
Pseudorandom Number Generation: Impossibility and

Compromise

Makoto Matsumoto,1 Mutsuo Saito,2 Hiroshi Haramoto,3 Takuji
Nishimura4

(1,2,3 Department of Mathematics, Hiroshima University, Japan
4 Department of Mathematics, Yamagata University, Japan

m-mat@math.sci.hiroshima-u.ac.jp)

Abstract: Pseudorandom number generators are widely used in the area of simula-
tion. Defective generators are still widely used in standard library programs, although
better pseudorandom number generators such as the Mersenne Twister are freely avail-
able.

This manuscript gives a brief explanation on pseudorandom number generators for
Monte Carlo simulation. The existing definitions of pseudorandomness are not sat-
isfactorially practical, since the generation of sequences satisfying the definitions is
sometimes impossible, somtimes rather slow. As a compromise, to design a fast and
reliable generator, some mathematical indices are used as measures of pseudorandom-
ness, such as the period and the higher-dimensional equidistribution property. There is
no rigorous justification for the use of these indices as measures of pseudorandomness,
but experiences show their usefulness in choosing pseudorandom number generators.

Key Words: Random number generation, Pseudorandom number generation, Mer-
senne Twister, Monte Carlo methods, Simulation

Category: G.3 Mathematics of Computing, Probability and Statistics, Random num-
ber generation

1 Introduction

The authors of this manuscript take the view that there exists no commonly
accepted perspective in the research of pseudorandom number generation. Ac-
tually, each group of researchers have their own dogma, which is sometimes
contradicting those of the others. This manuscript is intended as an unbiased
survey, but still should suffer from our own biases. A clear bias is that one aim
of this manuscript is to advertise a pseudorandom number generator “Mersenne
Twister” (MT) [Matsumoto and Nishimura 1998]. This generator has the period
of length 219937 − 1, has the 623-dimensional equidistribution property, and can
generate more than 107 pseudorandom 32-bit integers per second in standard
desk-top computers. It is now widely used: implemented in various computer
languages by the hands of volunteers, and downloadable as free software.

As we shall mention in §2.2, the most serious problem surrounding pseudo-
random number generators (PRNGs) seems the long distance between the users
and the developers. There are a lot of defective generators adopted in common

Journal of Universal Computer Science, vol. 12, no. 6 (2006), 672-690
submitted: 31/5/06, accepted: 23/6/06, appeared: 28/6/06 © J.UCS

libraries still now, although many excellent generators are freely downloadable.
We wish to get the users and the developers closer, which is another aim of this
manuscript.

2 Defective PRNGs and Mersenne Twister

Many defective PRNGs are currently being used. These are not necessarily old:
some of the newly proposed generators are still defective. Here is an example.
The third edition of Knuth’s famous book [Knuth 1997] was published in 1997.
This series of books is known as “the bible of computer science,” and many
researchers (especially non-specialists in random number generation) refer to
the book as the best reliable source of PRNGs.

However, most generators there were developed in the 1970’s, and show some
defect in large scale simulations. The third edtion newly introduced a generator
named ran array. This is a modification of a classical defective generator, the
“lagged-Fibonacci generator,” improved by discarding a large part of the output
sequence. This modification seems not smart: the improved generator still has
an observable deviation [Matsumoto and Nishimura 2003], if the luxury level is
3 or less (i.e., if less than 90% is discarded.)

The first author met Knuth in Japan in ’96. A draft of the third edition was
downloadable, and the first author (too young) claimed to Knuth: “It is a serious
issue that such an influential book, called the bible, does not treat good PRNGs.”
Knuth’s reply was matured: “Those who want to call this book the bible should
call it the Old Testament. There are more urgent problems in this series which I
need to address, so I cannot pay enough attention to the part of PRNG. . . . Your
PRNG seems interesting, but not well-tested. If it is widely used and survives,
then it may be introduced in the fourth edition, planned fifteen years later.” He
then gave the first author a number of valuable comments, including a suggestion
on the name of Mersenne Twister. We also think Knuth’s book is worth being
called the bible.

We show two examples of classical generators, still being widely used but
giving erroneous results.

2.1 Linear Congruential Generator

The Linear Congruential Generator (LCG) has been the most widely used, stan-
dard PRNG (Lehmer, introduced around 1960). Let a, c, N be integer constants.
LCG is to generate a sequence of integers x0, x1, . . . between 0 and N −1 by the
recursion

xj+1 := axj + c mod N (j = 0, 1, 2, . . .), (1)

673Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

and use them as a pseudorandom integer sequence. Here mod N denotes the
residue modulo N . The user needs to specify x0 as the initial seed. If one needs
another sequence, then one changes the initial seed. Once we have xj = xj+p for
some j and p > 0, then this holds for any larger j. Since there are at most N

possible values for xj , the period of this sequence is at most N .
Often the user wants uniform random real numbers in the half-open interval

[0,1). They are usually obtained by the conversion xj �→ xj/N ∈ [0, 1).
Since N gives the upper bound on the period and the resolution, a large

N is desirable. On the other hand, we need to compute integer multiplications
modulo N , which is expensive if N is large, in particular if N exceeds the word
size of the CPU. Consequently, most of the implemented LCGs adopt N = 232

or N = 248. Such choices might have been enough 20 years ago, but recent
personal computers can generate 232 integers in a few minutes by such an LCG.
In a nuclear physics simulation, even 240 random numbers are consumed. So, the
periods of such LCGs are too short now.

