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Abstract: NP-complete problems cannot have efficient algorithms unless P = NP.
Due to their importance in practice, however, it is useful to improve the known expo-
nential-time algorithms for NP-complete problems. We survey some of the recent results
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1 Introduction

The design and analysis of algorithms is the core of computer science. Un-
fortunately, many problems that are important in practice are intractable—
they currently do not have efficient (i.e., polynomial-time) algorithms. Among
these problems, the NP-complete problems are particularly prominent: Unless
P = NP, no NP-complete problem is in P. Here, P is the class of problems solv-
able in deterministic polynomial time, and NP contains all problems solvable in
nondeterministic polynomial time.

The theory of NP-completeness was pioneered by Cook [Coo71], Karp [Kar72],
and Levin [Lev73], see Garey and Johnson [GJ79] for an excellent guide to the
theory of NP-completeness. To compare the complexity of two given problems, A
and B, the polynomial-time many-one reducibility (<P)) is used: A <P B if and
only if there is a polynomial-time computable function f such that x € A if and
only if f(x) € B. A set B is NP-hard if and only if every NP set A <P -reduces
to B. If B is NP-hard and contained in NP, then B is said to be NP-complete.
In this sense, NP-complete problems are the hardest problems in NP.

Plenty of problems have been shown NP-complete. In order to cope with the
intractability of NP-complete problems in practice, various approaches have been
proposed, among them parameterized complexity, approximation, and random-
ization. In this paper, we survey the recent progress on improving the known ez-
act algorithms for such hard problems, both deterministic and randomized ones.
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Since these are exponential-time algorithms, there is some constant ¢ > 1 such
that the algorithm runs in time O(¢") in the worst case, where—as is common
for exponential-time algorithms—the @ notation is used to neglect polynomial
factors: O(f(x)) = O(poly(z) - f(x)), where poly is a fixed polynomial. This
definition is reasonable for exponential time. For example, if n = 10,000 then
the running time of n? - 1.5" lies between 1.5027" and 1.5028".

Suppose we want to improve an exponential-time algorithm for some hard
problem that runs in time O(c¢™). Our goal then is to decrease the constant

¢ > 1. For example, if the trivial algorithm running in time, say, O(3™) can be
improved to an algorithm running in time O ((\/§)n> & @(1.732"), then this
improved algorithm can solve—in the same amount of time—problem instances
twice as large as those solvable by the trivial algorithm, since (\/g) e 3". This
difference can be quite important in practice.

We present both deterministic and randomized exponential-time algorithms
for the NP-complete problems satisfiability, colorability, and the domatic number
problem. While such algorithms for the first two problems have been intensely
investigated since many years, there are rather few results for the domatic num-
ber problem. In each case, we merely give the rough idea of how the algorithms
work. For other recent surveys on this topic, we refer to Schéning [Sch05], Woeg-
inger [Woe03], and Fomin, Grandoni, and Kratsch [FGKO05].

This survey is organized as follows. Section 2 presents exact algorithms for
the satisfiability problem, and in particular for 3-SAT. Section 3 describes recent
improvements on solving the graph colorability problem, again with a special
focus on the case of 3-Colorability. The domatic number problem is dealt
with in Section 4, and we again pay particular attention to the special problem
3-DNP. Finally, Section 5 summarizes the results presented and gives an outlook.

2 Satisfiability

A boolean formula F' = F'(X, C) in conjunctive normal form (CNF) consists of a
set X = {z1,xa,...,2,} of boolean variables and of a set C = {cy,ca,...,cm} of
conjunctions of clauses over literals from X. A literal is either a variable z; € X
or its negation T;. For a given CNF formula F', the satisfiability problem, denoted
by SAT, asks whether there exists a truth assignment ¢ : X — {0,1} such that
every clause of C' has at least one satisfied literal, i.e., ¢ maps this literal to the
value true (represented by 1). When the input is restricted to clauses with at
most k literals each, this problem is called k-SAT.

Let t' be a partial truth assignment of the variables, where not all variables
have been mapped to one of the values 0 or 1. The formula resulting from ap-
plying this partial assignment to formula F' is denoted by Fjy: All clauses of
F containing at least one literal satisfied by ¢ can already be discarded and
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so do not occur in Fj, while literals of F' set to false by t' are removed from
their clauses in Fj, . It is clear that if this procedure produces an empty clause,
then the partial assignment ¢’ cannot be extended to a satisfying truth assign-
ment of F'. On the other hand, if Fj;s is the empty formula, then every complete
extension of ¢’ satisfies F.

Deciding whether a boolean formula is satisfiable was the first problem proven
to be NP-complete by Cook [Coo71] and, independently, by Levin [Lev73]. The
restricted version k-SAT remains NP-complete for k > 3, whereas 2-SAT is solv-
able in polynomial time. The naive algorithm for the satisfiability problem has
a running time of @(2”) It looks up every possible truth assignment ¢ and ver-
ifies if ¢ satisfies the boolean formula F. The worst-case time bounds for all
exponential-time algorithms solving SAT in this survey are with respect to the
number n of variables. There are only a few results where the number m of
clauses is regarded as the size of the input. For example, Hirsch [Hir00] obtains
a running time of O(1.2389™), which was then improved by Yamamoto to a
worst-case bound of O(1.2335™) [Yam05]. Yamamoto’s algorithm will be used
in Section 4 for solving the domatic number problem. For the rest of this section,
the restricted version 3-SAT will be analyzed, and all time bounds mentioned are
with respect to the number n of boolean variables.

