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Abstract: In this paper the problem of parameter estimation of an input — output system is
discussed. It is assumed that the system is described by the relation known with accuracy to
some parameters. The possible noisy observations of system are described. The estimation
algorithm based on maximum likelihood method is proposed. The presented approach is
illustrated by analytical examples.
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1 Introduction

Investigation of computer systems for decision processes based on knowledge
representation requires new methods of system modeling. The traditional
mathematical model given by system of equations was very convenient for analytical
investigations. The application of computer aided methods for processing
observations, more generally the knowledge about investigated plant allows to
consider a wide class of models. Particularly, the input — output system may be
described by the set of facts given by logical statements about the input and output of
this system. Sometimes such a description is given by an expert. The problem is to
generalize the expert observation and propose the system description in form of
relation defined on the set of input and output. In this case we can formulate the
identification problem for the system described by the relation, similar to the
identification problems of systems described by the equations [Bubnicki, 80a].

The problem of modeling and identification of systems described by the relation
has been presented in previous works. Particularly in [Bubnicki, 80b] the general
problem identification of relational system is presented. Application of relational
system to knowledge representation is given in [Bubnicki, 90] and to control and
identification in [Bubnicki, 88]. In [Swiatek, 89] the problem of optimal model choice
is discussed. Some estimation problem is presented in [Swiatek, 90]. The application
of maximum likelihood method is proposed in [Swiatek, 06]. Now for the noisy
observations the estimation algorithm is proposed.
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2 System Descriptions

Let us consider the input — output static system with input x and output y. Input and
output are S and L — dimensional vectors, respectively. Input and output are elements
of sets X and Y, which are subsets of R® and R" spaces, respectively, i.e.:

xeXgRS, ergRL.

The system is described by the set of facts concerning inputs and outputs. More
precisely, the set of true logical statements about x and y is given. Consequently the
logical function

F(xy,a) @

defined on the set of inputs and outputs is proposed, where F is a complex logical
function and a is a K — dimensional vector of parameters from set of parameters A

(i.e;ae AcRN). In the system description only such (x,y) from X xY may

appear, for which the statement (1) is true. In this way the description of the system is
given by the relation defined on X xY i.e.:

R, ={(x,y)e XxY: F(xya)}. @)
On the relation R, the probability density function

g(x,y.a) ?)

is defined. For example, let sets of inputs and outputs are real numbers and the facts
concerning inputs and outputs are the following: input and output are positive
numbers and the sum of input and output is not grater than a. Furthermore the
probability density is monotonous. For the above system (2) and (3) have the forms:

EKa:{(x,y)eRz: x20/\y20/\x+ySa}, (4)

2a2 if x=0Ay>=0Ax+y<a
g(x, y,a)={ . (5)

0 otherwise

3 System Observations

Now it is assumed that the description of the system is known with accuracy to
parameters, i.e. the functions F and g in (1)-(3) are known but the vector of
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parameters a must be estimated. To determine vector a, the noised observations are
collected. More precisely, observed input x and output y are noised by z, and z,,
(zX €Zy,zy€ Zy), respectively. The influences of random noise on the observed

values are described by the following equations:
u:hx(x,zx), (6)
v=nhyly.z,), U]

where: u and v are effects of input x and output y noisy observations, respectively
(ueU,veV); h, hy are known functions h,:XXxZ, U, h,:YxZ, V.

Practically it means that collected experimental data are elements of the relation ﬁa,
obtained from relation %R, (2) transformed by functions (6) and (7), i.e.:

_ {(u,v)eUxV:u:hx(x,zx),v=hy(y,zy), }

= 8
a V(x,y)e R,, 2, Z,,2,€ Z, ®)

It is assumed that functions h, and h, are one-to-one mapping with respect to z, and z,.
It means that for given x and y there exist inverse functions with respect to z, and z,,
ie.:

2, =ht(x.u), 9)

zy = h;l(y,v). (10)

In the sequence of observations it is assumed that noise z, and z, are independent
realizations of random variables z, and Zy with known probability density function

9, (2. 2). (11)

It is possible to collect two different types of observations (Fig.1). The first (A) is the
sequence of measured values of input and output. The second one (B) is the sequence
of true statements on input and output.
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Figure 1: Relational system observations
A — The sequence of input and output noisy measurements are collected, i.e.:

(Unp,vy), n=12,..,N, (12)

where: up,V, are n-th measurements of input and output, respectively, N is
the number of measurements.