Another problem of LCGs is the lattice structure appearing in high-dimen-
sional random points plotting. Here we choose an implementation of the rand

random number generating function, included as an example in an ANSI doc-
ument of C language in the middle 80s. It is an LCG with parameters a =
1103515245, c = 12345, N = 231 in the notation of §2.1. Generate random
points in the 3-dimensional unit cube by this LCG as follows.

1. Generate three pseudorandom numbers in the unit interval [0, 1), and plot
a point at the corresponding coordinate in the unit cube.

2. Iterate 1, for 231 times.

3. Cut out a small cube of size 0.0153 from the unit cube, and draw the picture
of the plotted points inside.

Then we obtain Figure 1. Comparing with Figure 2 generated by MT, one sees
a clear lattice structure. This is not because of bad choices of a or c. For any
LCG, if it is used for the full period, then the generated points in the unit cube
are arranged in a lattice. (The above value of a is well-chosen so that the lattice
unit is close to a cube, rather than a thin parallelepipe, which shows a better
randomness. See [Knuth 1997, §3.3.4].)

Another warning applies when the modulus N is chosen to be a power of two,
to decrease the cost of calculating modulo N . In this case, the s least significant
bits of the generated pseudorandom integers have the period at most 2s. In
particular, the least significant bit has period at most 2, and the above LCG
generates odd numbers and even numbers alternately.

In ANSI-C, there is only a specification of rand (i.e., the range of the num-
bers generated), and no algorithm is specified. The above LCG is listed as an

674 Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

Figure 1: “Random” points in a cube,
generated by a standard LCG rand.

Figure 2: “Random” points generated
by Mersenne Twister.

example of implementation, and had been often the default until the mid 1980’s.
Presently, rand in the BSD Standard C Library is replaced with a lagged Fi-
bonacci generator (named random in the library), but this latter generator too
has serious deviations [Matsumoto and Nishimura 2003, Matsumoto et al. 2006].

2.2 GFSR Generators

The Generalized Feedback Shift Register (GFSR, [Lewis and Payne 1973]) is
another example of a widely used but defective generator.

Assume that a CPU uses w-bit words, and then one word can be regarded
as a w-dimensional horizontal vectors with coefficients in {0, 1}. A (three-term)
GFSR is to generate a pseudorandom word sequence x0,x1,x2, . . . by the recur-
sion

xj+n := xj+m ⊕ xj (j = 0, 1, . . .), (2)

where ⊕ denotes the component-wise addition modulo two (i.e., bitwise exclusive-
or in the computer terminology, or the addition of vectors with components in
the two element field F2 = {0, 1}).

The first n words x0, . . . ,xn−1 should be given as the initial values by the
user. If the integers n > m > 0 are chosen so that tn + tm + 1 is a “primitive
polynomial over F2” (see for example [Niederreiter 1992] for a definition), then
the period of this sequence attains the upper bound 2n − 1. In implementations,
values n with 60 ≤ n ≤ 1000 are often used. In the implementation, one needs

675Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

to keep the last n outputs to compute the recursion, so a memory of n words is
necessary.

GFSR has a large period, and requires only a few CPU instructions to gen-
erate one word. Consequently, it has been used in large scale applications, but
the balance between the number of 0’s and 1’s is known to deviate. Fix any bit
in the words, say, the most significant bit (MSB). Fix an integer N . Take every
N -tuple of the output words, and count the number of 1’s in the MSBs of the
N -words. If the words are random, then it should conform to the binomial distri-
bution B(N, 1/2), but the three-term GFSR has a huge deviation for N > n (no
deviation is observed for N ≤ n). Roughly speaking, this is because the present
output bit is the exclusive-or of only two bits in the past n bits, so if there are
many 0’s (or many 1s) in the past N bits, then the next bit tends to be 0 more
than 1. This deviation sometimes leads to erroneous results in a simulation of a
Markov process. Random walks and Ising models are typical examples. In such
simulations, the state of the model is influenced by all the past outputs, so the
deviation of n-tuples tends to lead errors in sumulation.

The weight distribution test is to measure the deviation from B(N, 1/2) by
using a standard chi-square test (the same test is called the frequency test in the
NIST randomness test package). Three term GFSRs are known to be rejected by
this test (e.g., the result of tests in [Matsumoto and Kurita 1992]). This fact had
been pointed out and analyzed by [Lindholm 1968] and [Fredricsson 1975], but
the users (and even some designers) of PRNGs have not paid enough attention.

[Ferrenberg et al. 1992] reported that such PRNGs yield erroneous values of
the phase transition temperature in Ising model simulations (without analyzing
the reasons), and attracted people’s attention. However, the defect itself had
been known 24 years before.

The serious problem in researching PRNGs seems a social problem: PRNGs,
which are known to be defective, are still widely used, and are even newly im-
plemented.