Starting with a simple idea for solving 3-SAT, one can improve the running
time of the trivial algorithm to O(1.9130™). Since each clause has at most three
literals, one of the eight partial assignments of the three boolean variables cannot
lead to a satisfied formula. For instance, if the clause ¢ = (¢1, {3, ¢3) is contained
in the formula F', the case 1 = ¢ = f3 = 0 can be omitted. This technique is
called “pruning the search tree,” since dead ends of the computation tree are
cut off once they have been detected. Processing the formula F' clause by clause,
this simple algorithm runs in time O((23 — 1)"/3) = ©(1.9130").

Monien and Speckenmeyer were the first to give a better time bound [MS85].
Refining the above algorithm, they end up with a running time of O(1.6181")
for 3-SAT. Most crucially, they notice that once a clause ¢ = (¢1, ¢2, ¢3) has been
picked from the given formula F, it suffices to branch into the three cases Fj;,_1,
Fig,=0,6,=1, and Fjp,—g,—0,¢,—1- The computation is split into cases having one,
two, or three variable(s) fewer than before, which yields the recursion

Tn)<Tn—-1)+TMn—-2)+T(n-—3).

Here, T'(n) is defined as the worst-case running time of the algorithm on an
input with n variables left. Using standard methods, this bound is T'(n) = ",
where o = 1.8393 is the largest real root of the equation o® —a? —a —1 = 0.
Monien and Speckenmeyer improve this idea even further by taking into consid-
eration autark partial assignments, which are partial assignments ¢’ that satisfy
each clause in which any literal being assigned by t’ occurs. Autarkness can be
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recognized in polynomial-time, and for every autark partial assignment of F’,
the formulas F" and F); are equivalent. Hence, either the algorithm recurses into
the (polynomially recognizable) case of autarkness, where at least one variable
is eliminated, or a partial assignment is chosen which decreases the size of one
remaining clause. This analysis leads to a worst-case time bound of @( 1.6181™).

By a deeper analysis of all the different subcases which can occur when insert-
ing a partial assignment, the running time has been pushed down even further,
see Schiermeyer [Sch92, Sch96b] and Kullmann [Kul97, Kul99]. In Table 1, these
results are listed as well. Instead of analyzing dozens of subcases to reach better
worst-case bounds, other ideas than backtracking will be discussed for the rest
of this section.

Next, an algorithm proposed by Pudlak [Pud98] will be presented. Though
it does not outperform the general backtracking algorithms, the way to search
for a valid solution is quite nice. Rather than splitting the computation paths
when assigning a truth value to a certain variable, Pudlak’s idea is to divide the
variable set X into half, and first solve the satisfiability problem for the clauses
containing only variables from one of the two halves. This is a classical divide
and conquer approach. Note that it is not quite obvious how to extend the divide
process after the first level.

Let F = F(X,C) be a given boolean formula in 3-CNF. Without loss
of generality, assume that the number n of variables is even. Define X; =
{z1,..., 22} and Xo = {,/241,...,2Zn} to be the halved variable sets. Let
C:1 and C3 be subsets of C' whose clauses contain only variables from the sets
X, and X, respectively. The rest of the clauses, in which variables from both
X; and X5 occur, are put into the set C3. At first, the algorithm solves the
two 3-SAT instances F; = F1(X1,C1) and Fy = F5(Xs, Cs), which can be done
with the naive algorithm in time O(2"/2) = O(1.4143"). Let the set of satisfying
truth assignments for F; and F5 be called S; and S, respectively. Both sets are
regarded as lists. If one of them is empty, the algorithm terminates, since then
F is also unsatisfiable. Otherwise, for every s € Si, evaluate each clause ¢ € Cs
containing exactly two literals over X;. Either one literal is true and c evaluates
to true, or both literals are false, in which case the third literal over X5 has to
be set to true. The same is done for each partial assignment s € Ss. In the next
step, the algorithm tries to find a matching pair, s; € S1 and sy € Ss, so that
both partial assignments agree on every variable which has been set so far. Now,
the trivial 2™ barrier can be beaten by constructing two separate methods, one
of which performs well on partial assignments with many variables set to truth
values, while the other one is relatively fast when truth values have been assigned
to only a few variables. This way Pudlék achieves a running time of O( 1.8487™),
which of course is not competitive to the 3-SAT algorithms examined so far.

Another drawback of Pudlak’s method is that it is limited to the restricted
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case 3-SAT; by contrast, all other SAT-algorithms presented in this survey can be
extended to solve the general k-SAT problem.

The last deterministic algorithm for the satisfiability problem discussed here
is based on a local search method introduced by Schéning [Sch99]. Although this
approach was originally used to design a randomized algorithm for the satisfi-
ability problem, the method can be adapted to yield a deterministic algorithm
by a few modifications, i.e., an algorithm that always finds the correct solution.
This derandomization is described in [DGH'02]. The algorithm was slightly im-
proved in [BK04], which yields the currently best known time bound O(1.4726™)
for deterministic algorithms solving 3-SAT.

