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Abstract: We cast a new look on time-varying distributed H systems. In their original
definition, where only new strings are passed to the next component, this language
definition in itself is already enough to obtain computational completeness. Here, we
consider two types of time-varying H systems with weaker language definitions, based
on the usual definition of splicing systems: The next generation of strings consists of
the union of all existing strings and the newly created strings. We show that if all
strings, both old and new, are passed to the next component these systems are regular
in power. If however, the new strings pass to the next component and the existing ones
remain accessible to the current one, we prove that systems with 4 components are
already computationally complete.
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1 Introduction

Time-varying distributed H systems were introduced in [9]. They have a dis-
tributed architecture in which different sets of splicing rules are used periodically.
In [9] it was shown that time-varying distributed H systems are computationally
complete.

Moreover, in a series of papers, including [10], [7] and [5], the degree (i.e. the
number of different sets of splicing rules) of the time-varying H systems needed
to obtain computational completeness has been decreased progressively. Finally,
in [4], it was shown that time-varying distributed H systems of degree 1 can
generate all recursively enumerable languages. Such systems are really no longer
distributed nor time-varying, having only a single set of splicing rules.

This result can be explained by the way the language is defined in time-
varying H systems: From one splicing step to the next, only the newly created
strings are kept. The result in [4] shows that this way of defining the splicing
language alone is sufficient to obtain computational completeness. Recently ([2]
and [3]), this definition has also been studied in the context of basic finite splicing
systems.

The fact that the computational power of the language definition alone makes
the distributed architecture superfluous, suggests that it may be interesting to
consider time-varying H systems with a weaker language definition. A candidate
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for such a definition is easy to find, since in basic splicing systems as well as in
practically all splicing formalisms another definition is used. In this definition,
the strings passed to the next step consist of the union of the strings present
at this step and the new strings created by applying the splicing rules. This
definition is considerably weaker from a computational point of view. In the
case of basic extended splicing systems the definition which only conserves the
new strings yields computationally complete systems, whereas defining the new
generation by the union of old en new strings gives systems of only regular power.

In this paper, we introduce two new language definitions for time-varying H
systems. In the first one, all strings, both new and already present, are passed
to the next component. In the second one, the new strings are passed to the
next component, whereas the existing strings remain accessible to the current
set of rules. We know that both of these definitions are weaker than the original
one, since in both cases systems of degree one are equivalent by definition to
extended finite H systems, which generate exactly all regular languages.

After reviewing the basic definitions, we formally define the two new vari-
ants. We then prove that the first variant generates only regular languages for
any degree (any number of components). For the second variant, we show that
systems of degree of at least 4 are computationally complete.

2 Basic Definitions and Notation

A splicing rule over V is a string u1#u2$u3#u4, with u1, u2, u3, u4 ∈ V ∗, and
$, # special symbols not in V .

For a splicing rule r = u1#u2$u3#u4 and x, y, w, z ∈ V ∗, we write

(x, y) �r (w, z) iff x = x1u1u2x2,
y = y1u3u4y2,
z = x1u1u4y2,
w = y1u3u2x2,
for some x1, x2, y1, y2 ∈ V ∗.

A splicing scheme is a pair (V, R), where V is an alphabet and R a set of
splicing rules over V . For a splicing scheme h = (V, R) and a language L over V

we define

σ(L) = {w ∈ V ∗ | (w1, w2) �r (w, w′) or (w1, w2) �r (w′, w)

for some w1, w2 ∈ L, some w′ ∈ V ∗, and some rule r ∈ R}.

Given a splicing scheme h and an initial language L, the splicing language

1456 Loos R.: Time-varying H Systems Revisited



σ∗
h(L) is defined as follows.

σ0
h(L) = L,

σi+1
h (L) = σi

h(L) ∪ σh(σi
h(L)), i ≥ 0,

σ∗
h(L) =

⋃

i≥0

σi
h(L).

When the splicing scheme is clear, we omit the subscript.
A splicing system or H system is a construct

H = (V, A, R),

where V is an alphabet, A ⊆ V ∗ is the initial language, and R is a set of splicing
rules over V . The generated language is defined as L(H) = σ∗(A).

An extended H system is a construct

γ = (V, T, A, R),

where V is an alphabet, T ⊆ V is a terminal alphabet, A ⊆ V ∗ is the initial
language, and R is a set of splicing rules over V . The language generated by γ

is defined as
L(γ) = σ∗(A) ∩ T ∗.

For H systems with a finite set of rules and a finite initial language, i.e. A

and R are both finite sets, it is shown in [13] that they generate only regular
languages.