Although reliable fast PRNGs exist, they tend to be neglected because the
theory behind them is not simple. Because of the lack of a practical definition
of pseudorandomness, only the “dogmas” of authorities are reflected in the im-
plementations. Classical PRNGs (known to be defective to specialists) and their
slightly improved versions are repeatedly recommended and used, then some of
the defects are (re)discovered by the users. Then, minor modification is added
to shrink the defects. A few years later, the advance of the performance of com-
puters again reveals that the remaining defects, although reduced, persist. As
a result, many defective generators have been standardly used and advertised,
neglecting the high-performance PRNGs that have already existed.

Because of these reasons, not only a few users of PRNGs seem to consider
any PRNG as a non-reliable source of pseudorandomness. We sometimes see

676 Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

comments such as: “If one uses more than 107 random numbers, then one should
use physically generated ones from noise, rather than PRNGs.” We disagree with
such comments, since modern generators such as MT pass stringent tests on
randomness with more than 109 samples, and give satisfactorial results in large
scale simulations.

By extending the ideas in [Fredricsson 1975], we developed an algorithm to
compute the deviation of PRNGs (with linear recursion over F2) from the bi-
nomial distribution, using the MacWilliams identity from Coding Theory. We
call this test weight discrepancy test [Matsumoto and Nishimura 2002]. This test
determines beyond which sample size the PRNG will be rejected by the weight
distribution test. For example, it claims that a three-term GFSR (2) with n = 89
will be rejected for more than 105 samples, while a similar GFSR with n = 521
will be rejected for more than 107 samples. On the other hand, a toy model
of MT with 521 bits of internal state requires 10156 samples to be rejected by
the weight distribution test. Such conclusions cannot be deduced by empirical
statistical tests. There are many statistical tests on the randomness of PRNGs.
According to our experiences, the weight distribution/discrepancy test is one of
the strongest tests to detect the failure of F2-linear PRNGs.

So far, we saw concrete problems in PRNGs. In the next section, we shall
very briefly survey the methods of random number generation.

3 Generality: Pseudorandom Number Generation

3.1 Random Numbers

Random numbers have been used since ancient times, e.g., a dice is an example of
a random number generator. However, generating “high-quality” random num-
bers by hand is not so easy. L.H.C. Tippett tries to generate random numbers
by choosing a card randomly from a set of numbered cards by hand. He found
that the result was strongly deviated, and noticed the difficulty in generating
randomness by hand. Then he made the first published random number table in
the world, since he considered it worth being published.

By the development of computers, random numbers are used more widely and
extensively now. Simulations of probabilistic events requires random numbers.
Such a use of random numbers, or any related numerical computations based on
random numbers, are called Monte Carlo methods.

The questions in the application are

– how to generate (pseudo) random numbers, and

– how to assure their randomness (at least some safety for the purpose).

Unfortunately, the situation is “there are no complete answers” presently (and
probably no even in the future.) One of the reasons is the lack of enough practical

677Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

and reasonable definition of pseudorandomness at present. Actually there are
definitions, but generating sequences satisfying them is difficult and takes CPU-
time (as will be explained in §3.5).

3.2 Naive Definition

Definition 1. Let X1, X2, . . . be independent random variables conforming to
an identical distribution. A random number sequence is a series of realized values
x1, x2, . . . of these random variables.

This is the naive idea, but there is no mathematical definition of “a realized
value” of a random variable. For example, consider an ideal dice. The i-th output
is Xi, which takes values {1, 2, 3, 4, 5, 6}with probability 1/6 for each possiblitity,
and {Xi} are independent. This is a perfect description of the probabilistic
situation, but gives no way to generate random numbers.

The definition of pseudorandom number generators (PRNGs) are even more
ambiguous:

Definition 2. A pseudorandom number generator is an algorithm generating a
sequence of numbers that appears to be random, by some deterministic algo-
rithm.

3.3 Physical Random Numbers

We postpone discussions on PRNGs to the next section. A most naive random
number generation is to sample a physical noise and digitize it. Such methods
are called physical random number generations.

A problem of such generators is the cost for the hardware. It is not easy to
detect any malfunction of such devices. It should be independent of the circum-
stance such as temperature etc. There are commercial devices for this purpose,
but most of them are combined with PRNGs to eliminate unbalancedness and
dependency on the circumstance.

A more intrinsic problem is that physical random numbers have no repro-
ducibility, i.e., one needs to record all the generated numbers if one would like to
reproduce the whole simulation. This is often inconvenient, in particular when
a user wants to re-test another user’s simulation.

3.4 Pseudorandom Number Generation

A PRNG is to generate a sequence of numbers by a deterministic algorithm
(usually expressed by a recurrence formula, with possible output conversion),
and to use it as a random number sequence. We have already seen a few examples
in the previous sections.

678 Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

Once the recurrence formula and the initial value are given, anyone can gen-
erate the same sequence any times. It is possible to assure some property of the
sequence mathematically, such as the length of the period and the distribution,
differently from physical random numbers. The problem is that we do not know
“which sequence can be used as a random number sequence.”

3.5 Definition of Random/Pseudorandom Number Sequences

To say the truth, there are rigorous definitions of randomness. A rough de-
scription of the definition by Kolmogorov and Chaitin is: “A finite sequence of
numbers is a random number sequence if there is no description of the sequence
shorter than the sequence itself,” i.e., no computer programs shorter than the
sequence can produce the sequence. A lot of interesting mathematical properties
(including existence of such sequences) can be proved, but this definition is too
restrictive for efficient random number generation.

