in determining the complexity of the winner problem
for certain voting systems, including Carroll elections [HHR97a], Young elec-
tions [RSV03], and Kemeny elections [HSV05]. For more background on compu-
tational politics, see Hemaspaandra and Hemaspaandra’s excellent survey [HHO00]
and, e.g., [BTT89a, BTT89b, BTT92, CS02a, CS02b, CLS03, HHR05].

Wagner’s technique was also useful for showing that recognizing those graphs
for which certain efficient approximation heuristics for the independent set and
the vertex cover problem do well is ©5-complete [HR98, HRS06]; see also the
survey [HHR97b]. Moreover, Lemma 6 is the key lemma for raising the trivial
hardness results for some of the three minimum equivalent expression problems
defined in the introduction. In particular, Hemaspaandra and Wechsung [HW97,
HWO02] proved that MEE and MEE-DNF both are ©%-hard, and they also showed
that Minimal is coNP-hard. Using a different technique, Umans [Uma01] proved
that MEE-DNF is even X5-complete. The precise complexity of MEE is still unknown
today.

In what follows, we focus on completeness for exact colorability, minimal
uncolorability, and exact domatic number problems in the even levels of the
boolean hierarchy. The following lemma, which is also due to Wagner [Wag87],
is the key lemma to establish most of these results.

2 For other approaches to O%-completeness, see, e.g., Krentel [Kre88], Eiter and Gott-
lob [EG9IT7], and Spakowski and Vogel [SV00].
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Lemma 7 (Wagner [Wag87]).  Let A be some NP-complete set, let B be any
set, and let k > 1 be fixed. If there exists a polynomial-time computable function g
such that for all o1, ..., Qo in X% with (V5 : 1 < j <2k)[pj41 € A = p; € 4]
it holds that

[{i | pi € A}|| is odd <= g(¢1,...,p2) € B, (2.2)

then B is BHay (NP)-hard.

3 Exact Colorability Problems

In this section, we turn to the exact colorability problems defined in Definition 3.
Using Lemma 7, Wagner [Wag87] proved the following result.

Theorem 8 (Wagner [Wag87]).  For M; = {6k + 1,6k + 3,...,8k — 1},
the problem Exact-My-Colorability is BHay, (NP)-complete. In particular, for
k =1, it is DP-complete to determine whether or not x(G) = 7.

Wagner [Wag87] raised the following questions: How small can the numbers
in a k-element set M} be chosen so as to ensure that Exact-Mj-Colorability
still is BHax (NP)-complete? In particular, for & = 1, is there some threshold
t € {4,5,6,7} such that Exact-t-Colorability jumps from NP to DP-complete?
For example, is it DP-complete to determine whether or not x(G) = 47 Or is
the complexity of Exact-t-Colorability, 4 < t < 6, “intermediate” between
NP and DP-complete?

These questions have been answered recently, see Rothe [Rot03]. Note that
Exact-3-Colorability is in NP and thus cannot be DP-complete, unless the
boolean hierarchy over NP (and, by Theorem 5, the polynomial hierarchy as
well) collapses.

Theorem 9 (Rothe [Rot03]). For My = {3k+1,3k+3,...,5k—1}, the prob-
lem Exact-Mj-Colorability is BHaok (NP)-complete. In particular, for k =1,
it is DP-complete to determine whether or not x(G) = 4.

A proof sketch for Theorem 9 is presented in the remainder of this section.
Figures 4 through 9 have been taken (in slightly modified form) from [GKO00] to
illustrate the proof sketch. Crucially, this proof uses:

— Wagner’s tool for proving BHayy (NP)-hardness stated as Lemma 7 above,
— the standard reduction f from 3-SAT to 3-Colorability satisfying

¢ € 3-5AT = X(f(¢)) =3
¢ & 3-SAT = x(f(p)) =4,
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— and Guruswami and Khanna’s reduction ¢ from 3-SAT to 3-Colorability
satisfying