Suppose the boolean formula F' = F(X, C) is given and is satisfied by a truth
assignment s. The local search method works as follows. To eventually reach this
satisfying assignment, the local search method first guesses an initial truth as-
signment ¢ at random. Define the Hamming distance d between s and ¢ as the
number of bits in which they differ. If ¢ itself is a satisfying assignment, the algo-
rithm outputs that F is satisfiable. Otherwise, F' is not satisfied by ¢, therefore
in at least one clause ¢; = (€1, ¥2,4;3) of C, all three literals are set to false
by t. By recursing into the three subcases where the value of exactly one literal
of ¢; is flipped, the Hamming distance to the satisfying assignment s has been
decreased by one for at least one branch of the recursion tree. If the Hamming
distance between the initial assignment ¢ and the satisfying assignment was d,
this method would find s in time O(3%). Starting from the two assignments 0"
and 17, the algorithm is within Hamming distance of at most n/2 of a possible
satisfying truth assignment, so this simple deterministic procedure already has
a worst-case running time of O(3%/?) = O(1.7321™). Dantsin et. al [DGHT02]
further refined this idea by computing a suitable covering code, which is a set
of initial assignments that, given an optimally chosen Hamming distance d, will
reach every possible satisfying assignment s € {0,1}" through the local search
method. Deeper analysis of the number of starting assignments and the Ham-
ming distance led to the currently best worst-case time bound of O(1.4726™) for
3-SAT by Brueggemann and Kern [BK04].

Turning to randomized algorithms for 3-SAT, two basic probabilistic methods
will be sketched. The first concept is based on a method by Paturi, Pudldk,
and Zane [PPZ97]. Their simple algorithm first guesses a permutation 7 on
the set {1,2,...,n}. Then, a random value from {0,1} is assigned to each bit
of Z(,), and the formula is simplified by omitting clauses that contain satisfied
literals and by dropping false literals, just as with evaluating partial assignments.
At the end of the for-loop, the algorithm either ends up with an empty formula,
in which case a satisfying truth assignment has been found, or it runs across
an empty clause, which means that the formula is unsatisfiable, or the wrong
random choices have been made. The error rate in the second case is at most
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1/2 for each variable guess. Thus, the probability p to succeed in one cycle sums
up to p > (1/2)" if formula F' is satisfiable. Standard calculations show that
repeating this process r times, where r > In(1 + €)/p, leads to an error rate
below e. Not considering the simplifications during the probabilistic moves, this
approach results in a running time of poly(n)/(1/2)" € O(2"). Note that this
time bound is not better than the trivial 3-SAT bound. However, the expected
running time can be considerably improved by checking whether there exists a
unit clause ¢ = (x;) or ¢ = (T;) before each step ¢ of the computation. In this
case, the value of the variable z; can be set to true or false, respectively, in a
(correct) deterministic way, assuming that all the previous choices were correct.
Paturi, Pudldk, and Zane [PPZ97] show that this boosts the success probability
of one turn to p > (1/2)("/3) leading to a random algorithm of complexity
poly(n) - 22%/3 € O(1.5875™) for 3-SAT.

In a follow-up paper, Paturi, Pudldk, Saks, and Zane [PPSZ05] improve this
bound even further to O(1.3632"). The clauses of the formula F can be pre-
processed before each random step, making the occurance of unit clauses, and
therefore deterministic choices, much more likely. The decreased rate of possible
wrong guesses then straightforwardly leads to a smaller number 7 of repetitions
needed in the algorithm.

The second probabilistic approach is called randomized walk, and it is closely
related to the deterministic local search method presented above. The idea is due
to Schoning [Sch99]. Just as with local search, the random walk algorithm starts
with an initial random assignment ¢t € {0,1}" for the formula F' = F(X,C). If t
does not satisfy F, an unsatisfied clause ¢ = ({1, f2,¢3) is chosen, but instead
of splitting into the three subcases by setting exactly one literal of ¢ to true,
the variable to be flipped is chosen at random. If after 3n bit flips no satisfying
truth assignment has been found, the process is restarted with another random
initial assignment ¢’. In order to determine the number r of repetitions needed,
the error rate for each loop has to be bounded. Since the probabilistic algorithm
can make errors only if the given formula F' is satisfiable, suppose that F' is
satisfiable via some assignment s. The probability that the Hamming distance
between s and the initial guess ¢ € {0,1}" is d equals (Z) -27™. As each clause
consists of three literals, the probability of decreasing the Hamming distance
with a bit flip is at least 1/3, whereas an increase can be as likely as 2/3. Still, if
the initial guess is close to the satisfying assignment s, there is a high probability
that the algorithm will find s. The bit flipping continues for 3n steps, so that
some wrong decisions when picking a literal can be compensated for later. The
success rate for each random walk can be shown to be (3/4)", so after r = (4/3)"
iterations the overall error rate is negligibly small. The result is a probabilistic
algorithm running in time @(1.3334”). Actually, Papadimitriou first used this
random walk method to construct a probabilistic algorithm solving 2-SAT in



Riege T., Rothe J.: Improving Deterministic and Randomized Exponential-Time ... 731

| Source | Type | Bound |
| trivial algorithm |deterministic & randomized| A |
simple backtracking deterministic 1.9130™
Pudlék [Pud98] deterministic 1.8487"

