
Extension of CQL over Dynamic Databases

Antal Buza
(College of Dunaújváros, Hungary

buza@mail.duf.hu)

Abstract: CQL, Continuous Query Language is suitable for data stream queries. Sometimes it
is better if the queries operate on relational databases and data streams simultaneously. The
execution of a CQL query takes a long time (several hours, days or even more). It is not clear
what kind of semantics is suitable for the user when the database is updated during the
execution of a CQL query. In this paper we give a short description of CQL, a characterization
of update-problems, and we offer possible suggestions for the semantic extension of CQL. After
the expansion, the CQL would be suitable for solving much more practical problems. The
parallel usage of continuous data streams and updatable databases would be settled.

Keywords: data-flow languages, database, query languages
Categories: D.3.2, H.2.1, H.2.3

1 Introduction

CQL, Continuous Query Language is an expressive SQL-based declarative language
for registering continuous queries against streams and updatable relations. CQL is
suitable for data stream queries. Sometimes it is better if the queries operate on
relational databases and data streams simultaneously. The execution of a CQL query
takes a long time (several hours, days or even more). It is not clear what kind of
semantics is suitable for the user when the database is updated during the execution of
a CQL query. For example, if correctly applied, changing the value of an account
while the official rates are updated, then the CQL system calculates with the
retroactive effect of the update. For observing the trade of a supermarket, another
semantics is required when the prices are changed while using the CQL query. In this
case, the effect of the update is valid from the moment of the update. In this paper we
give a short description of CQL, a characterization of the update-problems, and we
offer possible suggestions for the semantic extension of CQL.

Another interesting problem is the explanation of the consistent state. In classical
database theory, it is a usual requirement that the ‘normal’ state of a database is the
consistent state. However, the consistency is not a permanent state, during the updates
the consistent state may be briefly damaged. We have investigated what the effect of
the inconsistent state is on the currently operating CQL queries.

In [Section 2], mainly based on [Arasu, 03c] and [Babu, 01b], we give a short
overview of data streams and the Continuous Query Language. It seems the
developing process of CQL has not yet finished; as a number of questions have not
been solved yet or the research and development group analyses of different
situations, solutions, and the effects of these, has not been completed. In [Section 3]
some extensions to CQL are suggested. The extensions follow the effects of updates

Journal of Universal Computer Science, vol. 12, no. 9 (2006), 1165-1176
submitted: 31/12/05, accepted: 12/5/06, appeared: 28/9/06  J.UCS

of databases realized during the long execution of CQL queries. In real situations, the
effects of the updates of databases have three forms: the ‘retroactive’, the ‘from the
update’, and the ‘strong’ effect of the update.

2 Introduction to continuous queries and CQL

In this section we introduce the readers to data streams, continuous queries and the
Continuous Query Language (CQL). This section is based on technical literature and
we recommend that it is read by those who are not familiar with CQL.

2.1 The data stream and the continuous query

Data stream: Several applications naturally generate data streams as opposed to data
sets: financial tickers, performance measurements in network monitoring and traffic
management, log records, manufacturing processes, data feeds from sensor
applications, email messages and others. We can claim that the data streams are more
natural than databases.

Continuous query: We consider the continuous query which is issued once and
then logically run continuously over the data stream and/or over the database (in
contrast to traditional one-time queries which are run once to completion over the
current data sets).

We can consider/transform the database into the stream (for example as a result of
some kind of sequential read of the database), and conversely, using the data stream
records we can append the database.

Why do we use data streams and continuous queries? Why it is not a good strategy
to build databases and use classical SQL queries? Because it may happen that the data
stream produces a very huge mass of data in a short time. For example: we would like
to detect the daily traffic on a 2Gbit/s line; which might generate more than
100Mbyte/s of data, i.e. 6Gbyte/min, 360Gbyte/hour, 8.6Tbyte/day. The store (the
speed of update and the disk capacity) and the repeated (!) query of this huge mass of
data causes several problems, especially when we use the join operator. A better way
would be to use a continuous query over the data stream.

2.2 CQL - Continuous Query Language

“CQL is an expressive SQL-based declarative language for registering continuous
queries against streams and databases” – Jennifer Widom. CQL is developed and
implemented at Stanford University in the STREAM project.