A less strict but still strong definition, adopted in the area of cryptography,
is as follows: “a sequence of numbers is said to be a computationally secure
pseudorandom number sequence, if it can be generated by a polynomial-time
algorithm (when the recursion and the initial values are given), but there is no
polynomial-time algorithm to guess the next outputs. This is a perfect definition,
since it is proved that any methods (including statistical tests and simulations)
which can be computed in polynomial-time can never distinguish the sequence
from a genuine random number sequence.

A problem is whether such a sequence exists or not. Under a strong hypothesis
on the hardness of integer factorization, such a generator is proved to exist
by [Blum et al. 1986] (called BBS). If there is a polynomial-time algorithm to
guess the next output of BBS generators, then this gives a polynomial-time
algorithm for (a class of) integer factorizations, which is considered unlikely
since mathematicians could not do that for decades.

Such PRNGs are widely used for cryptographic purposes. However they are
much slower than the generators we have seen so far. Moreover, mathematical
analysis such as the distribution in high dimensions is difficult. Usually, such
PRNGs are not used in a large scale Monte Carlo simulation where the generation
speed is crucial.

4 Examples of PRNGs

Under the lack of good definitions of pseudorandomness for Monte Carlo simu-
lation, various recurring sequences are proposed and used as PRNGs.

4.1 Automaton

PRNGs can be described as finite state automata.

679Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

Definition 3. (Automaton.)
Let S be a finite set (of the possible states of the memory assigned for the

PRNG). Let f : S → S be a function (state transition). Let s0 ∈ S be the initial
state. Every time unit, the state is changed by the recursion

s0, s1 := f(s0), s2 := f(s1), . . . ,

and the output sequence is generated as

o(s0), o(s1), o(s2), . . .

by applying an output function o : S → O, where O is the set of possible output
numbers. This system is called a (no-input finite state) automaton.

As far as the amount of the memory is finite and no input is given, any digital
computer is such a system. Since the number of the states is finite, the state
transition becomes periodic in the long run, and the period length is bounded
by #(S).

In other words, if a PRNG has no period, then it consumes more and more
memory, in accordance with the generation. Such PRNGs are often proposed,
but in practice the amount of memory allowed to be occupied by the PRNG is
limited. Then, it is usually better to specify the limit in the design stage, and
then maximize the period with that memory size.

This is an example of a gap between theory and implementation. Similar gaps
often exist in PRNGs based on “probabilistic theory” or “chaos theory.” For
example, some generator (claimed to have probabilistically assured randomness)
requires a uniformly and randomly chosen real number in the interval [0, 1] with
infinite precision as a seed, which is absurd. (If such a choice was possible, then
its (say) floating point expansion would give a perfect random number sequence.)

Quite often, PRNGs based on chaotic dynamics are proposed, but most of
them do not have the claimed good randomness. Chaos theory is based on a con-
tinuum state space S and a (usually piecewise continuous) transition function
f : S → S. However, in a digital computer, S is approximated by some finite
discrete set. Since the approximation error is magnified by iteration of f , the
behavior of the original continuous dynamical system is totally different from
the implemented approximated system. As an example, the ranlux generator
[Lüscher 1994] is designed by using chaos theory, but we observe strong cor-
relations between the output sequences generated from correlated initial seeds
[Matsumoto et al. 2006].

Our feeling is that designing a PRNG is more closely related to the area of
discrete optimization (i.e., optimize the period and the distribution) rather than
to probability theory or chaos theory.

680 Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

4.2 Linear Recurrence

LCG treated in §2.1 is an automaton (Definition 3) with S := Z/N (i.e., the set
of residues modulo N) and the transition function is given by a linear function

f(s) = as + c mod N.

A PRNG is called linear if the transition function is a linear function in some
sense. Non-linear transition functions have been proposed, such as quadratic
functions or fractional linear transformations. However, the generation speed is
usually slower than linear generators. The computation of its period or distribu-
tion is often harder.

Actually, the first PRNG on a digital computer introduced by von Neumann
in the 1940’s adopted a quadratic transition function: for an integer x, f(x) is
given as several middle digits of x2. But this method sometimes yields a short
period [Knuth 1997, §3.1]. LCGs were selected through such trials and errors.
Intuitively, linear functions seem to be a poor source for pseudorandom numbers.
However, it turns out that an LCG is a relatively good PRNG if the parameters
are carefully selected. It had been one of the standard generators, but it is now
obsolete (§2.1).

4.3 Use of Finite Fields

Let F2 = {0, 1} be the two element field, i.e., addition and multiplication are
done modulo 2.

An automaton (Definition 3) with a state space S = F
d
2 and an F2-linear

transition function f : F
d
2 → F

d
2 (i.e., a (d× d)-matrix with coefficients in {0, 1})

is called an F2-linear PRNG.
The (three-term) GFSR (2) explained in §2.2 lies in this class. The state

space S is the nw-dimensional F2 vector space S := (Fw
2)n, considered as the set

of n-tuples of F
w
2 . Transition function is

f : (x0, . . . ,xn−1) �→ (x1, . . . ,xd−1,x0 + xm).