Monien and Speckenmeyer [MS85] deterministic 1.6181™
Schiermeyer [Sch96b] deterministic 1.4970™
Kullmann [Kul99] deterministic 1.4963"
Dantsin et al. [DGH"02] deterministic 1.4802™
Brueggemann and Kern [BK04] deterministic 1.4726™
Paturi, Pudlék, and Zane [PPZ97] randomized 1.5875™
Paturi et al. [PPSZ05] randomized 1.3632"
Schéning [Sch99] randomized 1.3334"
Hofmeister et al. [HSSWO02] randomized 1.3302"
Baumer and Schuler [BS03] randomized 1.3290™
Iwama and Tamaki [IT04] randomized 1.3238"
Rolf [Rol05] randomized 1.3222™

Table 1: Worst-case time bounds for 3-SAT

time O(n?) [Pap91]. Since the formula in 2-CNF has at most two literals in each
clause, the error rate of the random choice can be bounded by 1/2.

Turning back to the NP-complete problem 3-SAT, the above bound was im-
proved to O(1.3302") by a clever idea of Hofmeister et al. [HSSW02]. Before
taking the initial guess, they collect a set of m variable-disjoint clauses. Depend-
ing on the number m, the algorithm splits into two cases. On the one hand, if m
is very small, each of the 7™ potential partial truth assignments t are tested,’
leaving a formula Fj; in 2-CNF, which can be solved in polynomial time. On the
other hand, if m exceeds a certain ratio (namely, m > 0.1469n), all variables
are set at random as before, with the difference that the probability distribution
is now depending on the input formula. Each set of three variables contained
in one of the m clauses ¢ collected in the first step is now set to specific values
as follows: either exactly one, or two, or three literals are set to true, with the
best probabilities for each of these three cases yet to be determined. The partial
assignment that leaves ¢ unsatisfied is not considered, which increases the prob-
ability to find a satisfying assignment. Note that the number of biased random
choices increases proportional to m, since only variables not contained in one of
the m clauses are set to true or false with probabilty exactly 1/2. Altogether,
! For each clause ¢ = (€1,€2,¢3), one of the eight partial assignments mapping the

literals £1, ¢2, and ¢3 to truth values never leads to a satisfying truth assignment,
namely ¢(£1) = t(¢2) = t(¢3) = 0.
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the algorithm reaches a worst-case time bound of O(1.3302").

Iwama and Tamaki [IT04] proposed a clever combination of the algorithms of
Schoning [Sch99] and Paturi et al. [PPSZ05] to obtain a worst-case time bound
of O(1.3238"). Their algorithm was further improved by Rolf [Rol05], whose
algorithm with a time bound of O(1.3222") is the current champion of the prob-
abilistic methods to solve 3-SAT. Table 1 compares the worst-case running times
of the presented deterministic and probabilistic algorithms solving 3-SAT.

3 Colorability

A graph is a pair G = (V, E), where V. = {v1,v9,...,v,} is a set of vertices
and E = {{v;,v;}|1 < i < j < n}is aset of edges, each edge connecting two
vertices. Two connected vertices are called adjacent. A mapping f from V to the
set {1,2,...,k} is called a k-coloring of G. A coloring is said to be legal if and
only if no two adjacent vertices are mapped to the same color. The minimum
number k£ such that G has a legal k-coloring is called the chromatic number of
G and is denoted by x(G). One may look at a coloring f : V — {1,...,k} of
graph G as a partition of the vertex set V into k disjoint sets V7, ..., Vi, where
each set represents a color class V; = {v € V| f(v) = i}. In the case of a legal
coloring, each set of the partition must be an independent set, i.e., must contain
only nonadjacent vertices. Given a graph G, the general colorability problem asks
to determine the value of x(G). The set k-Colorability contains all graphs G
with x(G) < k. A graph G can be legally colored with two colors if and only if
it is bipartite, thus 2-Colorability is in P. It is known that k-Colorability is
NP-complete for all k > 3, see [Kar72].

The first nontrivial exact exponential-time algorithm for the colorability
problem is based on dynamic programming and is due to Lawler [Law76]. The
idea comes from a simple observation. A mazimal independent set is an inde-
pendent set that is no proper subset of another independent set. Among all the
legal colorings f of G that are minimal (that is, f maps to exactly x(G) colors),
at least one has to contain such a maximal independent set. To see this, take
one of the minimal colorings and one specific independent set U of the partition,
which is mapped to color ¢. If U itself is not maximal, there exists a set U’
with U C U’ and U’ is a maximal independent set. Change f to f’ by assigning
to each vertex in U’ the color i. Then f’ is a legal coloring with x(G) colors
containing a maximal independent set.