A time-varying distributed H system(of degree n) is a construct:

D = (V, T, A, R1, R2, ..., Rn),

where V is an alphabet, T ⊆ V is a terminal alphabet, A ⊆ V ∗ is a finite set of
axioms, and components Ri are finite sets of splicing rules over V , 1 ≤ i ≤ n.

At each moment k = n · j + i, for j ≥ 0, 1 ≤ i ≤ n, only the component Ri

is used for splicing the currently available strings. Specifically, we define

L0 = A,

Lk = σhi(Lk−1), for i ≡ k(mod n), k ≥ 1, 1 ≤ i ≤ n, hi = (V, Ri).

Therefore, from step k − 1 to the next step, k, one passes only the result of
splicing the strings in Lk−1 according to the rules in Ri. The strings in Lk−1

that cannot enter a splicing rule are removed when passing to Lk.
The language generated by D is, by definition:

L(D) = (
⋃

k≥0

Lk) ∩ T ∗.

Finally, we use the notations REG and RE to denote the families of regular
and recursively enumerable languages, respectively.
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3 New Definitions

Now we can formally define the systems presented informally in the introduction.
In the first type, which we call time-varying H systems with full transfer, all
strings, both new and already present, are passed to the next component.

Definition 1. A time-varying distributed H system (of degree n) with full trans-
fer is a construct:

D = (V, T, A, R1, R2, ..., Rn),

where V is an alphabet, T ⊆ V is a terminal alphabet, A ⊆ V ∗ is a finite set of
axioms, and components Ri are finite sets of splicing rules over V , 1 ≤ i ≤ n.
We define

L0 = A,

Lk = Lk−1 ∪ σhi(Lk−1), for i ≡ k(mod n), k ≥ 1, 1 ≤ i ≤ n, hi = (V, Ri).

The language generated by D is, by definition:

L(D) = (
⋃

k≥0

Lk) ∩ T ∗.

The definition of the second type is slightly more intricate. Here, the newly
created strings are passed to the next component, and the strings already present
before applying the rules, remain accessible to the current component. Formally,
we define

Definition 2. A time-varying distributed H system (of degree n) with partial
transfer is a construct:

D = (V, T, A, R1, R2, ..., Rn),

where V is an alphabet, T ⊆ V is a terminal alphabet, A ⊆ V ∗ is a finite set of
axioms, and components Ri are finite sets of splicing rules over V , 1 ≤ i ≤ n.
We define

L−k = ∅, k ≥ 1,

L0 = A,

Lk = σhi(
⋃

j≥0

Lk−j·n−1), for i ≡ k(mod n), k ≥ 1, 1 ≤ i ≤ n, hi = (V, Ri).

The language generated by D is, by definition:

L(D) = (
⋃

k≥0

Lk) ∩ T ∗.
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The idea of distribution of strings to different components is reminiscent of
communicating distributed H systems (see [12]), also known as test tube systems.
But in these systems, components are full systems rather than sets of rules, and
the contents of each component are redistributed to all components according to
filters. This means our approach does not carry over naturally to these systems.
Also the distinction between new and existing strings, which is an intrinsic part
of time-varying H systems, has no natural expression there. This is still true for
alternative types of communicating distributed H systems incorporating some
aspects of time-varying systems ([1],[14].

In what follows, we use the abbreviations FT -TV Hn and PT -TV Hn, n ≥ 1
to denote the families of languages generated by time-varying H systems with
full and partial transfer respectively, and of degree at most n. FT -TV H∗ and
PT -TV H∗ correspond to the families of languages generated by such systems of
any degree.

4 Computational Power

We start the investigation of the computational power of these systems with the
following observation.

Theorem 3. FT -TV H1 = PT -TV H1 = REG.

Proof: It is easily verified that with only one component, these systems reduce
to systems equal by definition to extended H systems with a finite set of rules
and a finite initial language. The theorem follows from the the characterization
of these systems in [11]. ��

Theorem 4. FT -TV H∗ = REG.

Proof: To show the theorem we will prove that any time-varying H system
with full transfer Γ = (V, T, A, R1, ..., Rn) generates the same language as the
extended finite H system H = (V, T, A, R), where

R =
n⋃

i≥1

Ri.

As before, the theorem then follows from the characterization of extended finite
H systems in [11].

