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Abstract: This paper describes a method of using Petri net P-invariants in system diagnosis. To 
model this process a net oriented fault classification is presented. Hence, the considered 
discrete event system is modelled by a live, bounded, and reversible place-transition Petri net.  
The notions of D-partition of the set of places P of a given place-transition net N and net k-
distinguishability are first introduced. Next these two notions are extended to the set of all 
vertices, i.e. places and transitions of N. So the problem of fault identification of the vertices of 
N is transformed as a problem of fault identification of the places of a new net N´ called a net 
simulator of  N . Any transition in N´ is assumed to be fault-free. Then the corresponding net 
place invariants are computed. The system k-distinguishability measure is obtained in a unique 
way from the place-invariant matrix. For a large value of k, the system model is extended by 
using some set of additional places called test points and at the same time preserving the 
original net properties. To obtain a 1-distinguishable net the notion of a marked graph 
component is used. It is shown a sufficient condition for 1-distinguishability of an arbitrary 
place-transition net and a corresponding algorithm is presented. Next two different diagnosis 
test strategies are discussed, i.e. combinational and sequential fault diagnosis. Corresponding 
(single) place and transition fault models are introduced. The complexity of the proposed 
method depends on the effectivity of the existing algorithms for computation of the P-cover, 
i.e. the set of P-invariants covering N. The proposed approach can be extended for higher level 
Petri nets, e.g. such as coloured nets or also to design self-diagnosable circuit realisations of 
Boolean interpreted Petri nets. Several examples are given. 
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1 Introduction  

Today’s discrete event systems (e.g. such as computer or communication networks, 
automated manufacturing systems or other large-scale plants, computer operating 
systems, office information systems and so on.) are of increasing importance because 
they are growing in number, size, and sophistication. Any such system may be 
asynchronous and sequential, exhibiting many characteristics: concurrency, conflict, 
mutual exclusion, and non-determinism. These characteristics are very difficult to 
describe using traditional control theory. On the other hand, an inappropriate control 
of the occurrence of events may lead to a system deadlock, capacity overflows, or may 
otherwise degrade system performance [Zhou and DiCesare 1993]. Hence, the fault 
diagnosis becomes a more and more difficult process. The use of Petri net models in 
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diagnosis and reliable design of event-driven systems is a subject of interest to 
researchers since more than twenty years. In general, the most of the studies in this 
area focus attention on dynamical analysis concerning specification and 
implementation of some fault detection, fault diagnosis and/or fault recovery 
procedures, e.g. using partially stochastic Petri nets [Aghasaryan et al.1998], or also 
using trace analysis [Pietschker and Ulrich 2003], etc. The study of the system fault 
indistinguishability properties seems to be important because of the following two 
reasons. First, we have an additional possibility of describing the critical components 
of the considered system. Second, there exists a possibility of using some simple and 
at the same time exact tools for improving the system (self-) diagnosis capabilities in 
the early stages of its design [Immanuel  and  Rangarajan 2001], [Tabakow 2000] - 
[Tabakow 2005a]. 

The main purpose of this paper is a brief introduction to some rather deterministic 
fault diagnosis approach concerning the inherent place-transition net fault 
indistinguishability. This paper describes a method of using Petri net P-invariants in 
system diagnosis. To model this process a net oriented fault classification is presented. 
Hence, the considered discrete event system is modelled by a live, bounded, and 
reversible place-transition Petri net.  The notions of  D-partition of the set of places P 
of a given place-transition net N and net k-distinguishability are first introduced. Next 
these two notions are extended to the set of all vertices, i.e. places and transitions of  
N . So the problem of fault identification of the vertices of  N  is transformed  as a 
problem of fault identification of the places of a new net  N´ called a net simulator of  
N . Any transition in  N´ is assumed to be fault-free. Then the corresponding net place 
invariants are computed. The system k-distinguishability measure is obtained in a 
unique way from the place-invariant matrix. For a large value of  k , the system model 
is extended by using some set of additional places called test points and at the same 
time preserving the original net properties.  This is in accordance with the introduced 
practical requirements. To obtain a 1-distinguishable net the notion of a marked graph 
component is used. It is shown a sufficient condition for 1-distinguishability of an 
arbitrary place-transition net and a corresponding algorithm is presented. Next two 
different diagnosis test strategies are discussed, i.e. combinational and sequential fault 
diagnosis (assuming  MTBF → ∞  and   MTTR  →  0, respectively). Corresponding 
(single) place and transition fault models are introduced. The complexity of the 
proposed method depends on the effectivity of the existing algorithms for computation 
of the P-cover, i.e. the set of P-invariants covering  N. The proposed approach can be 
extended for higher level Petri nets, e.g such as coloured nets or also to design self-
diagnosable circuit realisations of Boolean interpreted Petri nets. Several examples are 
given. 