2.3 Illustrative CQL examples

Instead of the full description of CQL, we cite some illustrative examples to
demonstrate the abilities of CQL. Consider the domain of network traffic
management for a large network. The network traffic management applications
processes are typically rapid, unpredictable and continuous data streams. In the
following examples we observe the traffic generated streams PTc and PTb (packet
traces collected from the costumer and backbone links, respectively). For simplicity,
we assume that the packet header comprises the fields: saddr – IP address of packet

1166 Buza A.: Extension of CQL over Dynamic Databases

sender, daddr – IP address of packet destination, id – packet identification number,
length – length of the packet, timestamp – time when the packet header was recorded.

The first CQL example computes the load on the backbone link averaged over one
minute periods and notifies the network operator if the load exceeds a threshold T.

 SELECT notifyoperator(sum(length))
 FROM PTb
 GROUP BY getminute(timestamp)
 HAVING sum(length)> T

In this example, the notifyoperator and the getminute are self-explanatory
functions. Similar functionality might be achievable using triggers in conventional
DBMS, but this is certainly something conventional triggers are not designed for.

The next example illustrates the finding of the fraction of traffic on the backbone
link coming from the customer network.

 (SELECT count(*) FROM PTc AS C, PTb AS B
 WHERE C.saddr=B.saddr AND
 C.daddr=B.daddr AND
 C.id=B.id)
 / (SELECT count(*) FROM PTb)

This is an example of an ad-hoc continuous query. (Since unbounded intermediate
storage could potentially be required for joining two continuous data streams, we
must use some kind of restriction: such as a time window, because the answer might
only be an approximate answer).

The third example monitors the top 5% source-to-destination pairs in terms of
traffic on the backbone link:

 WITH load AS
 (SELECT saddr,daddr,SUM(length) AS traffic
 FROM PTb
 GROUP BY saddr,daddr)
 SELECT saddr,daddr,traffic
 FROM load AS L1
 WHERE (SELECT COUNT(*)
 FROM load AS L2

 WHERE L2.traffic < L1.traffic)>
 (SELECT 0.95*COUNT(*) FROM load)
 ORDER BY traffic

In the above example we used the SQL3 WITH construct for ease of expressing the
query.

1167Buza A.: Extension of CQL over Dynamic Databases

As stated in [Section 1], the continuous queries operate either on the relational
databases or on the data streams separately or on both simultaneously.

3 The updates of the databases produce different effects on
answer strategy of the CQL queries

CQL was developed mainly for data stream processing. However, tasks which require
the common and simultaneous usage of the data streams and databases in practice
may occur. The number of tasks keeps growing, because data stream generator
equipments are being continuously developed; therefore they will be used in more and
more fields. As a consequence, data stream processing will appear in more and more
such applications; where the stored (e.g. ‘historical’) data produced by other systems
are required to generate the correct answer. The ‘historical’ data is typically stored in
databases and/or files.

Simultaneous usage of the data stream and the database raises the question: “How
the CQL answer is affected by the updates of the database during the long time
execution of the CQL query?” In this section, examples are used to demonstrate that
the update of the database must been taken into account differently in each particular
case in order to produce the correct answer for the customer. It is probable that this
problem has not yet been studied because non-database oriented questions have only
been considered in a basic manner. Therefore the effects of updates have not yet been
analyzed.

The aim of the paper is to suggest the extension of CQL, because mixed (stream
and database) applications would seem to be very important in the near future – as
illustrated by these experiments.

Remember that the continuous query runs continuously for a long time. During
this long running time the used database(s) might be updated. How must the CQL
query for the event of the update reflect this?

3.1 The retroactive effect of the update

Let us take an example in the banking environment. We store the accounts in the
RDBMS, in the relation “ACC”, several updates come through the stream “UPDS”
and we store the rates in the relation “RAT”. The rates may be changed during the
execution of the CQL query. In this case, when we use a continuous query for the
actual sum of the accounts in € (or in $, or in any common value), we can calculate
with the retroactive effect of the update of rates relation. For example, we have an
account of $400, and supposing $1=€N before the change of the rate. However, the
rate suddenly changes so that the new rate is $1=€M. As a consequence the value of
our account expressed in € will change.

1168 Buza A.: Extension of CQL over Dynamic Databases

Figure 1: The effect of the update of RAT relation is retroactive for the answer

of the CQL query

The situation is illustrated by [Figure 1]. The accounts are stored in the relation

ACC, the rates are stored in the relation RAT, and the update records of the ACC
relation come through the UPDS data stream. The continuous query was started at
time t0, and the relation RAT was updated at time tupd.

The CQL query seems to be extendible in order to manage the above mentioned
problem. The suggested extension of the CQL query is as follows: the query
summarizes the actual accounts - stored in ACC relation - expressed in Euro. The
query is sensitive to the update of the rates (RAT) relation.