¢ € 3-SAT = x(g(v)) =
¢ & 3-SAT = x(g(y)) =

Among the above three items, the Guruswami—-Khanna reduction is the tech-
nically most challenging one. Originally, Guruswami and Khanna’s seminal re-
sult is not motivated by the issue of proving the hardness of exact colorability.
Rather, it was motivated by issues related to the hardness of approximating
the chromatic number of 3-colorable graphs. Intuitively, their result says that it
is NP-hard to 4-color a 3-colorable graph. This result had been obtained ear-
lier on by Khanna, Linial, and Safra [KLS00] using the PCP theorem, which is
due to Arora, Lund, Motwani, Sudan, and Szegedy [ALM™98]. Guruswami and
Khanna [GKO00] gave a novel proof of this result, which does not rely on the
PCP theorem. Their direct transformation in fact consists of the following two
subsequent reductions:

3-SAT <P IS <P 3-Colorability,

where IS is the independent set problem: Given a graph GG and a positive inte-
ger k, does GG have an independent set of size at least k7

Figure 3: Graph G in the reduction 3-SAT <P IS

—m

Figure 3 shows the standard reduction 3-SAT <P IS, for the specific formula

—1m
olx,y,z) =(@VyVz)A(-zV-yVz)A@VyV-z)A@V-yVz).

Clauses in the formula correspond to triangles in the graph constructed, and
corners of two distinct triangles are connected by an edge if and only if they
correspond to some literal and its negation. Suppose the given formula has m
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i3

)

Figure 4: Tree-like structure .S; in the Guruswami-Khanna reduction

Figure 5: Basic template in the Guruswami—-Khanna reduction

clauses, and denote the corresponding m triangles in G by T3,75,...,Ty,. To
each T; in G, there corresponds a tree-like structure .S; as shown in Figure 4:

The three “leaves” t; 1, t; 2, and ¢; 3 in S; correspond to the three corners of
the triangle T;. Every “vertex” of S; has the form of the basic template, which
is a 3 x 3 grid such that the vertices in each row and column induce a 3-clique
as shown in Figure 5: The “ground vertices” in the first column of any such
basic template in fact are shared among all basic templates in each of the tree-
like structures. Since these ground vertices form a 3-clique, every legal coloring
assigns three distinct colors to them, say 1, 2, and 3.

Figure 6 shows the connection pattern between the “vertices” r;, ¢; 1, and s;
of S; and two additional triangles. An analogous pattern applies to s;, t; 2,
and ¢; 3. Every vertex of the templates and the triangles is labeled by a triple
of colors, and the vertices are connected according to the following simple rule:
Two vertices are adjacent if and only if their labels differ in each coordinate.

A “vertex” in some S; is said to be selected (with respect to some coloring)
if and only if at least one of the three rows in its basic template receives colors
that form an even permutation of {1,2,3}. That is, a
only if

4

‘vertex” is selected if and

— the first row has colors 1,2, 3 from left to right, or

— the second row has colors 2, 3,1 from left to right, or
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(111) (223) (332)
(222) (331) (113) | T4

(333) (112) (221)

(123) (132)
(312) (231)  (213) (321)
(111) (233) (322) (111) (323) (232)
(222) (311) (133) | Li1 (222) (131) (313) | Si
(333) (122) (211) (333) (212) (121)

Figure 6: Connection pattern between the templates of a tree-like structure

— the third row has colors 3, 1,2 from left to right.

Note that for each legal 4-coloring of S;, every “vertex” is either selected or
not selected. Adding three more edges to each “vertex” r;, the selection of every
3 x 3 root grid is enforced, as is shown in Figure 7. From the way the grids
are connected, it follows that for any legal 4-coloring, selection of an internal
“vertex” is propagated to at least one of its children. Therefore at least one of
the “leaves” t; 1, t; 2, and t; 3 must be selected as well. Additionally, it can be
shown that for each “leaf” ¢; ;, 1 < j < 3, in a tree-structure S;, there exists a
legal 3-coloring of the vertices of S;, where t; ; is the only “leaf” selected; see
Properties (a) and (b) stated below.