2 Basic Notions 

In general any place-transition net  N  =df   (T,P,A,M0,K,W),  where   (T,P,A)   is a 
finite net containing sets of transitions , places, and arcs called also edges,  K :  P  →  
( INω  −  {0})   and   W :  A  → ℕ   are the corresponding  place capacity  and  edge 
multiplicity (called also weight) functions, respectively. The initial marking vector  
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M0 : P  →   INω , where  ℕ   denotes the set of all natural numbers,   IN   =df   ℕ ∪  
{0},  IN ω  =df  IN   ∪  {ω},   and  ω   is an  infinite   number  such  that:    ω  +  k   =   
ω   and    k   <  ω  (for any k ∈ IN ) [Reisig 1985], [Reisig 1992]. The forward 
marking class of  N, i.e.  [ M0 >  =df   { M   ∈  IN ω P  /  ∃ τ  ∈  T∗ ( M0[τ >M ) }.  
In the next considerations we shall assume  N  is  a pure (i.e. without any self-loops), 
live and bounded net. In the case of manufacturing systems the net reversibility 
property is also required, i.e. ∀ M  ∈  [ M0 >  (  M0  ∈  [ M > ) [Zhou and DiCesare 
1993]. The notion of  PN-connectivity matrix (also denoted by N ) is modified as 
follows. Let    t :  P  → Z     (the set of all integers)    be a mapping such that    t(p)  =df   
if   p  ∈ it   ( p  ∈  ti )  then  − w(p,t)  ( w(t,p) )  else  0  fi.  Then the  PN-
connectivity matrix  N :  T ×  P  → Z ,  where    N(t,p)  =df   t(p)  (for any  t  ∈  T  and  
p  ∈  P). The well-known transition enabling and firing rules are omitted here [Reisig 
1985], [Reisig 1992]. Also the net interpretation will be omitted below, e.g.  N  may 
be considered as a  PN model of a manufacturing, multiprocessor or distributed 
system.  The net  P- (T-)invariants are computed using   N ⋅ i  =  0  ( NT⋅ i =  0 , where  
NT  is the transposed matrix  N ).  By   s(N)   =df   APT ++  we shall denote the 
size of  N . Let  N  be a  place-transition net. The support of any P-invariant  i  with 
respect to  N (in short: wrt  N)  is defined as follows:   supp(i)   =df   {p  ∈  P / i(p)  ≠  
0 }  ⊆  P .  A  P-invariant  i  of  N  is called  positive    iff    ∀ p  ∈ supp(i) ( i(p)  ≥  0 )   
∧   ∃ p  ∈ supp(i) ( i(p)  >  0).  A positive P-invariant  i  is  minimal  iff  ∀ i´ ( N ⋅ i´  =  
0    ⇒    i´  ≥   i  ). Let I   be the set of all (positive) P-invariants of  N   and  J    ⊆ I   
is a  subset. We  shall say  J    is  a P-cover of   N    iff   ∀ p  ∈  P ∃ i  ∈  J  ( i(p)   ≠  
0).  And so we have: U

J∈i
)isupp(  = P.  The P-invariant matrix of N wrt J   is 

introduced as follows:  J  : J   ×  P  → IN , where  J (i,p)  =df  i(p)  ∈ IN  .  It can be 
observed )p(i)p(M

)isupp(p
∑

∈
⋅   = const  (for any M  ∈  [ M0 >  and  i  ∈ J  ) .  It is 

obvious that any linear combination of  P- (T-)invariants is also a P- (T-) invariant, 
e.g.  if J   is a P-cover of   N  then   i´  =df  s

i
s ia

s

⋅∑
∈J

is also a P-invariant, where  as  

are some constants (at least one of them  ≠  0 ). In fact,   N ⋅ i´  =  0  is always 
satisfied.  