It is easy to see that this yields the sequence defined by the recursion (2). One
can prove that the period of this sequence is at most 2n − 1. The distribution of
the number of 1’s in the sequence is deviated, as seen in §2.2.

[Matsumoto and Kurita 1992] proposed to introduce a (w×w)-matrix A into
(2):

xj+n := xj+m ⊕ xjA (j = 0, 1, . . .), (3)

681Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

and named it the twisted GFSR. To realize fast multiplication, A has the form⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

. . .
1

a0 a1 · · · · · · aw−1

⎞
⎟⎟⎟⎟⎟⎟⎠

for which we can compute the multiplication by simple bit operations:

xA =
{

shiftright(x) (if the least significant bit of x is 0)
shiftright(x) ⊕ a (if the least significant bit of x is 1),

where a denotes the bottom row vector of A. Introducing A results in mixing
information of bits with different significance. The period of the twisted GFSR
is at most 2nw − 1, and many parameters attaining this bound are found. Later
[Matsumoto and Kurita 1994] introduced a (d × d) matrix T (named the tem-
pering matrix) and output xT as the pseudorandom sequence, to improve the
higher-dimensional equidistribution property (see §5.2.2). The implemented C-
code is named tt800, and has been widely used. A large n is desired for long
period and high-dimensional distribution, but the limitation is that we need to
know the factorization of 2nw − 1, which is often difficult for n > 2000.

MT is a slight modification of the twisted GFSR, with the recursion

xj+n = xj+m + (xw−r
j ∗ rxj+1)A,

where xw−r
j ∗ rxj+1 denotes the upper w − r bits of xj concatenated with the

lower r bits of xj+1.
Concatenating the upper bits of xj and the lower bits of xj+1 yields a w-

dimensional vector, so A can be multiplied from the right. This recursion makes
the dimension of the state space nw − r (since the least significant r bits of xj

will not be feedbacked). By choosing r such that 2nw−r−1 is a prime (a so-called
Mersenne prime), we don’t need to factorize it. An implemented C-code mt19937
has a period of length 219937 − 1, with parameters n = 624, w = 32, r = 31.

A big advantage of GFSR-type generators over LCGs is that the generation
speed is constant independently of the degree of recursion, or in other words,
independently of the period length (see [Knuth 1997, P.28 Algorithm A]). An-
other advantage is easiness in improving higher-dimensional distribution, which
will be discussed in §5.2.2.

5 Evaluation of PRNGs

Because of the lack of an adequate definition of pseudorandomness, there is no
theory nor are there methods that assure genuine pseudorandomness.

682 Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

5.1 Statistical Tests

On the other hand, there are many methods to show the non-randomness of
(poor) PRNGs. A statistical test is to choose some statistical value x computed
from the sequence, such as the number of ones in a bit stream, and test its
plausibility. Under the null hypothesis that the sequence is a uniformly and in-
dependently distributed random sequence, (at least an approximation of) the
distribution of x must be obtained in advance. Let X be a random variable
conforming to this distribution. Compute the probability that x or more devi-
ated value is observed under the same hypothesis. For example, compute the
probability that

|X − E(X)| ≥ |x − E(X)|
holds, and if this probability is too small, say 0.001, then such a deviated observed
value x may occur with only once in 1000 times, so the hypothesis that the
sequence is uniformly random is rejected with level of significance 0.001 (see for
example [Knuth 1997, §3.3]).

Such statistical tests are applicable to any type of random number generators.
It is necessary for PRNGs to pass various statistical tests. However, similarly to
the case of “definition” of pseudorandomness, the situation is not clear. Which
statistical quantity is a useful index of randomness? There are thousands of
statistical quantities, and which should be tested? With which sample size? What
are the relations between these tests?

Although these questions are open, there are several practical packages for
statistical tests of randomness. Marsaglia’s diehard battery [Marsaglia] is rather
old but still widely used. [L’Ecuyer and Simard] proposes newer and more ex-
tensive test package testU01. MT passes all these tests.

But, what does it mean to pass statistical tests? We often get an email saying
“I tested MT by a statistical test, then rejection with significance level 0.05 was
observed 5 times among 100 trials. Doesn’t this mean MT’s deviation?” Of course
it doesn’t. This is the average for genuine random numbers.

However, when we conduct statistical tests to PRNGs many times, we often
feel confusion. Is it suspicious or not, if we observe one time rejection of 0.01
significance level among ten tests?

A possible strategy to avoid this confusion is to take larger and larger sample
sizes, if some suspicious phenomenon is observed. If a PRNG has some deviation,
and if it is detected by a statistical test with some sample size, then the observed
probability value tends to become unusual (such as 10−6) by raising the size
of samples. When a statistical test is applied to a PRNG, existence of a few
suspicious probability values (such as 0.001) does not necessary imply a defect
of the PRNG. To confirm the defect, it is better to increase the sample size until
some marvelous values of the probability, such as 10−6, can be observed stably.

683Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

Another difficulty in the statistical tests is how to integrate the probability
values obtained by iterating the same tests. Often, the Kolgomolov–Smirnof Test
is conducted to the set of probability values (called double test, [Knuth 1997,
§3.3.1]). However, the probability value is often obtained by an approximative
formula, and the double test may accumulate errors. We experienced a false-
rejection of good PRNGs because of the approximation error. When one obtains
a suspicious result in a statistical test on a PRNG, then it is necessary to test
other PRNGs and compare the results, to certify the relevance of the test.