Figure 7: The root grid altered such that selection is enforced

The intuition of how to connect S; and S;, for distinct ¢ and j, is as fol-
lows. For each pair of “vertices,” t; and t;,, that are adjacent in graph G,
appropriate gadgets are inserted to prevent that both these “leaves” are selected
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simultaneously, for otherwise G would have an independent set of size m if the
graph constructed were 4-colorable.

Figure 8: Gadget connecting two “leaves” of the same row kind

To this end, two kinds of gadgets are used, the “same row” gadget and the
“different rows” gadget. Figure 8 shows the same row gadget, which prevents
that t; , and t;, are simultaneously selected because of the same row. Figure 9
shows the different rows gadget, which prevents that ¢; ; and ¢;, are selected
simultaneously because of different rows.

Figure 9: Gadget connecting two “leaves” of the different rows kind

This completes the reduction g that transforms the formula ¢ via graph G to
graph H = g(¢). We omit the detailed argument of why this reduction works to
prove (3.5) and (3.6), referring to Guruswami and Khanna [GK00] instead. We
merely mention that it can be shown that:

(a) For each i with 1 < i < m, there exists a legal 3-coloring of the vertices in
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S, selecting exactly one of the three “leaves,” t; 1, t; 2, and ¢; 3.
(b) Every legal 4-coloring of S; selects at least one of ¢; 1, ¢; 2, or t; 3.

The implications (3.5) and (3.6) follow from (a) and (b).

Note that Guruswami and Khanna claimed in their conference paper [GKO00]
that ¢ & 3-SAT implies 5 < x(H) < 6. However, as has been observed in [Rot03],
the Guruswami-Khanna reduction even yields the stronger implication (3.6),
which is needed in order to apply Wagner’s Lemma 7.

We are now ready to apply Lemma 7 with £ = 1, and the sets A = 3-SAT
and B = Exact-4-Colorability. Given two formulas ¢; and ¢, satisfying

2 € 3-SAT = (o1 € 3-SAT, (3.7)

define the graphs H; = g(¢1) and Ha = f(p2), where g is the Guruswami-
Khanna reduction, which satisfies (3.5) and (3.6), and f is the standard reduc-
tion from 3-SAT to 3-Colorability, which satisfies (3.3) and (3.4).

Let D be the disjoint union of H; and Hy. Thus,

X(D) = max{x(H1), x(Hz)}.

Consider the following three cases:

— If p1 € 3-SAT and @9 € 3-SAT, then x(p1) = 3 and x(p2) = 3, so x(D) = 3.
— If o1 € 3-SAT and @2 & 3-SAT, then x(p1) = 3 and x(p2) =4, so x(D) = 4.
— If o1 & 3-SAT and @2 & 3-SAT, then x(p1) =5 and x(p2) =4, so x(D) = 5.

By (3.7), the case distinction is complete. It follows that (2.2) is satisfied. By
Lemma 7, Exact-4-Colorability is DP-hard. Since Exact-4-Colorabilityisin
DP, it is DP-complete. Completeness of Exact-My-Colorability in BHax (NP)
for the k-element set My, = {3k + 1,3k + 3,...,5k — 1} is proven analogously.

4 The Graph Minimal Uncolorability Problem

This section presents a well-known and typical example of a critical graph prob-
lem. A graph G is said to be critical if and only if by deleting any one of the
vertices of G (respectively, by adding one vertex to G), the graph gains a certain
property that it did not have before the removal (respectively, before the inser-
tion) of this vertex. Similarly, one can define critical graph problems with respect
to adding or removing edges in such a way that a specific property of the graph is
triggered. Critical problems® are good candidates for DP-completeness; usually,
these problems are easily shown to be contained in DP. Our first example of a
critical problem is given below.