 SELECT SUM(val*rate)
 FROM (STREAM(ACC) CONTINUE UPDS)
 NATURAL JOIN
 RAT(RETROACTIVE)

Operator STREAM produces a stream from the relation ACC. The keyword
CONTINUE symbolizes a ‘time-ordered’ UNION (e.g. one stream is described in the
clausal FROM, first part of the stream consists of the rows of the ACC relation at time
t0, followed by the stream records coming through the UPDS data stream). Keyword
RETROACTIVE indicates that the continuous query will be virtually re-started when
the relation RAT is updated (The ‘virtual re-start’ means that the system re-reads all
relations and one processes the stream from now). The virtually re-started state of the
continuous query is illustrated by [Figure 2].

1169Buza A.: Extension of CQL over Dynamic Databases

Figure 2: The virtually restart of the UPD_RETRO type CQL query

The tupd_last symbolizes the last update-time of the RAT relation, the tupd_next

symbolizes the next update time of the RAT relation (in the future), thus tupd_last <
now < tupd_next. The virtual re-start means that the query in the moment of time
tupd_last re-reads the relation ACC and it uses only the new/actual part of the UPDS
stream (produced after moment of time tupd_last). The query reads the RAT relation
logically permanently. The theoretical operation of the continuous query is based on
this fact. In practice, when there is sufficient memory for the storage of the relation
RAT; then the query does not read this relation continuously or repeatedly, but does it
immediately after the last update of the relation.

In the above example, the identified problem may be solved by repeating the
‘classical’ SQL query frequently or continuously. However, in cases where the table
“ACC” is very large and/or is distributed over a number of geographical places, then
the usage of the CQL query is much more suitable than using the SQL query. In this
case, the using the CQL query requires less resources than the SQL query, therefore
the CQL query generates the answer more quickly.

3.2 The ‘from now’ type effect of the database update

Another required semantics of the update is explained as follows: when the update
produces an effect only from the actual time (from the moment of the update) and in
the future of course. For example, in trade systems when the prices are changed and
the continuous query is used for determining the actual (daily, weekly, monthly)
income, we can calculate the effect of the update only from now (from the moment of
the update) and in the future (till the next update).

Let us look at an example for cases like this. [Figure 3] shows the environment of
the continuous query.

1170 Buza A.: Extension of CQL over Dynamic Databases

Figure 3: The environment of the continuous query when the effect of the update

belongs to the type ‘from now’

In [Figure 3] the relation TRADE is the relation of the previous trade records, in
the relation PRICES we store the actual prices and the new trade records come
continuously through the data stream APPENDS. We can calculate the sum of the
weekly income using the following continuous query:

 SELECT SUM(quantity*price)
 FROM (STREAM(SELECT * FROM TRADE
 WHERE WEEK(tdate)=WEEK(date))
 CONTINUE APPENDS)
 NATURAL JOIN
 PRICES(ACTUAL)

Now the keywords STREAM and CONTINUE are the same as in the previous
example, the keyword ACTUAL indicates that the query uses the actual state of the
relation (which is changeable during the execution of the continuous query).

This query calculates the weekly income of a supermarket, taking into account the
changes of the prices of the sold items. The effects of the updates of the prices are
valid from the time of the updates till the next updates.

The query execution system rereads the relation of prices repeatedly or it does so
when the system detects the update of this relation, respectively, depending on the
size of the updated relation and the size of the usable memory.

In this example, the common use of the “TRADE” database table and the stream
records is reasonable because we can put a question referring to some earlier period
than the last start of the CQL query. Parallel usage of table “TRADE” and the stream
“APPENDS” is not really simultaneous mode. Usage of the table “PRICES” is
trivial; indeed the really simultaneous mode is with the stream “APPENDS”.

1171Buza A.: Extension of CQL over Dynamic Databases

3.3 Strongly sensitive update queries

The third strategy is that when the query is strongly sensitive to the update.
Examples are found for such cases in trade systems: when the names of

manufacturers have been changed or firms have been merged or separated and the
new organisation will take over the continuity of the predecessors’ debts. In this
situation the continuous query, being focused on determining the actual partner’s
invoices, is strongly sensitive to the updates described above.

The query uses the original (i.e. the contents of the relation at the moment of the
start of the CQL query) contents of the relations. The execution of the continuous
query terminates when the content of those relations is changed. The query may be
restarted manually or automatically; and it produces a new answer that is totally
independent of the previous answer.