5.2 Theoretical Evaluation

Statistical tests are empirical, and the obtained evaluation is probabilistic and
has some uncertainity. There are non-empirical evaluations on PRNGs, some-
times called theoretical evaluation.

If a pseudorandom number sequence is generated by some mathematical for-
mula, then the sequence may have some mathematical structures. We define
some index on the structure and use it as an index of the evaluation of the
PRNG. This is the theoretical evaluation. A concrete example of such indices is
the period. The notion of the period does not exist in genuine random sequences.
The period is a mathematical structure shared by any PRNG, whose model is a
finite state automaton. Obviously, a longer period is desired for pseudorandom
number generation. However, the period length does not measure the random-
ness itself. That measures something which is loosely related to the (undefined)
“pseudorandomness.”

A problem of theoretical evaluations is that a different type of generator has
a different type of mathematical structure. Consequently, one test is applicable
only to one type of generators, which makes it difficult to compare different types
of generators by such a test.

Another shortcoming is that we have no rigorous justification of the evalua-
tion by the index. As in the case of the period, the mathematical definition of
each index is clear, but its meaning with respect to the randomness is not so
clear. To understand the evaluation, one needs to understand the corresponding
mathematical structure.

On the other hand, theoretical evaluation is much more sensitive than statis-
tical test in detecting the defects. Moreover, we can compare good parameters
and choose the best one. This is different from statistical tests, where the test
result is probabilistic and does not distinguish good PRNGs.

According to this performance of theoretical evaluation, it is used in choosing
the parameters in a recursion formula at the designing stage of PRNGs. After
choosing the parameters, the designers confirm the quality of PRNG by various
statistical tests.

684 Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

Note, however, that optimizing the index does not mean optimizing “the
randomness.” For example, a longer period is better, but a long period sequence
is not always a good pseudorandom number sequence.

5.2.1 Period

The most common theoretical evaluation is the period. Most of LCGs have period
length around 232 ∼ 248. The standard generator random in the BSD Standard
C Library has a period around 263. The commonly used MT19937 has the period
219937 − 1.

What is a sufficient period length? There is no clear answer. A thumbnail
rule is that the period should be at least the cube of the number of actually
consumed pseudorandom numbers.

The period is bounded by the cardinality #(S) of the state space of the
PRNG. By a historical reason, a PRNG is said to have maximal period if the
period is #(S) − 1.

5.2.2 Higher-Dimensional Equidistribution Property

Another index for a theoretical evaluation is the dimension of the equidistribu-
tion. Let us assume that an M -tuple of pseudorandom numbers is consumed in
some unit in the simulation. (For example, in the case where a function with M

random variables is evaluated many times.) Assume that for each unit, the initial
state is randomly chosen. Then, a PRNG based on an automaton (Definition 3)
can be considered as a function

g : S → OM (4)

mapping the initial state s0 to the M -tuple of outputs

o(s0), o(f(s0)), . . . , o(fM−1(s0)).

Recall that O is the finite set of possible output numbers.
A PRNG is said to have M -dimensional equidistribution property, if it has

the maximal period (§5.2.1) and if the output M -tuples are uniformly distributed
over OM when the initial state s0 is uniformly randomly chosen from S.

Because of the maximality of the period, every state is realized once over a
whole period (except for one exceptional state). Consequently, if we observe all
the (overlapping) M -tuples appearing in one period, then every possible pattern
in OM appears equally often (except for one exceptional pattern).

The maximum value of such M is called the dimension of the equidistribution
of the PRNG. A large M is desirable. An obvious necessary condition is deduced
from the surjectivity of g in (4):

#(O)M ≤ #(S), or equivalently M ≤
log #(S)/ log #(O)�.

685Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

GFSR does not attain this upper bound (i.e., the equality at the right hand
side), but the twisted GFSR and MT do: MT19937 is M=623-dimensionally
equidistributed with 623 =
19937/32�.

As usual for theoretical evaluations, it is not very clear whether this prop-
erty assures pseudorandomness or not. However, experiences show that a small
fraction of the full period of an M -dimensionally equidistributed pseudorandom
number sequence passes statistical tests based on a function with M or less
(uniformly random) variables.

For example, consider a (one-dimensional) random walk of s steps, simulated
by s random bits (thus O = {0, 1}). The last position is the difference between
the number of 1’s and that of 0’s. Experiments show that if s ≤ M , then no de-
viation is (usually) observed. On the other hand, (one bit of) three-term GFSRs
(2) show deviations if s is greater than M (it is known that M = n holds for
one-bit sequences of output of the GFSR).

We can compute the dimension of the equidistribution by linear algebra, if the
PRNG is F2-linear (i.e., f and o in Definition 3 are both F2-linear) and has the
maximal period. This is because the M -dimensional equidistribution property
is equivalent to the surjectivity of g (4) (since g is F2-linear and the linearity
implies that the inverse image of any element has the same cardinality). The
surjectivity is reduced to the computation of the rank of g, which can be obtained
by Gaussian elimination of the matrix. However, for huge state generators (e.g.,
19937-dimension for MT), Gaussian elimination is expensive. We used a much
faster algorithm based on the lattice structure over power series ring, introduced
by [Couture et al. 1993].

