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Abstract: As we know the Cauchy distribution plays an important role in Probability Theory 
and Statistics. In this paper, we investigate the estimation of the location and the scale 
parameter. Both the one-dimensional problem and the multidimensional problem are studied 
for large sample. In the one-dimensional case, we give two algorithms for the estimation. The 
first one is an iterative method for which we prove the convergence and we show that the rate 
of convergence is geometric. The second algorithm provides an exact solution to the problem. 
In the multidimensional case, we give an algorithm analogous to the one-dimensional case. 
Computer experiments show that the rate of convergence is similar to the one-dimensional 
iterative algorithm. 
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1 Introduction  

Let 1,ξξ  and 2ξ  be real random variables with density functions )(),( 1 xfxf and 

)(2 xf  respectively. Denote by  )(),( 1 xFxF  and )(2 xF  their corresponding 
distribution functions. The three expected values given below define respectively the 
entropy, inaccuracy and discrimination information [Mathai]. 
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where R=(-∞,∞) and log means the natural logarithm. The above definitions can be 
extended to m-dimensional case. We point out that the discrimination information is 
nonnegative and can assume zero in the only case when the two density functions 
coincide almost everywhere. It defines some kind of directed distance measure 
between two distributions.  It can easily be seen that 
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It follows from (4) that the minimum of )( 21 ξξT  at fixed 1ξ is )()( 111 ξξξ HT = . 

Random variables 21,ξξ  used in formulas (2) and (3) are called accordingly 
posterior and prior variables. In the parameter estimation the supposed Cauchy 
distribution is treated as prior and the empirical distribution computed from the 
sample is used as posterior distribution. For the parameter estimation, we l accept the 
prior Cauchy distribution which is the closest to the posterior distribution in the sense 
of discrimination information. To this end, we minimize the discrimination 
information between the empirical distribution of the sample and the prior Cauchy 
distribution with respect to the parameters. More precisely: If the density function of 
the random variable pξ  is ( )xf

pξ  where the parameter p takes its values in a set P, 

and nη is a random variable with distribution function ( )xFn  that is an empirical 

distribution function given by the realizations of pξ (sample of size n) then we accept 

that p̂ value as an estimation of  p for which  
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holds. As the entropy of nη does not depend on p  (namely log n) this is equivalent to 
the minimization of T: 
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The inaccuracy in this case is 
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Here ai denotes the ith element of the sample. Formula (7) corresponds to the 
appropriate formula of the maximum likelihood method multiplied by –1/n. 
Therefore, the location of the minimum of (7) is assumed at the same place as the 
maximum in the maximum likelihood method of the parameter estimation. Our 
estimation has the properties of the maximum likelihood estimation [Rao], [Zakhs]. 
We need large samples in order to apply the Law of large numbers. 
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2 The One-dimensional Case 

We remind that a random variable ξ possesses the Cauchy distribution with location 

(-∞<c<∞) and scale (s>0) parameters if its density function is: 
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We denote this as ),(~ scCξ . The inaccuracy (7) (briefly T(c,s)) is in this case: 
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Let us introduce the following notations, where parameters c and s are unknown and 
fixed. Values ck and sk play the role of the estimations of the parameters c and s 
obtained in the kth step of the iteration. 
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Lemma 1: The inaccuracy between two Cauchy distributions. IF ),(~ 111 scCξ and 

),(~ 222 scCξ then 
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Especially, if ),(~21 scCξξξ == then ( ) ( )sH πξ 4log= . 
 
Proof: First we introduce an integral that is be used in the proof. 
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The proof of it is in the appendix of the paper.  The inaccuracy is: 
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Substituting y=(x-c1)/s1 and applying ∫ =
+R

dy
y

π21
1

we can transform (13) into 
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This integral can be computed using (12) by making the substitutions 
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By a simple rearrangement we obtain formula (11), which ends the proof. 
 