The following form is suggested to specify the relation update that is the cause of
the strongly sensitive queries:

Relation(ORIGINAL)

The keyword ORIGINAL indicates that the continuous query uses the original
content of the relation during the executions. The update of this relation must cause
the termination of the execution of the continuous query. As we have already
discussed; the query may be restarted automatically or manually.

The three semantics (‘update retro’, ‘actual’ and ‘original’) are not mutually
exclusive; it means that all versions may be used in the same query too.

3.4 Qualification by attributes

From the point of view of the continuous query the wanted effects of the updates of
the relations may be different according to the different attributes. A continuous query
which is sensitive to the update of the price of any item, at the same time one is not
sensitive to the update of the supplier’s phone number. As a consequence, the wanted
effects of the updates of the relations must be determined by the attributes. The
possible general form of the qualification described in CQL is as follows:

Table_name([(attribute list)RETROACTIVE,]
[(attribute list)ACTUAL,]
[(attribute list)ORIGINAL])

The update of the non-referred attributes has no effects during the execution of the

actual CQL query.
When the wanted effect of the update is independent of the specific attributes, the

previously used shorter form is also suggested:

�
�
�

�

�

�
�
�

�

�

�
�
�

�

	

�

�

ORIGINAL
ACTUAL

ERETROACTIV

 Table_name

1172 Buza A.: Extension of CQL over Dynamic Databases

Using the attribute-depending form, the previous examples are transformed into
the following forms:

SELECT SUM(val*rate)

 FROM (STREAM(ACC) CONTINUE UPDS)
 NATURAL JOIN
 RAT((rate)RETROACTIVE)

and

SELECT SUM(quantity*price)

 FROM (STREAM(SELECT * FROM TRADE
 WHERE WEEK(tdate)=WEEK(date))
 CONTINUE APPENDS)
 NATURAL JOIN
 PRICES((price)ACTUAL)

As an example for the mixed update-sensitivity, examine the following query:

SELECT SUM(quantity*price*rate)

 FROM ((STREAM(TRADE)
 CONTINUE APPENDS)
 NATURAL JOIN
 PRICES((price)ACTUAL))

 NATURAL JOIN
 RAT((rate)RETROACTIVE)

This continuous query calculates the value of the actual inventory of a

supermarket expressed in Euro. (The prices and the rates might be changed while the
value of the trade is expressed in a different currency.)

3.5 Syntax of the expansion of the CQL

The formal syntax of the suggested expansion of CQL is as follows: in every case
when we refer to the relations – similarly to SQL – the usage of the following form is
permitted:

�
�
�

�

�

�
�
�

�

�

�
�
�

�

	

�

�

ORIGINAL
ACTUAL

ERETROACTIV
list)} e{(attribut Table_name

In this way we can instruct the CQL system what type of reaction is required when

the CQL system detects the update of the specific (or any) attributes of specific
relations.

1173Buza A.: Extension of CQL over Dynamic Databases

3.6 Motivation of the introduction of the new keywords

Traditionally the database query operates on the actual state of the database and
produces the answer as soon as possible. Therefore it is not necessary to initiate the
qualification ‘actual’. In fact the qualification ‘actual’ might be the default
qualification applicable to all other database-actions. The executions of the CQL
queries have several differences compared to the executions of the SQL queries. One
of the considerable differences is the execution-time of the query. The execution-time
of the SQL query is short (prompt, as soon as possible), in contrast with the long
execution-time of the CQL query. Therefore it would be reasonable for the usage of
keywords for the time-qualification. The same introduction of the three new
qualifications (‘retroactive’, ‘actual’, and ‘original’) is required. In this manner names
have been given for all occurring cases.

The questions using the ‘actual’ qualifications can also be given in other
‘traditional’ forms too. There are other examples for the possibility of different
formulations of the same query in the database environment. For example: the ‘cross
join’ (and other types of join operators) in SQL2 are definitely not necessary; because
there are another equivalent formulae. Nevertheless it is true, that the ‘join’ operators
are very usable. In time-dependent applications, usages of all three qualifications are
suggested for the differentiation of the causes.

3.7 The expressive power and the practicability of the expanded CQL

The suggested expansion of CQL allows of the usage of the new type queries (with
new semantic denotation). As a consequence, the expansion causes the increasing of
the theoretical expressive power partway. On the other hand the expansion increases
the practical usability of CQL too.