There is a more refined notion of equidistribution with v-bit accuracy. Assume
that O is the set of w-bit integers, say, 32-bit integers. In a Monte Carlo simu-
lation, these integers are often normalized to real numbers in the [0, 1) interval.
In that case, the upper bits are more influential than the lower ones. Reflecting
this, the following index of evaluation is often used.

Definition 4. Let trv : O → {0, 1}v be the function that takes the v upper bits
of w-bit integers and truncates the other ones (so tr stands for truncation). If
the M -tuples of outputs with v-bit accuracy, namely the M -tuples

trv(o(s0)), trv(o(f(s0))), . . . , trv(o(fM−1(s0)))

are equidistributed in the above sense, then the PRNG is said to be M -dimen-
sionally equidistributed with v-bit accuracy, and the maximum value of such an
M is the dimension of equidistribution with v-bit accuracy and denoted by k(v).

The same argument on the surjectivity implies the following upper bounds:

k(v) ≤
dim(S)/v� v = 1, 2,

686 Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

If this upper bound is attained for every v, 1 ≤ v ≤ w, then the PRNG is said
to be optimally equidistributed.

MT19937 is not optimally equidistributed. It satisfies these upper bounds
for v in {1, 2, 4, 8, 16, 32}, but for example for v in {3, 5}, k(v) is about 93% of
the upper bound. It would be possible to modify the output function to attain
the optimal equidistribution, but it results in some speed-down. Moreover, it is
not very clear whether the optimal equidistribution is absolutely important or
not. For example, the k(3) of MT19937 is 6240, and the upper bound is 6645. It
seems difficult to distinguish such a difference by any reasonable (non-artificial)
statistical test. In some applications, the lower bits are more important than the
higher ones. In such applications, the definition of the optimal equidistribution
is not appropriate. (In the case of MT, it is confirmed by computation that the
lower bits have satisfactorial equidistribution property.)

One may argue that it is better to use the CPU-time for some non-linear
output conversions, rather than for realizing optimal distributions.

Anyway, if there is a fast, optimally equidistributed PRNG with long pe-
riod, it is desirable. The WELL generators [Panneton et al. 2006] are optimally
equidistributed, and robust to bad initializations. One of them has a period of
244497 − 1. They are a little slower than MT.

Here we remark on the most famous theoretical evaluation, namely, the spec-
tral test. This test is for LCGs and their relatives, which corresponds to the
higher-dimensional equidistribution property. The test measures the thinness of
the lattice unit (cf. Figure 1), and is known as the strongest test for LCGs. We
refer to [Knuth 1997, §3.3.4] for detail.

5.2.3 Weight Discrepancy Test

As we mentioned in §2.2, the weight distribution test is a statistical test to
observe the deviation of the number of 1’s in a pseudorandom bit sequence
from the binomial distribution. As mentioned there, a corresponding theoretical
evaluation is possible for F2-linear PRNG, called the weight discrepancy test.
The test computes the exact distribution of the number of 1’s for the PRNG.
Differently from other theoretical evaluations, the probabilistic meaning of the
weight discrepancy test is clear.

6 Warnings on the Usage of PRNGs

6.1 Problem of the Initialization

Before generating a sequence, we need to set the initial state of the PRNG. This
is the initialization. Often the users want to give a seed of (say) 32-bit integer.
Then, for a large state generator, it is necessary to expand the integer to fill

687Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

the state space, by using some function. Usually, a small PRNG is used for this
purpose.

In a large scale simulation, a seed of 32-bit integer is often too small. Let
N be the number of possible seeds (namely, N = 232 in the above case). The
birthday paradox asserts that if the seeds are chosen uniformly at random

√
N

times, then the probability that two of them coincide is close to 1/2, for large
N . In the above case, if one initializes 216 times, then the probability that two
of them coincide is close to 1/2. By addressing this problem, the 2002 version
of the initialization in mt19937ar.c receives an array of arbitrary length as an
initial seed.

Another warning is that many modern PRNGs have a defect in the initial-
ization scheme. If the initial seeds are systematically chosen (for example, if
the seeds are chosen to be 0, 100, 200, . . .), then the output sequences are often
strongly correlated. The first author was informed of this by Isaku Wada. Later,
Wada, Kuramoto, Ashihara, and the first author investigated the 58 different
PRNGs in the GNU Scientific Library, and found that 45 of them have such
defects [Matsumoto et al. 2006].

Thus, initialization of PRNG with huge state space is expensive. Usually
it is better to avoid non-necessary initialization, since an initializing routine
can generate only a small fraction of the state space, and they may have an
undesirable structure. As an example, if the initial state of MT19937 has too
many 0’s, then the tendency continues for long (20000 generations or so). The
initializing routine of mt19937ar.c was chosen to avoid such initial values.

The WELL generator mentioned in §5.2.2 is robust to such initial states.

6.2 PRNGs for Parallel Computation

PRNG for many parallel processors has different difficulties. A naive idea is to
assign a different type of PRNGs to each processor. One problem with this idea
is the difficulty in preparing many different types of PRNG. Another problem is
the portability (i.e., the independence of the architecture): we sometimes want
to reproduce a simulation done in a super parallel machine, using a moderately
parallelized machine. Thus, we want the parallelization of PRNGs independent
of the number of processors. To this end, each subject consuming the random
numbers (i.e., each particle in a nuclear simulation) is assigned a unique ID, and
a PRNG characterized by the ID is assigned to each.