For convenience only, we shall assume below that the P-cover J   of  N  is a set of 
all positive and minimal P-invariants. Any such set can be considered as a set of 
linearly independent P-invariants. In fact any such positive and minimal P-invariants 
are preferable, but not necessary wrt the proposed method (e.g. any test point 
corresponds to some positive and minimal P-invariant). Also we shall use the notion 
of the revised P-invariant matrix of  N , defined as:  ρ : J   ×  P  → {0,1}, where  
ρ(i,p)  =df  1  iff  i(p)  ≠  0  [Immanuel  and  Rangarajan 2001]. For simplicity, it is 
assumed below  N  have a P-cover. Otherwise, this method is also applicable. In the 
last case some additional test points is necessary to be introduced. 
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3 Net k-Distinguishability and Test Points 

Let  [ M0 >α   =df   [ M0 >   ∪   { Mα } ,  where M0   is the initial marking   and    Mα  
be a marking of  N  such that   Mα ∉   [ M0 > . We shall say  Mα  is a faulty marking. 
Since    M ‧ i   =   M0  ‧ i   (for  any  M  ∈  [ M0 >  and   i  ∈ J  ) [Reisig 1985] then   
ΔM ‧ i  =  0 , where   ΔM  =df  M   −  M0 . The last property is satisfied for any  P-
invariant  i  ∈ J  . Hence we can obtain  J  ‧ ΔMT  =  0  . Therefore for M ∈ [ M0 >α  
the above  equation may be violated. Thus we have: J  ‧ ΔMT  =  a   ∈  {0,1}⎜J   ⎜ (for 
any   M ∈ [ M0 >α , obviously  a  =   0   iff  M  ∈  [ M0 > ).  

Without losing any generality,  below    (a)s  ≠   0    are interpreted   as   (a)s  =   1  
( s  ∈  {1,..., J ). Hence, in accordance with [Murata 1983],  any  (a)s  =  1  will 
correspond to some subset of places  supp(is)  ⊆  P  having a (potentially) faulty 
behaviour.  

Let    Ω(a)   =df ')isupp()isupp(
0)a(

s
1)a(

s
ss
II

==
∩   ⊆  P,  where supp(is)´ =df  P  − 

supp(is)  is the corresponding set complement operation (provided there is no 
ambiguity we shall use below the same designation  “ ´ “  as an index, e.g. to denote 
M´, i.e. the marking  M  for  N´, where  N´ is the net simulator corresponding to  N, in 
a similar manner  Ω´ is used for  Ω  of  N´). And so, like  [Mayeda 1972]  the notion 
of D-partition can be introduced. Below are used some basic notions given in 
[Tabakow 2000]. 

Definition 1  

By a D-partition of the set of places  P  of a given place-transition net  N  wrt  the 
P-cover J   of  N , denoted by  Ω(N,J ) , or   Ω   if   N  and J    are understood ,  we 
shall mean the (multi) family  Ω  =df  { Ω(a) / a   ∈  {0,1}⎜J   ⎜}. 

Proposition 1  

(a)    Ω(0)  =  ∅ , 
(b) ∀ a,b  ≠  0  ( a  ≠  b   ⇒   Ω(a)  ∩  Ω(b)  =  ∅ ) ,  and 
(c) U

J}1,0{a
)a(

∈
Ω  =   P . 

Proof: 

(a)  Ω(0)  =df I
0)a(

s
s

'P
=

 = I
J∈si

s 'P   =  )'P(
si

sU
J∈

 =  P´ =  ∅  (since J   is  a P-cover of  N ). 