With this in mind, an algorithm calculating x(G) can easily be constructed.
For a graph G = (V, E) and any subset V' C V, denote by G[V'] = (V', E’)
with B = {{u,v} € E|u,v € V'} the subgraph induced by V’. If the chromatic
number of all induced subgraphs G[V"] for every proper subset V" C V' has
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already been computed, x(G[V']) is determined by the formula
X(G[V']) = 1+ min{x(G[V' = V"])},

where the minimum is taken over all V" C V' such that V" is a maximal in-
dependent set. The dynamic programming approach computes the chromatic
number of all subsets of V' with increasing cardinality. This way, during each
iteration with a subset V', all chromatic numbers of G[V"] with V" C V' are
already known. The overall running time is Y, (})2" € O(3"). Lawler im-
proves this bound by using two results from graph theory. On the one hand, it
is known that there are at most 3"/ maximal independent sets for a graph with
n vertices, which was proven by Moon and Moser [MM65]. On the other hand,
each of these sets can be generated in time O(n?), as was shown by Paull and
Unger [PUBY]. This leads to a worst-case time of

n

Z (Z) k23k/3 < n2(1 + 31/3)n7

k=1

which is in @(2.4423"). This result on the general colorability problem is further
refined by Eppstein [Epp03] to @(2.4150").

Now turning to the special case of 3-Colorability, the naive algorithm runs
in time (’5(3”) It cycles through all possible mappings from the n vertices to
the three colors and verifies their legality. This naive approach is already beaten
by Lawler’s algorithm for the general colorability problem. The barrier @(2”) is
reached by picking a starting vertex vg € V, assigning it to the first color set,
and processing through the rest of the graph by a simple searching procedure like
breadth-first search. Since every vertex is adjacent to a vertex that has already
been mapped to one color, only two choices are left in each step. Hence, this
splitting algorithm runs in time @(2”)

Another simple idea improves this bound even further. If V' is partitioned
into three sets, the smallest set must have cardinality less than or equal to n/3.
There are only ZZL 31 ( k%) such sets. Listing all of them and checking that they

are independent sets can be done in time O(1.8899™). If the first set of the
partition is given, say Vi, the remaining vertices in V' can be legally two-colored
in polynomial time. This task is the same as checking whether the induced
subgraph G[V — V1] is bipartite, i.e., can be partitioned into two independent
sets. With the ideas of Lawler, one can achieve a worst-case bound of O(1.4423™)
for determining if a given graph G = (V, E) is legally three-colorable. Instead
of looking at every subset, simply list all maximal independent sets V' C V.
Their vertices are mapped to the first color class. The remaining problem is
again solvable in polynomial time. As seen above, the time needed to generate
all maximal independent sets is n? - 3"/3 € (0(1.4423"). Schiermeyer further
improved this bound [Sch96a]. His method first chooses some vertex of maximum
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degree and continues with properly handling the many subcases that can occur,
which requires a rather deep, technical analysis. The worst-case time bound
given in his paper is O(1.3977").

Beigel and Eppstein [BE95] continued the progress of improving the running
times of algorithms solving 3-Colorability with an utterly new approach. In-
stead of listing all possible independent sets for the partition and verifying each
choice, they look at the coloring problem as a special case of a constraint sat-
isfaction problem, CSP for short. This problem depends on two parameters, a
and b, and is defined as follows. An (a,b)-CSP instance consists of a set of n
variables, each of which can take on a distinct values, and additionally of m
constraints, each involving at most b variables. Such an instance is solvable if
and only if there exists a mapping from the n variables to the a values such that
all constraints are satisfied. For example, the problem (2, 3)-CSP is nothing other
than 3-SAT, since every variable may be set to one of the two values 1 (true) or
0 (false), and every clause represents the constraint that not all three literals
in the clause are set to false. Similarly, colorability problems can be viewed as
(a, b)-CSP for suitable a and b. For example, 3-Colorability can be regarded as
a special case of (3,2)-CSP. The vertices of the given graph represent the vari-
ables, which can be mapped to three distinct colors, and every edge induces the
constraint that its two vertices cannot be mapped to the same color.

Beigel and Eppstein state and prove some useful basic properties of (a, b)-CSP.
For instance, there is an easy transformation from every (a,b)-CSP instance to
an equivalent (b, a)-CSP instance, which implies some form of duality. Even more
importantly for the colorability problem, they show how to remove variables from
(a,2)-CSP instances that are restricted to only two of the a possible values. This
result is used in the analysis of the following very simple randomized algorithm
for 3-Colorability: For each vertex v € V, randomly choose one of the three
colors to which v cannot be mapped. With probability at least 2/3, a random
choice is correct, so the overall success probability is (2/3)™. The resulting CSP
instance is then equivalent to a 2-SAT formula, which can be solved in polynomial
time. The reciprocal value of the success probability leads to a time bound of
@(1.5”) for this randomized algorithm for 3-Colorability. The same bound
was achieved by Schoéning [Sch99], who used the local search method described
in Section 2 to solve the general constraint satisfaction problem.

To improve the above time bound of this simple probabilistic method, the
following idea is used in [BE95]. Suppose there is a constraint involving two
variables (in this case vertices), v1 and v, such that both cannot share some
value a € {1, 2, 3}. Now restrict the color choices for the vertices v; and v, to one
of the four cases where one color is eliminated for each vertex, such that exactly
one vertex is allowed to be colored with b or ¢ € {1,2,3}, where b # a # c. It
can be verified that this random choice is correct in half of the cases that can



Riege T., Rothe J.: Improving Deterministic and Randomized Exponential-Time ... 735

occur. For example, if one of the vertices, say v, needs to be mapped to color a,
in two of the four cases color a was not eliminated for the correct vertex v;. And
as another example, if ¢ must not be used in the coloring of v; and vs, in half of
the four cases the right color was kept as a choice. This way two vertices can be
removed in one step by the simplifying process mentioned above, even though
the error rate increases from 1/3 to 1/2. Still, the overall success rate is (1/2)"/2,
and so the randomized algorithm needs to be repeated only @(2”/ %) times to
reach a negligibly small error rate. This leads to a running time of @(1.4143”).