From the definition it is obvious that L(Γ ) ⊆ L(H). For the other direction,
we show by induction that for all i ≥ 0,

σi
h(A) ⊆

⋃

k≥0

Lk,
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where h = (V, R) and Lk is defined for Γ as in Definition 1. For i = 0, σ0
h(A) =

L0 = A. Now, assuming the assertion is true for i, we show it is true for i + 1.
Suppose that x, y ∈ σi

h(A) and that x, y �r w for some r ∈ R. By the
induction hypothesis, x, y ∈ ⋃

k≥0 Lk and, by the definition of H , r ∈ Rj for
some 1 ≤ j ≤ n. This means that there exists an s ≥ i such that s ≡ j(mod n).
Then w will be in Ls+1 and w ∈ ⋃

k≥0 Lk. ��

Theorem 5. PT -TV H4 = RE.

Proof: Consider a type-0 grammar G = (N, T, S, P ). We denote by α1, ..., αn−1

the symbols in N∪T . Let αn = F be a new symbol. Let uj → vj for n+1 ≤ j ≤ m

denote the rules in P and assume we have ui = vi = αi for 1 ≤ i ≤ n.
We construct the time-varying H system with partial transfer

Γ = (V, T, A, R1, R2, R3, R4), with

V = N ∪ T ∪ {X, Y, Z, Z ′, Z0, Z
′
0, F} ∪ {Xi, Yi | 0 ≤ i ≤ m}

∪{Zj | 1 ≤ j ≤ m},
A = {XSFY, XZ ′, ZY, Z0, Z

′
0} ∪ {XjZ

′, ZYj | 0 ≤ j ≤ m}
∪{XjvjZ

′
j | 1 ≤ j ≤ m},

R1 = Q ∪ {#Y $#Y, X0#$X0#} ∪ {#Yj$#Yj | 1 ≤ j ≤ m},
R2 = Q ∪ {X#$X#, #Y0$#Y0} ∪ {Xj#$Xj# | 1 ≤ j ≤ m},
R3 = Q ∪ {#Y0$Z#Y, #FY0$Z0#} ∪ {#ujY $Z#Yj | 1 ≤ j ≤ m}
∪{#Yj$Z#Yj−1 | 1 ≤ j ≤ m},
R4 = {X0#$X#Z ′, X0#$#Z ′

0 | 1 ≤ j ≤ m}
∪{X#$#Zj, Xj#$Xj−1#Z ′ | 1 ≤ j ≤ m},

where

Q = {Z#$Z#, #Z ′$#Z ′, Z0#$Z0#, #Z ′
0$#Z ′

0} ∪ {#Z ′
j$#Z ′

j | 1 ≤ j ≤ m}.

This system simulates G using the rotate-and-simulate technique first used
in [8]. We simulate a rule application by a splicing at the right end of the string.
To ensure that all symbols in the string can be rewritten we circularly permutate
the current sentential form. Here, as in [7], simulation and rotation are done in
the same way: A suffix of the current string is removed and the corresponding
string is added to the left. This is done by the rules in R3 and R4. The rules in
R1 and R2 ensure these operations are applied correctly. We will prove the two
inclusions L(G) ⊆ L(Γ ) and L(G) ⊇ L(Γ ).

1. L(G) ⊆ L(Γ ). Consider a string of the form XwY in component 1. This
string encodes the current sentential form of G. Initially w = SF . This string is
passed unchanged by the rule #Y $#Y to R2 where it is again passed unchanged
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to R3 using the rule X#$X#. Note that all other axioms are passed to compo-
nents 2, 3 and 4 by the rules in Q. In R3, if w = w′ui for some 1 ≤ i ≤ m we
can perform

(Xw′uiY, ZYi) � (Xw′Yi, ZuiY ).

The string Xw′Yi is passed to R4 where we can apply

(XiviZ
′
i, Xw′Yi) � (Xiviw

′Yi, XZ ′
i).

From R1 this string is passed unchanged to R2 and R3 (by rules #Yj$#Yj and
Xj#$Xj# respectively). In R3 the subscript of Y is decreased by 1 using a
rule #Yj$Z#Yj−1. The resulting string Xiviw

′Yi−1 is passed to R4 where by
applying a rule Xj#$Xj−1#Z ′ the subscript of X is decreased by 1. Iterating
this process, we get to a string of the form X0viw

′Y0. This string passes through
R1 and R2 unchanged. In R3 Y0 is replaced by Y and in R4 we substitute X0

by X . Thus we have passed from Xw′uiY to Xviw
′Y . If 1 ≤ i ≤ n we have

rotated one symbol, since ui = vi = αi ∈ N ∪T ∪{F}. If n+1 ≤ i ≤ m we have
simulated the application of the rule ui → vi. Iterating this procedure, we can
simulate any rule of G at any position. So, if in G S ⇒∗ x1x2, we can produce the
string Xx2Fx1Y in Γ , and by circular permutation also X0x1x2FY0. In R3 we
can apply the rule #FY0$Z0# to obtain X0x1x2: This string gets to R4 where
we remove the X0 with the rule X0#$#Z ′