(b)  Assume that   Ω(a) , Ω(b)  ≠  ∅ .  Let   K  =df  { k / (a)k  ≠  (b)k }  ⊂  ℕ .  For   a  
≠  b   we have: I

Kk,1)b(
k

k

P
∈=

 = I
Kk,0)a(

k
k

P
∈=

  and I
Kk,0)b(

k
k

'P
∈=

 = I
Kk,1)a(

k
k

'P
∈=

. Hence, we 

can obtain: Ω(a) ∩ Ω(b) =df A(a) ∩ A(b)   
∩ I

Kk,1)a(
k

k

P
∈=

∩ I
Kk,0)a(

k
k

'P
∈=

∩ I
Kk,0)a(

k
k

P
∈=

∩ I
Kk,1)a(

k
k

'P
∈=

=   A(a)  ∩  A(b)   ∩  ∅  ∩  

∅   =  ∅ . 
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(c)    Let  K    ⊆  J    is any subset such that U
K}1,0{a

)a(
∈

Ω     =   P   and   is  ∈ J  − K . .  

By induction, assume that L    =df   K     ∪   { is }   ⊆  J  . We have: U
L}1,0{a

)a(
∈

Ω  =df  ( 

Ps  ∩  ( U
K}1,0{a

)a(
∈

Ω ))  ∪  ( Ps´  ∩  ( U
K}1,0{a

)a(
∈

Ω ) )  =  ( Ps  ∩  P  )  ∪  ( Ps´ ∩ P )  

=  ( Ps   ∪   Ps´ )  ∩  P  =  P  ∩  P  =  P. □ 

The notion of a k-distinguishable place-transition net under a D-partition of the set 
of places  P  of  N  is given in the next definition. 

Definition 2 

The Petri net  N  is a  k-distinguishable net  under  Ω   iff 
(i)     ∃ Ω(a)  ∈ Ω  (  ⎜Ω(a) ⎜  =  k  )   and        
(ii) ∀ Ω(a)  ∈ Ω  (  ⎜Ω(a) ⎜ ≤  k   ). 

The support  of any D-partition is defined as follows:  supp(Ω)  =df { Ω(a) ∈  Ω / 
Ω(a)  ≠ ∅ }. Let π(P)  be the partition generated by the set of subsets of places (i.e. 
classes), such that each class consists of places having identical columns in the revised 
P-invariant matrix  ρ  of  N. The following proposition is satisfied [Immanuel  and  
Rangarajan 2001] (a more formal proof is given below). 

Proposition 2  

supp(Ω)  =  π(P).   

Proof: 

Let  a   ∈  {0,1}⎜J  ⎜  −  0   be a vector such that  Ω(a)  ≠  ∅. Assume that   p  ∈  
Ω(a)  and   {S0, S1}  is a partition of the set of indexes  {1, 2, ... , J }, where  Si  =df  
{s / (a)s  =  i}  (i  =  0,1). In accordance with the definition of  Ω(a)  we can obtain: 

p ∈  Ω(a) ⇔df p  ∈ ')isupp()isupp(
0)a(

s
1)a(

s
ss
II

==
∩  

 ⇔ p  ∈ ')isupp()isupp(
01 Ss

s
Ss

s II
∈∈

∩  

 ⇔ ∀ s  ∈  S1 ( p  ∈ supp(is) )  ∧  ∀ s  ∈  S0 ( p  ∈ supp(is)´ ) 

 ⇔ ∀ s  ∈  S1 ( is(p)  ≠  0  )  ∧  ∀ s  ∈  S0 ( is(p)  =  0) 

 ⇔ ∀ s  ∈  S1 ( ρ(is,p)  =  1 )  ∧  ∀ s  ∈  S0 ( ρ(is,p)  =  0 ). 