3 The class of critical problems is not restricted to graph problems but can be defined

in a broader sense. Here, however, we focus on some particularly interesting critical
graph problem.
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Definition 10 (Graph Minimal Uncolorability). Define the critical graph
problem Minimal-k-Uncolorability as follows: Given a graph G, is it true that
G ¢ k-Colorability, but for every vertex v € V(G) it holds that G — {v} is in
k-Colorability? Here, G — {v} denotes the induced subgraph that is obtained
from G by deleting v from V(G) and all incident edges from E(G).

We are interested in the particular problem Minimal-3-Uncolorability, and
we use M-3-UC as a shorthand for this problem. The following theorem is due to
Cai and Meyer [CM87]. To prove DP-hardness of M-3-UC, they give a reduction
from the problem Minimal-3-UNSAT, which was shown to be DP-complete by
Papadimitriou and Wolfe [PW88]. The Minimal-3-UNSAT problem asks, given a
boolean formula ¢ whose clauses contain exactly three literals each, is it true
that ¢ is not satisfiable, but removing any one of its clauses makes ¢ satisfiable?

Theorem 11 (Cai and Meyer [CM8T7]). The problem M-3-UC is DP-complete.

To see that M-3-UC is in DP, consider the two sets

A ={G|G is a graph with x(G — {v}) < 3 for all vertices v € V(G)} and
B ={G| G is a graph with x(G) > 3}.

Note that A is in NP, and B (which is the complement of an NP set) is in coNP,
It is M-3-UC = A N B. The remainder of this section sketches Cai and Meyer’s
reduction from Minimal-3-UNSAT to M-3-UC, which preserves the critical property
of the problem instance and thus proves DP-hardness of M-3-UC, see [CMS8T7].
Figures 10, 11, and 12 are adapted from [CM87] with a few minor modifications.

Let the boolean formula ¢ = (X, C) with variable set X = {z1,22,..., 2}
and clause set C = {c1,¢2,...,cn} be given. Define the reduction f that maps
@ to a graph G as follows. First, create two distinct vertices, v. and vs, and
an edge connecting them. For each variable z;, add the two vertices z; and —x;
representing its literals to GG, and insert edges such that every pair of literal
vertices corresponding to the same variable forms a triangle with the vertex v..

Suppose there exists a legal 3-coloring of G, and let {T,F,C} be the color
set. Without loss of generality, let v, be colored with C, and let vs; be colored
with T. Then, only the colors T and F are available for any pair of literal vertices
x; and —x;, see Figure 10. Thus, a legal 3-coloring of G may be regarded as a
truth assignment of the variables of .

Finally, components for the clauses of ¢ are inserted. If ¢; = (€1 V €2 V £;3)
is any clause of C, create a triangle with vertices t;1, t;2, and t;3. Additionally,
for each literal ;5 with 1 < k < 3 in ¢;, there are two vertices, a;; and bji, such
that a; is adjacent to the corresponding literal vertex £;;, and bj;, is adjacent
to the triangle vertex t;;. Figure 11 shows some legally colored component for
the specific clause ¢; = (-1 V 22 V —x3).
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clause components

Figure 11: A legal 3-coloring of the clause component for ¢; = (—x1 V 22 V —a3)

Note that the triangle with the vertices t;1, t;2, and ¢;3 for some clause c; is
legally 3-colorable if and only if not all of the so-called “fanout” vertices b;1, b2,
and b;3 are assigned color F. Coloring one of the fanout vertices of some clause
c; with C is possible only if the literal vertices are colored according to some
truth assignment that satisfies the clause c;.

This completes the reduction f mapping the boolean formula ¢ to the graph
G = f(¢). Figure 12 shows the graph G = f(p) resulting from the specific
formula

o(z1, T2, 23) = (1 Va2 Va3) A (mxe V 23 V y).

It can be shown that ¢ is satisfiable if and only if G = f(¢) can be legally 3-
colored. The proof is similar to the one proving NP-hardness for 3-Colorability
via the standard reduction from 3-SAT; see, e.g., Stockmeyer, Garey, and John-
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x1 a11

Figure 12: Graph G in the reduction Minimal-3-UNSAT <P M-3-UC

son [Sto73, GJS76, GJ79]. It remains to prove that
@ € Minimal-3-UNSAT <= GG € Minimal-3-Uncolorability.