Classically, only one PRNG is chosen, and the initial seed is generated from
the ID. But this is dangerous, since the output sequences may be correlated as
mentioned in §6.1, or may be overlapped.

A reasonable compromise is to use one and the same type of recursion, and
to use a distinct parameter in the recursion for each PRNG. This method is
called parameterization (e.g., SPRNG [Mascagni]).

688 Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

[Matsumoto and Nishimura 2000] developed a C-program which receives ID
and period, and computes a small type of MT with the ID embedded in its
recursion formula (Dynamic Creator, freely delivered from [Matsumoto]).

Acknowledgments

This study is partially supported by the JSPS Core-to-Core Program #18005,
by the JSPS Grant-In-Aid #16204002 and #18654021.

References

[Blum et al. 1986] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-
random number generator. SIAM J. Comput. 15 (1986), 364–383.

[Couture et al. 1993] R. Couture, P. L’Ecuyer, and S. Tezuka, On the distribution of k-
dimensional vectors for simple and combined Tausworthe sequences, Math. Comp.
60 (1993), 749–761.

[Ferrenberg et al. 1992] Ferrenberg, A. M., Landau, D. P., and Wong, Y. J. (1992)
Monte Carlo simulations: hidden errors from ’good’ random number generators.
Phys. Rev. Lett. 69 3382–3384.

[Fredricsson 1975] Fredricsson, S. A. (1975) Pseudo-randomness properties of binary
shift register sequences. IEEE Trans. Inform. Theory IT-21, 115–120.

[Knuth 1997] Knuth, D. E. The Art of Computer Programming. Vol. 2. Seminumerical
Algorithms 3rd Ed. Addison-Wesley, 1997.

[L’Ecuyer and Simard] L’Ecuyer, P., and Simard, R. TestU01 Empirical Testing of
Random Number Generators, http://www.iro.umontreal.ca/~simardr/indexe.
html

[Lewis and Payne 1973] Lewis, T. G., and Payne, W. H. Generalized feedback shift
register pseudorandom number algorithms. J. ACM 20, 3 (1973), 456–468.

[Lindholm 1968] Lindholm, J. H. (1968) An analysis of the pseudo-randomness prop-
erties of subsequences of long m-sequences. IEEE Trans. Inform. Theory IT-14,
569–576.

[Lüscher 1994] Lüscher, M. A portable high-quality random number generator for lat-
tice field theory simulations, Computer Physics Communications, 79 (1994) 100–
110.

[Marsaglia] Marsaglia, G. http://stat.fsu.edu/pub/diehard/.
[Mascagni] Mascagni, M. The Scalable Parallel Random Number Generators Library

(SPRNG), http://sprng.cs.fsu.edu/.
[Matsumoto] Matsumoto, M. Homepage of Mersenne Twister

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.
[Matsumoto and Kurita 1992] Matsumoto, M. and Kurita, Y. “Twisted GFSR Gener-

ators,” ACM Transactions on Modeling and Computer Simulation 2 (1992), 179–
194.

[Matsumoto and Kurita 1994] Matsumoto, M. and Kurita, Y. “Twisted GFSR Gen-
erators II,” ACM Transactions on Modeling and Computer Simulation 4 (1994),
254–266.

[Matsumoto and Nishimura 1998] Matsumoto, M. and Nishimura, T. “Mersenne
Twister: a 623-dimensionally equidistributed uniform pseudo-random number gen-
erator” ACM Trans. on Modeling and Computer Simulation 8 (1998), 3–30.

[Matsumoto and Nishimura 2000] Matsumoto, M. and Nishimura, T. “Dynamic Cre-
ation of Pseudorandom number generator,” 56–69 in: Monte Carlo and Quasi-
Monte Carlo Methods 1998, Ed. H. Niederreiter and J. Spanier, Springer 2000.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dc.html

689Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

[Matsumoto and Nishimura 2002] Matsumoto, M. and Nishimura, T. “A Nonempirical
Test on the Weight of Pseudorandom Number Generators” 381–395 in: Monte
Carlo and Quasi-Monte Carlo methods 2000, Springer-Verlag 2002.

[Matsumoto and Nishimura 2003] Matsumoto, M. and Nishimura, T. “Sum-
discrepancy test on pseudorandom number generators” Mathematics and
Computers in Simulation, Vol. 62 (2003), pp 431-442.

[Matsumoto et al. 2006] Matsumoto, M., Wada, I., Kuramoto, A. and Ashihara, H.
“Common Defects in Initialization of Pseudorandom Number Generators” submit-
ted.

[Niederreiter 1992] Niederreiter, H. Random Number Generation and Quasi-Monte
Carlo Methods. SIAM, 1992.

[Panneton et al. 2006] Panneton, F., L’Ecuyer, P. and Matsumoto, M. “Improved
Long-Period Generators Based on Linear Reccurences Modulo 2” To Appear in
ACM Transactions on Mathematical Software.

690 Matsumoto M., Saito M., Haramoto H., Nishimura T.: Pseudorandom Number ...