Lemma 2: The characterization of the location of the minimum. At the place of the 
minimum of T(c,s) given by (9) there holds: 
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Proof: We can write the inaccuracy between the posterior and the prior distributions 
as follows: 
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By the standard way, we compute the partial derivatives with respect to c and s and 
we equate them to zero. Rearranging the terms after some steps, we arrive at our pair 
of formulas to be proved.  This ends the proof. 
 
By Lemma 2, we give the next pair of iterative formulas as the solution for the system 
of equations (16): 
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Here -∞<c0<∞ and s0>0 are arbitrary real numbers. 
 
Theorem 1: Theorem of the convergence. The sequences of pairs of real numbers 
defined in (18) converge to the theoretical fixed values of the parameters c and s in 
case of large sample. Moreover, the rate of convergence is geometric. 
  
Proof: The large sample is needed for the possibility of the substitution of e0k and e1k 
with their expected values according to the Law of large numbers. Let us use 
notations E(e0k)=v0k and E(e1k)=v1k where E means the expected value. Let there be 
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In the same way we define another random variable ( ) kkpk cp ⋅−+= 1, ξξ    

),(~ kk spcC . Computing again the inaccuracy we get: 
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Making the substitutions in the iterative formulas (18) via the Law of large numbers 
we obtain that: 
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From this pair of formulas we can see that if s0>0 then sk>0. In addition, we can see 
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This ends the proof. 
 
Theorem 2: The uniqueness of the location of the minimum. In case of large sample, 
the location of the minimum is unique. 
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Proof: It can easily be shown that (7) is an unbiased estimation of the inaccuracy. For 
large samples (9) gives the inaccuracy between a Cauchy distributed random variable 
with parameters (c,s) and the sample distribution, which we suppose to be in the limit 
a Cauchy distribution with parameters (c*,s*). The place of the minimum of the 
inaccuracy between them is unique because of the properties of (4). It is an interesting 
fact, that the contour curves of the inaccuracy in this case are embedded circles in the 
upper semiplane of the coordinates (c*,s*) with centre (c*,(1+2r)s*) and radius 
2s*(r(r+1))1/2 where r comes from et=4πs*(1+r) for the contour level t. 
 
A similar problem was studied in [Gabrielsen] and [Copas]. 
 
Theorem 3: Exact solution. In the case of the large sample for any ck and sk>0 there 
hold: 
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Proof: From formulas (20) and (22) we can simply express c and s as the solution of a 
system of equations with two unknowns. This ends the proof. 
 
Making use of Theorem 3 the value of the inaccuracy to be minimized can be written 
as: 
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The given algorithms are related to the infinitely large samples. Their application to 
the finite case is heuristic. However, computer experiments give convergence even in 
the case of very small sample sizes. (If the sample size is two and the elements are 
different then the minimum of the accuracy is not unique, it takes place at a 
semicircle. The iterative algorithm practically finds this semicircle. The point where 
the method stops depends on the starting point.) 

3 The Multidimensional Case 

Let us now deal with the m-dimensional case. The density function of the Cauchy 
distribution is given by: 
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where c is the m-dimensional location parameter vector, S is an m×m positive definite 
symmetric real matrix that plays the role of the scale parameter, and the * denotes the 
transposed vector or matrix. We use the following notations corresponding to the one-
dimensional ones in (10): 
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Here T is the matrix from the Cholesky decomposition of the matrix S. Observation 
(sample element) ui is a vector, e0 is a scalar, e1 is a vector and e2 is a matrix.  
 
Lemma 3: The characterization of the location of the minimum for multidimensional 
case. At the location of the minimum of T(c,S) formulas given below hold: 
 

 *

0

2

0

1 , T
e
eTS

e
eTcc ⋅⋅=⋅+=  (30) 

 
Now we can get a pair of iterative formulas for the solution of this system of 
equations in the next form: 
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In this iteration the starting vector c0 can be chosen arbitrarily from Rm, the starting 
matrix S0 can be any real symmetric positive definite matrix of size m×m. Especially 
we may start for example from the zero vector and the unit matrix. 
The proof of (30) is based on the usual differentiation of the inaccuracy with respect 
to the parameters c and S, but it contains some technical details. We omit it. 
Unfortunately, I have not succeeded in getting a formula analogous to (11). 
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4 A computer test 