For the direction from left to right, it is known from the claim above that
the reduction f will transform any unsatisfiable formula ¢ into a graph G that
does not have a legal 3-coloring. Analyzing the various possibilities of removing
a vertex from G (for example, some literal vertex x; or —x;), a legal 3-coloring
for the graph G — {v} has to be determined.

For the direction from right to left, note that G ¢ 3-Colorability implies
¢ ¢ 3-SAT. Removing a clause ¢; from ¢, the satisfiability of the resulting formula
can be deduced from the 3-colorable graph G —{t;1 }. For the details of the proofs
of the two claims above, we refer to the original paper by Cai and Meyer [CM87].
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The DP-completeness of Minimal-k-Uncolorability for k = 3 can easily be
extended to all values of £ > 3. Notice that Minimal-2-Uncolorability is in P,
and thus cannot be DP-complete unless the boolean hierarchy collapses. Cai
and Meyer also showed DP-completeness of Minimal-3-Uncolorability when
the input is restricted to planar graphs, or to graphs with a maximum degree of
five.

5 Exact Domatic Number Problems

The domatic number problem is the problem of partitioning the vertex set
V(@) into a maximum number of disjoint dominating sets. This number, de-
noted by §(G), is called the domatic number of G. The domatic number problem
arises in various real-world scenarios. For example, it is related to the tasks of
distributing resources in a computer network or of locating facilities in a com-
munication network; see, e.g., [FHK00, RR04a] for details. The domatic number
problem and the closely related problem of finding a minimum dominating set
in a given graph have been thoroughly studied. To name just a few papers, see,
e.g., [CH77, Far84, Bon85, KS94, HT98, FHK00, RR04a, RR05, RRSY06].

Definition 12 (Domatic Number Problem). For any graph G, a domi-
nating set of G is a subset D C V(G) such that each vertex u € V(G) — D is
adjacent to some vertex v € D. Let §(G) denote the domatic number of G, i.e.,
the maximum number of disjoint dominating sets. For each k, define the problem

k-DNP = {G | G is a graph with §(G) > k}.

It is known that 3-DNP is NP-complete, whereas 2-DNP is in P; see Garey and
Johnson [GJ79].
We now define the exact versions of domatic number problems.

Definition 13 (Exact Domatic Number Problems). Let M) be a set that
consists of k integers, and let ¢ be a positive integer. Define

Exact-M-DNP = {G | G is a graph with §(G) € My},
Exact-t-DNP = {G | G is a graph with §(G) = t}.

5.1 A General Framework for Dominating Set Problems

In order to investigate exact domatic number problems, we adopt Heggernes and
Telle’s general, uniform approach to define graph problems by partitioning the
vertex set of a graph into generalized dominating sets [HT98]. These are subsets
of the vertex set of a given graph, parameterized by two sets of nonnegative
integers, o and p, which restrict the number of neighbors for each vertex in the
partition. Let N = {0,1,2,...} denote the set of nonnegative integers, and let
Nt ={1,2,3,...} denote the set of positive integers.
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Definition 14 (Heggernes and Telle [HT98]). Let G be a given graph, let
o0 C Nand p C N be given sets, and let k € Nt. Let N(v) = {w € V(G) [{v,w} €
E(G)} be the neighborhood of any vertex v in G.

1. A subset U C V(Q) of the vertices of G is said to be a (o, p)-set if and only
if

— for each w € U, ||[N(u) NU|| € o, and
— for each u € U, ||[N(u) N U|| € p.
2. A (k, o, p)-partition of G is a partition of V(G) into k pairwise disjoint sub-
sets V1, Va, ..., Vi such that V; is a (o, p)-set for each i, 1 <1 < k.

3. Define the problem

(k,0,p)-Partition = {G| G is a graph that has a (k, o, p)-partition}.