This local elimination of colors for some set of vertices can be used to yield a
deterministic algorithm for 3-Colorability, which has an even better running
time than the probabilistic methods described so far. Suppose the (3,2)-CSP
instance contains a variable v which, associated with a value a € {1,2,3}, is
involved in constraints with many other variables. The computation handles
the following two cases sequentially: first, v is mapped to a; second, v is re-
stricted to the other two values remaining. This is a deterministic algorithm,
since both cases will be handled eventually. In the first case, many variables
are restricted to two values because they were contained in constraints includ-
ing v and a. Remember that in (3,2)-CSP, constraints consist of at most two
variables. When restricted to two values, the variables can be eliminated by the
standard deterministic procedure described in [BE95]. In the other case, only
v can be removed from the instance, but this is balanced by the first branch,
which reduces the CSP considerably. For the (3,2)-CSP instance corresponding to
a 3-Colorability graph, the number of constraints is bounded by the degrees
of the vertices. Vertices of degree two or less do not have to be considered in
the case of 3-Colorability, and the recursion T'(n) < T'(n —4) + T(n — 1) is
obtained, which gives a worst-case time bound of @(1.3803") for the algorithm.
This bound was also reached for the general (3, 2)-CSP, though the case analysis
which leads to the same recursion as above is much more sophisticated.

An improvement to O(1.3446") is achieved by yet another idea of the same
authors [BE95]: Pick a small set of vertices V' C V such that most of the graph
is covered by the open neighborhood

NV ={veV -V 3w e V' with {v,w} € E}

of V’. Now, all the 3!Vl possible colorings for the vertices in V' are tested. For
each mapping, every vertex v € N (V") is restricted to at most two colors, so they
can be eliminated again by the standard procedure. The remaining (3,2)-CSP
instance containing only vertices in V' — (V/ U N(V")) is then solved with the
algorithm described in the preceding paragraph.

Introducing an idea that has later been dubbed “measure and conquer,”
Eppstein [Epp01] improved the running time even further to @(1.3289"). This
new technique will be discussed in Section 4 for the domatic number problem.
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| Source | Type | Bound |
| trivial algorithm |deterministic & randomized| 3" |
simple BFS deterministic 27
Lawler [Law76] deterministic 1.4422™
Schiermeyer [Sch96a] deterministic 1.3977"
Beigel and Eppstein [BE95] deterministic 1.3446™
Eppstein [Epp01] deterministic 1.3289™
Schéning [Sch99) randomized 1.5"
Beigel and Eppstein [BE05] randomized 1.4143™

Table 2: Worst-case time bounds for 3-Colorability

Eppstein’s bound is currently the best known result for recognizing if a given
graph is colorable with three colors.

Table 2 lists all results for the 3-Colorability problem presented here. Inter-
estingly, the randomized methods developed so far have worse running times than
the best deterministic ones. This might be explained by the fact that the ran-
domized algorithms for 3-Colorability are all very simple up to date, whereas
the deterministic methods to color a graph with three colors have been studied
and refined for quite a long time. Another reason for the rather sparse num-
ber of randomized algorithms for 3-Colorability might be that all random
approaches solve the general constraint satisfaction problem, but colorability is
actually only a special case of a CSP. The field of randomized coloring algorithms
remains a promising research area for future work.

4 Domatic Number Problem

Let G = (V, E) be a given graph. A subset D C V of the vertex set is called a
dominating set of G if and only if every vertex u € V — D is adjacent to at least
one vertex v € D. The domatic number of G, which is defined as the maximum
number of disjoint dominating sets, is denoted by §(G). The (search version of
the) domatic number problem asks to determine the domatic number of G. In
other words, G is to be partitioned into as many sets as possible that each are
dominating. Defining the decision version of this problem, let k-DNP denote the
set of graphs with §(G) > k. Note that for each k > 3, k-DNP is NP-complete,
see Garey and Johnson [GJ79]. We here restrict our attention to 3-DNP.
Although the domatic number problem is important for various practical ap-
plications (for example, for the task of distributing resources in a network), there
exist only very few exact exponential-time algorithms for 3-DNP in the literature.
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It is not quite obvious why other interesting NP-complete graph problems—
such as 3-Colorability—have been studied much more intensely up to date.
One reason for this might be that the domatic number problem seemingly is
more difficult to handle than the colorability problem, in the sense that “dom-
inance” is a global property, whereas “independence” (and thus “colorability”)
has a local character. To wit, checking if a given set S is independent can be
achieved by looking at its neighborhood, N(S). In contrast, verifying that S is
a dominating set is possible only when taking a look at the whole graph G. This
difficulty can also be seen when transforming the domatic number problem into
a constraint satisfaction problem: The question of whether a graph is colorable
with k colors can be translated into a (k,2)-CSP instance, as seen in Section 3,
but k-DNP can be generalized only to a (k,d + 1)-CSP instance, where d = A(G)
is the maximum degree of the graph G. For each vertex v € V', there are k con-
straints representing the condition that at least one of the vertices in N[v], the
closed neighborhood of v, needs to be part of one of the k¥ dominating sets.