B — The sequence of true logical statements about input and output is given,
i.e.

r.={uv)eUxv: f(uv), n=12..,N
(13)

where: f,, is n-th logical statement about input and output. Such a fact may be
given by an expert. For example from the expert we know that for input x
from the interval ue [o4;,, @] the output y is in the interval ve [B),, fon |

what will be denoted as observation:

[ :{(u,v)e R%: oy, Su<ay, A By SvsﬁZn}.
(14)
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4 Parameter Estimation by Maximum Likelihood Method

Let us assume that the observations (u,v) from the relation R, (8), corresponds to the
(x.y), for which the statement F (1) is true, i.e.: (x,y)e R, (2). For the given (xy),

because of the random measurement noises (z,z,) the observed (u,v) is realization of
conditional random variable (u,v/x,y). Notice that for the given (x, y) conditional

random variable (u,v/x,y) can be obtained as the transformation of random variable
(zy ,zy) by (6) and (7). Consequently, conditional probability density function of

random variable (g,y/x,y) is defined by probability density function g, (11) and
transformations hy and hy ((6) and (7)), i.e.:

g1(u,v/x,y)=g, (h;l(X,U)’ h§l(YvV))X|JX|X|J y| (15)

where J, and J, are Jacob’s matrix of transformations (9) and (10). Practically we do

not know which pair (x,y) is just observed. It can be any pair from the relation 3%,
i.e.. such (xy) for which statement (1) is true. So, the probability density function

defined on the relation EKa is given by the formula:

g(u,v.a)= [gi(u,v/x y)xg(x y)dxdy (16)
9{3

Now, let us come back to the collected data of the form (12). They are independent
realization of random variables (gz) with probability density function (16).

Consequently the likelihood function has the form:

glun.vn.a), 17

=z

Wa(a Uy V)=
1

>
I

where:Uy =i up, - uy] and Vy=[v; v, - vy]. The estimate @,y of
vector a is obtained by maximization (17) with respect to a, i.e.:

aan =¥alUnVN) = Walaan Uy Vn)= rar;i/erA(a,UN V) o (18)

For the observations of the form B the true sentence of the form (13) is given. The
probability that it is possible to obtain true observation r, is determined by the
following formula:
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[Guv.a)ddy if rcR,

P (rnva): M
. 19
0 otherwise (19)
For further consideration it is assumed that
vnme{l,2,...,N} =3 v A==,
consequently the likelihood function is:
N
g(u,v,a)dxdy if vne{l,2,..,N} r,c%
WaFN:UJ y it vnell2. N} heRa o,
n=lr, otherwise
0
where Iy =[q 1, - ry]. The estimates agy of vector a, for the measurements

of type B, is obtained by maximization of the likelihood function (20) with respect to
a,ie.:

agy =¥(/v) — WB(aBNvFN):raT;iRWB(a’rN)- (21)

Example: Let x and y are real numbers (L = S = 1). The system is described by the
relation:

R, = {(x, y)le R?:aW_05<x<a®+05ra® -05<y<a® +0.5} (22)
and the probability density distribution (3) has the form:

1 it (x y)e‘,)(

(23)
0 otherwise

olx.y.a)= {

In the system description (22) the vector of parameters al = la(l) a(z)J is unknown.

To determine the vector of unknown parameters the sequence of observations (12)
were collected. The noise is assumed to be additive, i.e. functions (7) and (8) have the
form:

U=X+2Zy, V=Y+2zy. (24)

and noise (zy, zy) is the realization of random variable (z,,z,) and probability

density function (11) has the form:
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(Z , )_ 1 if -05< ZXSO.5/\—O.5SZySO.5 (25)
92802y )=, otherwise '
It is easy to see that in this example the relation %, (8) is the form:

R, = {(u,v)e R?2:a® <u<a®+1.0ra® <v<a® +1.0} (26)

and probability density function (16) observed random variables @y) defined on

R, is:

025lu—a® +1v—a@ +1) if a® —1<u<a® Aa®@ —1<v<a@
0250@® —u+1ly—a@ +1] if a® <u<a® +14a@ —1<v<a@ @7)
0.25u—a® +1)la®@ —v+1) if a® —1<u<a® Aa@ <v<a® 41
0.25W —u+1)[a@ —v+1) if a® <u<a® +1,2@ <v<al 41

g(u,v,a)=

The respective likelihood function (17) takes the form:

Wa(a,Un,Vn)=

_JWa@Uy.Vy)if n=12,.,N a® 1<y, <a®+1ra® —1<u, <a® 41 (28)
0 otherwise

where:

Wa(a,Uy,Vy)= H(Un ~a® +1an -a® +1)>< H(a(l) —up, +1an -a® +1)><

ne Ny neN,
(29)
X H(Un ~a®W +1)a@ -y, +l)>< H(a(l) —u, +1Ja@ v, +l)
ne N, ne N,

and Nq,N,, N3, N, are sets of indexes defined as follows:
le{ne LN:a® 1<y, <a® Aa® —1<v, sa(z)},

N,=nel N:a® <u, <a®+1,a@ 1<y, Sa(Z)}’
neL,N:a®-1<u, <a®ra@ <y, Sa(2)+l},

Ny :{nel,_N:a(l) <up<a®+1ra@ <v, <a® 41y,
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The estimate apy Of vector a is obtained by maximization (29) with respect to a®

and a®.To obtain the solution the numerical optimization method was used. For the
described example the simulation study was performed. During simulation the vector
of parameters a’ = [4.0 5.0]. The sequence (X,y.), N=1,2,...,N was generated with
probability density given by (23) for N equal 10, 20, 30 and 40. Then the sequences
were noised (24) by the sequence generated with probability density given by (25) and
this gives the sequence (12) for the investigated example. The obtained sequences
(un,vn), Nn=1,2,...,N were used to determine the estimates of unknown vector a. The
simulations were repeated several times for the same N. The results are given in Table
1. In this table the estimates intervals are given for corresponding numerical
experiment.

N 10 20 30 40

a® =40 a® [3.43,4.55] | [3.62,4.37] | [3.71,4.26] | [3.82,4.12]

a@ —50 a® [4.41,5.58] | [4.63,5.34] | [4.76,5.22] | [4.86,5.07]

Table 1: Simulation results

5 Parameter Estimation by Bayes’ Methods

Additionally, if we assume that vector of parameters a in the description (1), (2) and
(3) is the realization of random variable a with known probability density function

g, (a), then the Bayes’ approach may be used. In this case, for the sequence (12) the
estimate acy of vector a may be obtained as the solution of the following
optimization problem:

acn =¥cUn,Vy) = rlacy,Un,Vn )= ?eiR re(@Un.Vn) (30)
where rc(a,Uy,Vy ) is the conditional risk defined:

re(@UnVn)=

- jL(a,a)ga(a)ﬂ [ g2 (e G gy )b g, y)x| 3,9, oxdyda
A n=1%R,

(1)

where L(a,a) is the loss function, and a is possible decision.
Similarly for the sequence (13) the estimate apy of vector a may be obtained as
the solution of the optimization problem:
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apn :‘[’D(]"N)ar(aDN,FN)zraT;iRrD(E,FN), (32)

where 1p(a, 7y ) is the conditional risk defined:

r@ )=

n=1

N
= j L(a, §)ga(a)HI I g, (h;l(x, u), h;l(y,v))x g(x,y)x|J X|><|J y|dxdydudvda (33)
A r R,

For different loss functions L(a, a_) the different Bayes’ method may be obtained.

6 Final Remarks

The problem of modeling of system described by the relation has been discussed. The
static system is described by a set of fact facts about input and output. The set of true
facts gives the relation defined on the set of inputs and outputs. In this paper it was
assumed that description is known with accuracy to parameters. To determine
unknown model parameters the estimation algorithm was proposed. Two different
kinds of observations were used. The first case corresponds to traditional
measurements, i.e. for given input the output is measured. The other observations are
true logical sentences about inputs and outputs. The both kinds of observations are
assumed to be noised. For both cases the estimation algorithms based on maximum
likelihood and Bayes’ approaches have been proposed. The presented approach is
illustrated by simple analytical examples and a simulation study.
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