Note that (k, {0}, N)-Partition is nothing other than k-Colorability, and
(k,N,N*)-Partition is nothing other than k-DNP. This observation is illustrated
by the following example. Note further that (k, {0}, N)-Partition is a minimum
problem, whereas (k,N,NT)-Partition is a maximum problem.

3 3

4 3 3 3

Figure 13: (4,{0},N)-Partition (left) and (3,N,N*)-Partition (right)

Ezample 1 (Generalized Dominating Sets). Figure 13 shows two copies of some
graph G with five vertices. Vertices labeled by the same number belong to the
same (o, p)-set, where either 0 = {0} and p = N (i.e., k-Colorability), or
o =Nand p=NT (i.e., k-DNP).

According to the partition into (o, p)-sets shown on the left-hand side of
Figure 13, G is in (4,{0},N)-Partition. That is, G is a 4-colorable graph and
the partition indicated corresponds to the four color classes of G.
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In contrast, the partition into (o, p)-sets on the right-hand side of Figure 13
shows that G is in (3,N,N*)-Partition. That is, G has a domatic number of
at least 3.

5.2 Summary of Results and Proof Ideas

Heggernes and Telle [HT98] obtained the NP-completeness results for the prob-
lems (k, o, p)-Partition that are shown in Table 1. Here is the key: Table 1 gives
the smallest value of k for which (k, o, p)-Partition is NP-complete, where

— “00” means that this problem is efficiently solvable for all values of k;
— a superscript “*” indicates a mazimum problem: For all k > 1,
(k+1,0,p)-Partition C (k, 0, p)-Partition;
and

— a superscript “~” indicates a minimum problem: For all k > 1,

(k,o,p)-Partition C (k+ 1,0, p)-Partition.

TN N (0.0
o
N oo~ 3t 2 oo
Nt  Joo™ 2t 2 oo™
1y 2= 2 3 3°
(0,1} [2= 2 3 3
0 |3 3 4 4

Table 1: NP-completeness for the problems (k, o, p)-Partition

We now define the exact versions of generalized dominating set problems.

Definition 15. Define Exact-(k, 0, p)-Partition, the exact version of the prob-
lem (k, o, p)-Partition, to be either

— (k,o,p)-Partition N (k — 1,0, p)-Partitionif (k, o, p)-Partition is a min-
imum problem and k > 2, or

— (k,o,p)-Partitionn (k + 1,0, p)-Partitionif (k, o, p)-Partitionis a max-
imum problem and k > 1.
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p| N N* {0,1}

o
N 00 215 00
N+ 00 113 00
w25 32
0.1} | 2|5 - 37
oy | 34 - 47

Table 2: DP-completeness for the problems Exact-(k, o, p)-Partition

Note that all Exact-(k, o, p)-Partition problems are in DP. Note further
that Exact-(k, {0}, N)-Partition is nothing other than Exact-k-Colorability,
and Exact-(k,N,NT)-Partition is nothing other than Exact-k-DNP.

Table 2 gives the best values of “j | k7 for which it is known that the problem
Exact-(k, o, p)-Partition is “(NP-complete or coNP-complete) | DP-complete.”
Again, “o0” means that this problem is efficiently solvable for all values of k.
Here, a dash “—” indicates that this problem is neither a maximum nor a min-
imum problem and thus is not considered.

Except the DP-completeness of Exact-(k, {0}, N)-Partition, which is pre-
sented here—using different notation—as Theorem 9 in Section 3 (see [Rot03]),
all DP-completeness results in Table 2 are due to Riege and Rothe [RR04a]. We
state the results from Table 2 in Theorem 16 below and provide the proof ideas.
We do not attempt to give full, detailed proofs, though, referring to the original
source [RR04a] instead.

Theorem 16 (Riege and Rothe [Rot03]).

1. For each i > 5, Exact-i-DNP = Exact-(i, N,N*)-Partition is DP-complete.
In contrast, Exact-2-DNP = Exact-(2,N,NT)-Partition is coNP-complete.