 ⇔ ∀ s (s ∈  S1 ⇒ ρ(is,p)  =  1) ∧ ∀ s (s ∈  S0 ⇒ ρ(is,p)  =  0) 

 ⇔ ∀ s ((s ∈  S1 ⇒ ρ(is,p)  =  1) ∧ (s ∈  S0 ⇒ ρ(is,p)  =  0)) 

 ⇔ ∀ s (s ∈  S1 ⇔ ρ(is,p)  =  1).               {contraposition of implication}   
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And so,  a  corresponds to the  pth column of the P-invariant matrix J . Moreover 
this is true for any  p  ∈  Ω(a). Hence a corresponding subset of  |Ω(a)| identical 
columns is obtained. Since  Ω(a)  ≠  ∅  then  supp(Ω)  =  π(P). □ 

A generalisation of the fault identification process to the set of all vertices   x  ∈  T  
∪  P   of   N   is given below.  With any P/T-net  N  it can be associated a new net, say  
N´, such that any transition  t  ∈  T  of  N  is transformed to a subnet  
({t+,t−},{pt},{(t+,pt),(pt,t−)})  in N´. Any such transformation is closed in the class of  
P/T-nets. The size of  N´, i.e.  s(N´)  =  s(N)  +  .T4 ⋅ For simplicity, the additional 

places   pti  of  N´  will be denoted by  p⎜P ⎜ +  i  ( i  =  1,..., T ) [Tabakow 2000]. An 
example net  N´ is shown in Figure 3(b) below (see Example 3). 

In accordance with the above given construction any marking  M  in  N  will 
correspond to exactly one marking  M´ in  N´. Also different markings in  N  will 
correspond to different markings in N´. So there exists some injective mapping, e.g. ψ 
from [ M0 > in  N  to  [ M0´> in N´.  

In general, the following definition can be introduced (very similar to the well-
known classical notion). 

Definition 3 

We shall say that N´ is a net simulator of  N     (or simulates  N ) iff  for any 
marking sequence  M0, M1, ... , Mk, ... in  N  there exists a marking sequence  M0´, 
M1´, ... , Mr´, ... in N´ such that:  (1)  M0´ =  ψ(M0),  (2)  If the above two sequences 
are finite having final markings Mk  and  Mr´ then  Mr´ =  ψ(Mk)  and  (3)  For any two 
neighbouring markings  Mi, Mi+1  in the first sequence there exist two markings  Mu´, 
Mv´  in the second sequence such that  i  ≤  u  < v,  Mu´ =  ψ(Mi), and  Mv´ =  ψ(Mi+1). 

According to Definition 3, the net N´ obtained under the above given transition 
transformation is a well-defined net simulator of  N. Moreover, any such 
transformation will preserve the basic inherent properties of  N (a more formal 
treatment is omitted).Let  N´ be a net simulator of  N  and  i´ be a P-invariant of  N´. It 
was shown that  i´  can be directly obtained by means of the corresponding P-invariant  
i  of  N. Hence there exists a strongly defined relationship between the P-covers of  N´ 
and  N . The above given Definition 2 is generalised as follows [Tabakow 2000]. 

Definition 4 

Let  N  be a place-transition net. Then  N  is a  k-distinguishable net    iff    ∃ N´ ( 
N´ is a net simulator of  N   and   N´  is a  k-distinguishable net under  Ω´ ). 

Proposition 3 

Let   i´  =  (i1,...,i⎜P⎜,i⎜P⎜ + 1,...,i⎜P⎜ + ⎜T⎜)  be a P-invariant in  N´. Then  i  =df  (i1,...,i⎜P ⎜)  
is a P-invariant in  N . 

Proof: 

Since   N´‧ i´  =  0   then for  any   ot ∈  T´:   ot ‧ i´  =  0, where ot   ∈  {t+, t−}.  
Hence   t+ ‧ i´  =  0  and   t− ‧ i´  =  0.  Therefore   t´‧ i´  =  0 , where   t´  =df  t+  +  t− . 
Since   t´  =  (t,0)  then  (t,0) ‧ i´  =  0 .  Assume now that  i´  =  (i,a)  where:   i  =df  
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(i1,...,i⎜P ⎜)   and   a  =df  (i⎜P ⎜ +  1,...,i⎜P⎜ + ⎜T⎜) .   Since  (t,0) ‧ (i,a)  =   0   then   t ‧ i   +   0 
‧ a   =   0.  Hence   t ‧ i  =  0  (for any  t  ∈  T ). So we have   N‧ i  =  0  and i  is a P-
invariant in  N . □ 