As noted in [RRO05], Lawler’s algorithm [Law76] for the colorability problem
can be adapted to find the domatic number of a graph G in time @(3") This
observation straightforwardly leads to an (7)(3”) algorithm for k-DNP (and, in
particular, for 3-DNP). While the bound for 3-Colorability could be improved
by using results from graph theory, no similarly useful theorems helping to im-
prove the worst-case bound for determining the domatic number are known until
today.

The first algorithm breaking the trivial 3" barrier is due to Riege and Rothe
[RRO5]. Their backtracking algorithm successively assigns the vertices in V' to
the three potential dominating sets in some kind of greedy manner, seeking to
find vertices that seem to be most helpful in finding the three dominating sets.
Those are usually the vertices of large degree, since they can dominate a larger
part of the graph. It can be shown that this recursive procedure has a worst-case
running time of ©(2.9416™), which is only slightly better than the trivial time
bound.

A new approach is used by Fomin et al. [FGPS05]. Their “measure and con-
quer” technique is based on Eppstein’s observation that improvements on the
worst-case running time of an algorithm can be made by a more careful analy-
sis of the backtracking procedures [Epp04]. Standard worst-case analysis often
uses a too rough measurement when calculating the recurrences modeling the
recursion. The common size for a problem instance is the number of variables
(for satisfiability) or the number of vertices (for domatic number or colorabil-
ity). This sometimes does not reflect the actual progress of the algorithm when
processing different choices in the recursive branching. For example, mapping
variables that very often occur in many clauses of a SAT instance to a specific
value might have a greater impact than assigning a value to a less frequent vari-
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able. A finer analysis can be made by putting different weights to the variables,
depending on the impact they have when being processed by the algorithm. This
technique of further bounding the number of leaves in the computation tree can
drastically improve the worst-case running time of one and the same algorithm.
The optimum weights yielding the minimum upper bound of the backtrack-
ing algorithm can be found efficiently by Eppstein’s quasiconvex programming
method [Epp04].

Fomin et al. [FGPS05] use this approach to obtain an algorithm that lists
all minimal dominating sets of a graph G with n vertices in time O(1.7697™).
They then use this result to design an algorithm for computing the domatic
number of G in the following way. As was the case with maximal independent
sets in minimal colorings of a graph, note that at least one of the partitions of G
into the maximum number of dominating sets contains a minimal dominating
set. For any subset V! C V| let ¢’(G[V']) be the maximum number of disjoint
minimal dominating sets of G containing only vertices in V’. With basically the
same idea that Lawler used to compute the chromatic number of G, one can
dynamically construct the domatic numbers of induced subgraphs, using

§(GV']) = max{§'(G[V' — D]) + 1},

where the maximum is taken over all minimal dominating sets D C V' of G. Via
Eppstein’s numerical procedure [Epp04], one can optimize the parameters of the
occurring recurrences and reach a worst-case time of O(2.8805") to obtain the
domatic number of the given graph G. Once 0(G) is known, membership in 3-DNP
is easily determined.

The worst-case bound of several simple algorithms for NP-hard problems
could be improved significantly at the cost of having to deal with a more complex
recursive analysis. Fomin, Grandoni, and Kratsch recently published a survey of
the “measure and conquer” method [FGKO5], and they also discuss lower bounds
for exact exponential-time algorithms. Knowing the lower bound for a specific
algorithm gives an indication of how far away from the best bound possible a
proven worst-case upper bound might be.

The currently best worst-case time of a 3-DNP algorithm running in polyno-
mial space is due to Riege, Rothe, Spakowski, and Yamamoto [RRSY, RRSY06].
Their procedure first lists all minimal dominating sets of a given graph G, which
is possible in time O(1.7697™) as shown by Fomin et al. [FGPS05]. For each such
set D, it remains to find two other dominating sets. This problem can be trans-
formed to a special case of the satisfiability problem. For each vertex v € V,
create a clause containing every vertex in the closed neighborhood N[v] which
is not already contained in D. Then, try to solve this SAT instance in the not-
all-equal sense, meaning that at least one, but not all of the literals in each
clause must be set to true. By doubling the number of clauses, this not-all-equal
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| Source | Type | Bound |
| trivial algorithm |det. & rand. | 3" |
Riege and Rothe [RRO5] deterministic|2.9416™
Fomin et al. [FGPS05) deterministic|2.8805™

Riege, Rothe, Spakowski, Yamamoto [RRSY, RRSY06]|deterministic|2.6949™

Table 3: Deterministic worst-case time bounds for 3-DNP

SAT instance can be translated to a regular SAT formula, which is then solved
in time O(1.234™) with Yamamoto’s algorithm [Yamo05]. Here, m is the number
of clauses. Since in this case m equals 2n, where n is the number of vertices in
graph G, the overall time-bound is O(1.7697™ - 1.234%") = O(2.6949™).