2. For each i > 3, Exact-(i,NT,NT)-Partition is DP-complete. In contrast,
Exact-(1,N*,NT)-Partition is coNP-complete.

3. For each i > 5, Exact-(i,{0,1},N)-Partition is DP-complete. In contrast,
Exact-(2,{0,1},N)-Partition is NP-complete.

4. For each i > 5, Exact-(i,{1},N)-Partition is DP-complete. In contrast,
Exact-(2,{1},N)-Partition is NP-complete.

All proofs of the four claims of Theorem 16 essentially follow the same idea.
Starting from two instances of an NP-complete problem, two graphs G; and G4
corresponding to the underlying (k, o, p)-Partition problem are generated via a
polynomial-time many-one reduction. These graphs G; and G2 are then merged
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Figure 14: Gadget for proving Exact-5-DNP DP-complete

such that their parameters corresponding to the property being considered (for
example, their domatic numbers in the first case) are added up. The gadgets
used to accomplish this in the four different cases are presented in Figures 14,
15, and 16, which have been taken from [RR04a] in slightly modified form. All
details of the proofs sketched here can be found in [RR04a).

The proof of the first part of Theorem 16 uses the gadget shown in Fig-
ure 14 to provide a reduction from 3-Colorability that satisfies the hypoth-
esis (2.2) of Wagner’s Lemma 7. The construction in Figure 14 extends Ka-
plan and Shamir’s reduction from 3-Colorability to 3-DNP with useful proper-
ties [KS94], see also [RR04a].

The proof of the second part of Theorem 16 uses the gadget shown in Fig-
ure 15 to provide a reduction from NAE-3-SAT that satisfies the hypothesis (2.2)
of Wagner’s Lemma 7. The problem NAE-3-SAT (“not-all-equal satisfiability for
boolean formulas with three literals per clause”) asks whether a given boolean
formula ¢ can be satisfied such that in none of the clauses of ¢ all literals are
true. Schaefer proved that NAE-3-SAT is NP-complete [Sch78]. The construction
in Figure 15 is inspired by Heggernes and Telle’s reduction from NAE-3-SAT to
(2,NT,N*)-Partition, see [HT98] and also [RR04a].

The proof of the third part of Theorem 16 uses a reduction from 1-3-SAT that
satisfies the hypothesis (2.2) of Wagner’s Lemma 7. The problem 1-3-SAT (“one-
in-three satisfiability”) asks whether, given a boolean formula ¢, there exists a
subset T of the literals of ¢ with ||[TNC;|| = 1 for each clause C;. Schaefer proved
that 1-3-SAT is NP-complete, even if all literals in the given boolean formula are
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Figure 15: Gadget for proving Exact-(3, N7, NT)-Partition DP-complete

positive [Sch78].

Figure 16 shows this construction, which is based on Heggernes and Telle’s
reduction from 1-3-SAT to (2,{0,1},N)-Partition, see [HT98]. The symbol &
in Figure 16 denotes the join operation on graphs, i.e., for any two graphs G,
and Go, G1 @ G5 is the graph with vertex set

V(Gl (&) GQ) = V(G1) U V(Gg)
and edge set
E(Gl & Gg) = E(Gl) U E(Gg) U {{a,b} | a < V(Gl) and b € V(Gg)}

The proof of the fourth part of Theorem 16 is obtained by suitably modifying
the proof of the third part of Theorem 16.

Generalizing the results on exact generalized dominating set problems from
Theorem 16, Riege and Rothe [RR04a] obtained completeness results in the
higher levels of the boolean hierarchy. We state this generalization for the prob-
lem Exact-M}-DNP only, where M, = {4k+1,4k+3,...,6k—1}, in Theorem 17
below. Analogously, the completeness results for Exact-(k, o, p)-Partition given
in the second, third, and fourth part of Theorem 16 can be lifted to the higher
levels of the boolean hierarchy over NP.