3.8 The accuracy of the answer and the inconsistency state of the database

There are several reasons which cause inaccuracies in the answer. These inaccuracies
do not necessary decrease the usefulness of the answer. In most cases, the
approximate answer may also be suitable too. For example: it is not required to
process all items when the focus is only on the trend (traffic or market for instance).
Of much more importance is the recognition of the main characteristics of the
processes. It may happen that we lose a part of the data stream. As we can or cannot
store and use the records from the data stream from the termination-time of the query
execution till the restart of the query execution This is just one of several reasons why
the answer should be only approximated – but nevertheless it is suitable.

Another reason for inaccuracy is that the continuous queries work is bounded by
memory and time. The bounds are not only technical, but also theoretical, too. When
working with a big time-window, the recognition efficiency of the essential processes
may be damaged. The most effective time-window size strongly depends on the real
problem, and one must be based on the theoretical considerations rather than the
technical conditions.

During the execution of the continuous query there must be an operational pause
to enable:

1174 Buza A.: Extension of CQL over Dynamic Databases

- the time-requirement of the virtual restart in the case of RETROACTIVE,
- the time-requirement of the reread in the case of ACTUAL,
- the time-requirement of the restart in the case of ORIGINAL.

During this pause, a partial loss of the stream may occur, especially when the data
stream is coming very fast. In cases where the lost part of the data stream would cause
any essential problems; these must be avoided by saving and processing of that part of
the stream.

Another interesting area is the area of inconsistency. It is a usual requirement in
classical database theory that the ‘normal’ state of a database is the consistent state.
The consistency is not a permanent state. During updates it may become damaged for
a brief period of time. The inaccuracy of the CQL queries currently operating is the
side effect of the inconsistent state of the database.

The undoing of updates to the databases – especially by the cascaded revoke –
might cause a decrease in the accuracy of the database. During the execution of the
continuous query these situations might perhaps be manageable, but when the
continuous query execution is stopped exactly before a cascaded revoke, then the
accuracy of the answer would be reduced. Probably, general solutions for avoiding
inaccurate results might not be given. At least, giving a signal to the user is required
when any incident, that has an influence over the accuracy of the answer, has
occurred during the execution of the continuous query.

4 Conclusion

The continuous data streams are native data occurrences. Perhaps in lot of cases, they
are much more native than the relations. Thus the usage of data streams has a number
of advantages. Therefore, the expansion of CQL - since it is suitable for the
management of real situations - might not only be useful but also very desirable. It is
in this light that this paper makes suggestions for the expansion of CQL.

References

[Arasu, 03a] Arvind Arasu and Shivnath Babu and Jennifer Widom: An abstract Semantics and
Concrete Language for Continuous Queries over Streams and Relations. Invited paper in the
DBPL (9th International Conference on Data Base Programming Languages) workshop,
September 2003. 12p. (http://dbpubs.stanford.edu/pub/2002-57)

[Arasu, 03b] Arvind Arasu et al.: STREAM: The Stanford Stream Data Manager. IEEE Data
Engineering Bulletin, Vol. 26 No. 1, March 2003. 8p. (http://dbpubs.stanford.edu/pub/2003-21)

[Arasu, 03c] Arvind Arasu and Shivnath Babu and Jennifer Widom: The CQL Continuous
Query Languag: Semantic Fundations and Query Execution. Proceedings of the 9th
International Conference on Data Base Programming Languages (DBPL) September 2003. 32p.
(http://dbpubs.stanford.edu/pub/2003-67)

[Babu, 01a] Shivnath Babu, Lakshminarayanan Subramanian and Jennifer Widom: A Data
Stream Management System for Network Traffic Management. In Proc. of the Workshop on
Network-Related Data Management (NRDM 2001), May 2001. 2p.
(http://dbpubs.stanford.edu/pub/2001-20)

1175Buza A.: Extension of CQL over Dynamic Databases

[Babu, 01b] Shivnath Babu and Jennifer Widom: Continuous Queries over Data Streams.
SIGMOD Record, Sept. 2001. 17p. (http://dbpubs.stanford.edu/pub/2001-9)

[Motwani, 03] Rajeev Motwani et al.: Query Processing, Resource Management, and
Approximation in a Data Stream Management System. In Proc. of the 2003 Conf. on
Innovative Data Systems Research (CIDR), January 2003. 12p.
(http://www-db.cs.wisc.edu/cidr/cidr2003/program/p22.pdf)

[Srivastava, 03] Utkarsh Srivastava, Shivnath Babu and Jennifer Widom: Monitoring Stream
Properties for Continuous Query Processing. In Proc. of the 2003 Workshop on Management
and Processing of Data Streams (MPDS 2003), June 2003. 5p.
(http://dbpubs.stanford.edu/pub/2003-23)

1176 Buza A.: Extension of CQL over Dynamic Databases