The algorithms described in (18), (26) are easily programmable for the computers. 
We demonstrate a one-dimensional case. A sample of size 1000 was generated from 
the Cauchy distribution using random number generator in the software environment 
MATLAB 6.1. The location and scale parameters were 5 and 3 respectively. We 
performed 20 iterative steps starting from the initial point 100, 200. The results of the 
iterations are in Table 1. The formula (26) was rewritten in an iterative form analogue 
to the formula (18). 

 
 Formula (18) Formula (26) 

K ck sk Tk ck sk Tk 
0 100.000000 200.000000 6.668564 100.000000 200.000000 6.668564 
1  6.289809 97.805534 5.787873 4.783113 3.215649 3.684150 

 2 4.831633 17.841248 4.353839 4.975382 3.143052 3.683094 
 3 4.791041 7.561761 3.869480 4.976653 3.140030 3.683094 
 4 4.869049 4.890789 3.731749 4.976705 3.140012 3.683094 
 5 4.916448 3.923892 3.695515 4.976706 3.140011 3.683094 
 6 4.942617 3.511557 3.686236 4.976706 3.140011 3.683094 
 7 4.957335 3.321027 3.683886 4.976706 3.140011 3.683094 
 8 4.965734 3.229410 3.683293 4.976706 3.140011 3.683094 
 9 4.970536 3.184466 3.683144 4.976706 3.140011 3.683094 
10 4.973266 3.162195 3.683107 4.976706 3.140011 3.683094 
11 4.974804 3.151103 3.683097 4.976706 3.140011 3.683094 
12 4.975663 3.145563 3.683095 4.976706 3.140011 3.683094 
13 4.976138 3.142791 3.683094 4.976706 3.140011 3.683094 
14 4.976398 3.141404 3.683094 4.976706 3.140011 3.683094 
15 4.976540 3.140709 3.683094 4.976706 3.140011 3.683094 
16 4.976617 3.140361 3.683094 4.976706 3.140011 3.683094 
17 4.976658 3.140187 3.683094 4.976706 3.140011 3.683094 
18 4.976680 3.140099 3.683094 4.976706 3.140011 3.683094 
19 4.976692 3.140055 3.683094 4.976706 3.140011 3.683094 
20 4.976699 3.140033 3.683094 4.976706 3.140011 3.683094 

Table 1: One-dimensional case computer test 
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Appendix 

To show formula (12), first we calculate another integral we need in the proof.  
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We calculate (32) as a parametric integral. 
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Calculating the elementary integrals in (34) we get: 
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This yields: 
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The value of the constant C can be obtained by substitution p=0 in (36). Comparing it 
with (33) we see that  C=0. With this step the proof of (32) is complete. 
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Now we start with the proof of (12). We use the method of parametric integral again. 
Let us denote the integral in (12) by I(b). 
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Formula (37) can be written in the form 
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Having C=-A we see that the first integral is zero and the second is elementary: 
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Substituting constants B,D and A by their values we get 
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After a little algebra this formula simplifies to 
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Integrating (41) we get 
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Where K is a constant to be determined. We substitute the square root in (42) by y, 
which yields: 
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Making the substitution y
a
az 21

2
+

=  we obtain  

 
 

( ) ( ) K
z
zbqK

z
dzbqbI +

−
++=+

−
+= ∫ 1

1log
2

log
21

log
2

)( 2
ππππ

 (44) 

 
Returning back to variable y and then to b we get 
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Eliminating the square root in the denominator we get 
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(46) simplifies to  
 

 [ ] KbaabI +−++= 22 121log)( π  (47) 
 
Let us choose now in (12) b=0. It leads to the special case of (32) for p=1, which 

gives 1log2 +aπ . Quantity (47) yields ( ) Ka ++ 21logπ for  b=0. Comparing 
them we can see that K=0.  
This finishes the proof of (12). 
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