Theorem 17 (Riege and Rothe [Rot03]). For M) = {4k+1,4k+3,...,6k—
1}, the problem Exact-M}-DNP is BHo (NP)-complete.
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Gl,l Gl G1,2

Gg,l G2 G2,2

Figure 16: Reduction to prove Exact-(5,{0, 1}, N)-Partition DP-complete

Finally, define the following variants of the domatic number problem:

DNPoyq = {G | G is a graph such that 6(G) is odd},
DNP.qu = {(G, H) | G and H are graphs with §(G) = 6(H)},
DNP1eq = {(G, H) | G and H are graphs with §(G) < 0(H)}.

Theorem 18 (Riege and Rothe [Rot03]). The problems DNPoaq, DNPegy, and
DNP1eq cach are ©%-complete.

6 Conclusions and Open Questions

This survey paper has presented some of the results that were inspired by Wag-
ner’s general technique [Wag87] to prove completeness in the levels of the boolean
hierarchy over NP and in ©F, the class of problems solvable via parallel access
to NP. In particular, ©5-completeness results were obtained for a variety of natu-
ral problems arising in computational politics [HHR97a, RSV03, HH00, HSV05]
and for problems related to certain approximation heuristics for hard graph
problems [HR98, HRS06, HHR97b]. In addition, Wagner’s technique was useful
to prove ©F-hardness of MEE, the minimum equivalent expression problem, see
Hemaspaandra and Wechsung [HW97, HW02].

Turning to completeness in the levels of the boolean hierarchy, Theorem 9 in
Section 3 answered a question raised by Wagner in [Wag87]: It is DP-complete
to decide whether or not a given graph can be colored with exactly four colors.
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We have sketched Guruswami and Khanna’s clever reduction [GKO00] that is
central to this proof, and we have shown how this reduction can be employed by
Wagner’s technique to prove Theorem 9.

In Section 4, we presented Cai and Meyer’s beautiful result that the promi-
nent problem Minimal-3-Uncolorability is DP-complete [CM87]. It should be
stressed here that it is usually very difficult to transfer known NP-completeness
results to DP-completeness results for the corresponding critical problems. Pa-
padimitriou and Yannakakis [PY84] note: “We have not been able to show that
[-..] any of the critical problems is DP-complete. This difficulty seems to re-
flect the extremely delicate and deep structure of critical problems—too delicate
to sustain any of the known reduction methods. One way to understand this is
that critical graphs is usually the object of hard theorems.” The crucial point is
that polynomial-time many-one reductions from one problem to another do not
preserve criticality in general. For this reason, only very few critical problems
are known to be DP-complete up to date.

Finally, Section 5 studied various versions of the exact domatic number prob-
lem. In particular, Theorem 16 says that Exact-5-DNP is DP-complete. In con-
trast, Exact-2-DNP is coNP-complete, and thus this problem cannot be DP-
complete unless the boolean hierarchy collapses. For i € {3,4}, the question
of whether or not the problems Exact-i-DNP are DP-complete remains open.
To close this gap, it would be enough to find a reduction from some suitable
NP-complete problem to the exact domatic number problem that yields graphs
having a domatic number other than three.

In addition, we have studied the exact versions of Heggernes and Telle’s gen-
eralized dominating set problems [HT98], denoted by Exact-(k, o, p)-Partition,
where the parameters o and p specify the number of neighbors that are allowed
for each vertex in the partition. Theorem 16 presented DP-completeness results
for a number of such problems that are summarized in Table 2, which gives the
best values of k for which the problems Exact-(k, o, p)-Partition are known
to be DP-complete. This value of k is not yet optimal in some cases. For ex-
ample, as stated in Theorem 16, Exact-(5,{0, 1}, N)-Partition is DP-complete
and Exact-(2, {0, 1}, N)-Partition is NP-complete. What about the complexity
of Exact-(7,{0,1},N)-Partition for i € {3,4}? It would also be interesting to
obtain DP-completeness results for those cases in Table 2 that currently have
only question marks.
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