0. If the resulting string x1x2 is in T ∗,
then x1x2 ∈ L(Γ ). So, L(G) ⊆ L(Γ ).

2. L(G) ⊇ L(Γ ). To see that Γ does not produce any strings not in L(G),
note that to continue the simulation of G, the strings should be passed to the
next component. The rules of Γ are such that strings that remain in the current
component do not interfere. If these strings encode valid simulations of G they
remain unchanged and can resume the simulation at a later moment. All invalid
simulations will be ’trapped’ in one component and will not lead to strings in
T ∗.

Specifically, suppose we have performed in R3

(Xw′uiY, ZYi) � (Xw′Yi, ZuiY )

and in R4

(XjvjZ
′
j, Xw′Yi) � (Xjvjw

′Yi, XZ ′
j)

for some 1 ≤ i, j ≤ m. As mentioned before, the axioms except XSFY are
available in all components thanks to the rules in Q.

A string Xjvjw
′Yi with i ≥ 1 can pass to R2 by the rule #Yi$#Yi. Then it

passes to R3 using Xj#$Xj# provided that j ≥ 1. In R3 we decrement the sub-
script of Y and in R4 the subscript of X . These are the only operations possible
in these components. This process is repeated until some subscript reaches zero.
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Suppose that after R4 we have a string of the form X0wYk for k ≥ 1. This
string is passed to R2 by the rules X0#$X0# and #Yj$#Yj . Now, there is no
rule in R2 that can be applied to the string. So, it will remain in this component
and never yield a terminal string. If after R4 we have a string of the form XkwY0

for k ≥ 1, no rule in R1 can be applied to it. Thus, this string will not derive a
word in T ∗. With subscript equal to zero, only strings of the form X0wY0 can
pass through R1 and R2. Then in R3 and R4, X0 and Y0 are replaced by X and
Y and a new simulation or rotation step can start.

So, the only strings that can continue the simulation are those where i = j

at the moment that we start to decrement the subscript. This means we have
correctly simulated a rule in P or correctly rotated a symbol.

All strings that are produced as a by-product do not lead to terminal strings.
All these strings contain the symbol Z or Z ′, so they are passed to all components
by the rules in Q. But they do not interfere with the simulation process. As an
example, consider a string ZuiY produced in R3. When it returns to R3, we can
replace uiY by Yi and then, also in R3, decrease the subscript. When reaching
Y0, it can be removed or rewritten by Y . The strings ZY and ZYi are axioms,
and other strings of the form Zw or ZwY cannot enter in any splicing rule with
strings of the form Xw′Y .

Finally, the symbol Y0 can only be removed when it follows the symbol F ,
which guarantees that only the correct permutation yields a terminal string.
Thus, the only terminal strings that are generated by Γ correspond to strings
in L(G). This concludes the proof that L(G) ⊇ L(Γ ). ��

5 Conclusions and Further Research

We studied two variants of time-varying H systems, both with a weaker language
definition than the original one. In the first type, which we called with full trans-
fer, all strings, both new and already present, are passed to the next component.
We showed that for any degree, these systems generate exactly all regular lan-
guages. The second variant, time-varying H systems with partial transfer was
shown to be universal for systems of degree at least 4. In these systems, the new
strings created by applying the splicing rules are passed to the next component
and all strings present before rule application remain accessible to the current
set of rules. This last type gives rise to an interesting open question. If time-
varying H systems with partial transfer of degree 4 generate all RE languages
and those of degree 1 generate only regular languages, what is the power of sys-
tems of degree 2 and 3? We conjecture that systems of degree 2 can be shown
to be universal, by using the technique of forcing the correct derivation to go
through all components, as we did in Theorem 5. As an example, we give a very
simple time-varying H system with partial transfer of degree 2 that generates a
non-regular language.
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Γ = (V, T, A, R1, R2), with

V = {a, b, X, Y, Z},
T = {a, b},
A = {XabY, ZbY, XaZ},
R1 = {X#a$Xa#Z, X#a$#ZbY, #bY $XaZ#} ∪ {ZbY #$ZbY #},
R2 = {b#Y $Z#bY }.

The reader can verify that L(Γ ) = {anbn | n ≥ 1}.
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