Table 3 lists all currently known bounds of deterministic 3-DNP algorithms
running in polynomial space. We mention that Bjorklund and Husfeldt [BHOG]
obtained better worst-case time bounds for algorithms not running in polynomial
space. In particular, they presented an algorithm that finds the domatic number
of a given graph in time and space O(2").

Randomized algorithms for 3-DNP have been studied only for input graphs of
bounded maximum degree. Two results have been obtained and are summarized
in Table 4 for graphs with maximum degree A(G), 3 < A(G) < 7. The perfor-
mance of these two randomized algorithms is compared to the following simple
deterministic method [RRO5]. First, process the graph by breadth-first search.
For each vertex v of the vertex set V', branch into all cases that assign all vertices
in the closed neighborhood Nv] to the three dominating sets, looking only at
cases which might lead to a valid partition. For example, the case of assigning
all vertices of N[v] into one set will not be considered. Here, the number of pos-
sible choices increases with the degree of the vertex and hence the running time
depends on the maximum degree of the given graph G.

The first randomized algorithm essentially uses the same method [RRO5].
Instead of trying all valid partitions of the closed neighborhood Nv], pick three
vertices in N[v] at random and assign them to the three different dominat-
ing sets. The second random algorithm [RRSY, RRSY06] uses the probabilistic
method of Schoning [Sch99] to solve constraint satisfaction problems. Note that
an instance of 3-DNP restricted to graphs G with maximum degree d = A(G) can
be transformed into a (3, d + 1)-CSP instance. The second randomized procedure
performs better than the first one whenever A(G) > 5.
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| Source | Type |A(G) = 3| 4 | 5 | 6 | 7 |
[RRO5] deterministic| 2.2894™ [2.6591™(2.8252™|2.9058™|2.9473"
[RRO5] randomized 2" 2.3570™|2.5820™(2.7262™|2.8197™

[RRSY, RRSYO06]| randomized | 2.2501™ |2.4001™|2.5001™|2.5715™|2.6251"

Table 4: Results for 3-DNP on graphs with bounded maximum degree

5 Summary

In this paper, we have surveyed various exact exponential-time algorithms for the
NP-complete problems 3-SAT, 3-Colorability, and 3-DNP, trying to document
the progress that has been made at improving the worst-case time bounds since
the first such algorithms appeared in the early seventies. Additionally, the results
are compared to the upper bounds of randomized algorithms for these problems.
In the case of the satisfiability and the domatic number problem, the power
of randomness can significantly reduce the running time of the algorithms, at
the cost of making errors with a certain probability. Using standard probability
amplification, this error can be made negligibly small.

We mention that exact exponential-time algorithms have also been proposed
for NP-hard problems other than those presented here. For example, constraint
satisfaction problems were considered by Kumar [Kum92] and Schoning [Sch99].
One of the most famous examples of an NP-complete set, the traveling sales-
person problem, still withstands all attempts to break the (7)(2") barrier, which
nonetheless is much better than the trivial method of skimming through all
the n!/2 possible tours. Exact algorithms for the NP-complete independent set
problem are already very close to the barrier ¢ = 1 in @(C"), which would imply
P = NP and so is very unlikely ever to be reached. The currently best inde-
pendent set algorithm is due to Robson [Rob01] and achieves ¢ = 1.1889 in the
worst-case (see also [Rob86] for previous results on finding maximum indepen-
dent sets in a graph).

There are problems which lie between the complexity classes P and NP (as-
suming P # NP) in the sense that they clearly belong to NP, yet have resisted
any attempt to show NP-hardness as well as any attempt to find a polynomial-
time algorithm. Until recently, the question of whether a given integer is prime
was one of those problems. By very clever arguments from number theory,
Agrawal, Kayal, and Saxena found the first deterministic algorithm solving this
ancient problem in polynomial time [AKS04]. Another problem which seems to
be neither in P nor NP-complete is the graph isomorphism problem, GI for short.
This problem contains all pairs of isomorphic graphs. Two graphs, G; = (V1, E1)
and G = (Va, Es), are isomorphic if and only if there exists an edge-preserving



Riege T., Rothe J.: Improving Deterministic and Randomized Exponential-Time ... 741

permutation 7 mapping from Vi to Va, which means that {u,v} € E; if and
only if {m(u),m(v)} € E,. This problem has been intensely studied, see Kobler,
Schoning, and Toran [KST93]. Although GI has not been proven to be NP-hard
so far; no efficient algorithm finding an isomorphism between two given graphs is
known. The naive procedure that cycles through all possible permutations runs
in time @(n') To our knowledge, the method of Babai is the only known exact al-
gorithm besides the trivial one solving the graph isomorphism problem [Bab81].
This algorithm runs in time @(e"lﬁ) with ¢ = 1/3 + o(1).

In practice, some NP-complete problems turn out to be efficiently solvable
on the average. Average-case complexity deals with this phenomenon, and Levin
was one of the first trying to capture this notion in a mathematical precise
way [Lev86]. Given a certain probability distribution on the inputs, one can de-
fine what it means that an algorithm performs well on the average. One example
of an NP-complete problem that is easy to solve on the average is the graph col-
oring problem [Wil84]. However, a lot of problems remain hard to solve even
in the average-case model. For surveys of average-case complexity, the reader
is referred to Wang [Wan97a, Wan97b|, Goldreich [Gol97], and Ben-David et
al. [BCGL92].
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