It is obvious that the opposite implication is not always satisfied. Moreover, any P-
cover of  N´ will implicate a corresponding P-cover for  N  ( since  supp(i´)  =  
supp((i,a))  =  supp(i)  ∪  supp(a) ).According to Proposition 2 the net k-
distinguishability measure under  Ω   is uniquely defined by the maximal number of 
identical columns of the corresponding matrix ρ of  N.  A similar observation can be 
obtained considering ρ´ of the net simulator N´ and  Ω´. So, a simple method of 
computation of the k-distinguishability measure can be obtained [Immanuel  and  
Rangarajan 2001]. Without losing any generality, in the next considerations we shall 
concentrate our attention only to the k-distinguishability measure under Definition 2. 
Next the notion of test point is introduced as follows. 

Definition 5 

Let  
0kp ∈  P  be a given place of  N  such that the pre-set i 

0kp   =df  {t1}  and  

the post-set  
0kp i =df  {t2}, where  t1  and  t2  are two different transitions of  N.  The 

additional place   'k0
p   ∈  it1  ∩   t2i   is said to be a test point associated with  

0kp  

iff the initial marking  0M̂  of the obtained net  N̂   is specified as follows: 0M̂ (p)  =df  

if  p  =  'k0
p     then   max{M(

0kp ) / M  ∈ [ M0 >}  −  M0( 0kp )  else  M0(p)  fi  (for 

any  p  ∈  P̂   =df  P  ∪  { 'k0
p } ). 

It can be observed that in some cases the considered Petri net may be maximally 
indistinguishable, e.g. a net which is a state-machine net and a marked graph at the 
same time. Then the corresponding P-cover will contain only one P-invariant having 
all components equal to one.  

Proposition 4 

Let  N  be a directed elementary cycle having  m  places (m  >  1). Then  N  
becomes  (2m  −  r)-distinguishable   if   r  additional test points are placed  ( 1  ≤  r  ≤  
2m  −  1). □                                                                                                   {Df.4, Prop.2} 

A generalisation of Definition 5 for non-ordinary place-transition nets (i.e. nets 
having some edges a  ∈  A   with weights  w(a)  ≠  1) is omitted here. Any such 
generalisation of the last definition for place-transition nets, which are not ordinary, 
would require an isomorphism between the corresponding reachability graphs  RG(N) 
and  RG( N̂ ) (see Example 1 and Theorem 2 given below). Let  Pa  =df  Ω(a)   (for any  
a   ∈  {0,1}⎜J   ⎜). Obviously  Pa ∈  supp(Ω)  if   Pa  ≠  ∅.  

Definition 6 
Let  Pa  ≠  ∅,  Ta  =df  iPa  ∪  Pai  and   Aa  =df  A   ∩   (( Ta  ×  Pa )  ∪  ( Pa  ×  

Ta)) .  The corresponding subnet Na  =df  (Ta , Pa, Aa)  of  N  is called a graphical 
representation of  Pa . We shall say   Na  is a marked graph component  (or MG-
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component)   iff   ∀p  ∈  Pa  ( ⎜ip ⎜   =    ⎜pi⎜   =   1). The subset of places   Pa  is 
said to be a MG-component generator. 

The following theorem was shown [Tabakow 2003]. 

Theorem 1 
Assume that  N  a live and bounded place-transition net having   ⎜P ⎜   ≥   2  and  

supp(Ω)  =df  {
1aP ,

2
aP , ... , 

naP },  where  1  ≤  n  <  ⎜P ⎜.  If any  Pa  ∈ supp(Ω)  is a 

MG-component generator then  N can be transformed into a 1-distinguishable net by 
using (⎜P ⎜ −  n)  test points.   

Proof: 

Let  supp(Ω)  =df   {
1aP ,

2
aP , ... , 

naP }   be the partition of  P  for  N  under 

Proposition 2  and   ki  =df  ⎢
iaP ⎢ (i = 1, ... ,n). Consider the subfamily A  =df  {

iaP ∈ 

supp(Ω) / ki  ≥  2 } ⊆ supp(Ω), where  s  =df  ⎢A   ⎢. The elements of A  are in pairs 
disjoint (i.e. 

iaP  ∩  
j

aP  =  ∅  for any different i and j). Hence we can obtain: 

∑
∈A

i
aP

ik +  (n  −  s)  =  ⎢P ⎢ 

By Proposition 4 it follows that the MG-component   Nai  generated by  Pai ∈ A  
can be transformed into a 1- distinguishable net by using  (ki  −  1)  test points. And 
so, the total number of test points used in  A  or equivalently the number of test points 
for  N  is given by: 

1)(k
i

aP
i −∑

∈A
   =   ∑

∈A
i

aP
ik    −  s   =   ⎢P ⎢ −  n. □                                        {Df.6, Prop.4} 

According to the above given Theorem 1 the following test point placement 
algorithm can be specified: 

Algorithm 1 

Input:  N, J 
Output: N̂  

To obtain the 1-distinguishable net  N̂  from the original place-transition  net  N  
and the given P-cover J   of  N: 
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(1) Define  ρ  from J   of  N ; 

(2) Complete  supp(Ω)  from  ρ ;                        

(3) Let  A   =df { Pa  ∈ supp(Ω) /  ⎜ Pa ⎜ ≥   2}  ⊆  supp(Ω). 
Specify the subfamily A ;   

(4) Let  Pa  ∈ A   be a MG-component generator. Determine the 
corresponding net  Na ; 

(5) Let  ka  =df  ⎢ Pa ⎢. Place  (ka  −  1)  test points in  Na . The 
choice of the associated places corresponding to the subset  
Pa  ⊆  P  of  N  can be realised  in an arbitrary way; 

(6) Let the new subfamily  A  =df  A  −  { Pa}. If  A  ≠  ∅   then  
go to  (4)  else end. □ 

It is obvious that any P-invariant in  N  can be extended  as a P-invariant in  N̂  by 
assuming  0’s relating to the corresponding test point components, i.e. the following 
proposition is satisfied. 

Proposition 5 

If  i  is a P-invariant in  N  then  î  =df  (i,0)  is a P-invariant in  N̂ , where the 
vector size of  0  is related to the number of used test points. 

Proof: 

Let   t̂  =df  (t, ( t̂ (p⎜P ⎜ +  1), ... , t̂ (p⎜P ⎜ +  s))  be an arbitrary row-vector in  N̂  and  t  
be the corresponding such vector in  N  (s  ≥  1). Here, according to Definition 5, the 
original net  N  is extended to N̂  assuming a finite set of test points, e.g. {p⎜P ⎜ +  1, ... , 
p⎜P ⎜ +  s}. Let  î  =df  (i,0). Since   t ‧ i  =  0  then: t̂ ‧ î  =  (t, ( t̂ (p⎜P ⎜ +  1), ... , t̂ (p⎜P ⎜ +  

s)) ‧ (i, (0, ... ,0))  =   t ‧ i  +  0  =  0. □   

Proposition 6 

If  
0kp ´  is a test point associated with  

0kp  ∈  P  in  N  then  
0kî is a P-invariant 

in  N̂ , where  supp(
0kî )  =  {

0kp , k0
p ´ }. 

Proof: 
Assume that   'k0

p    is a test point associated with  
0kp ∈  P  in  N. According to 

Definition 5   'k0
p   (

0kp )  is at the same time an input (output) place to  t1  and an 

output (input) place to  t2. By definition, a vector  x  is a P-invariant iff N̂ ⋅ x =  0. 

Hence iff  t̂ ⋅ x =  0 (for any row-vector  t̂  of  N̂ ). And so, there exist exactly two 

equations related to t1 (t2) of the following form:  ... − 'x
k0p  ( + 'x

k0p ) ... + 
k0px  ( − 
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k0px ) ... =  0.  The P-invariant  
0kî  is obtained by assuming  

k0px =   'x
k0p =  1  and   

xi  =  0  (for any  xi  ≠  
k0px , 'x

k0p ). □ 

 
 

 

                        (a)                                                     (b) 

 

 

                 (c)  RG(N)                                              (d)  RG( N̂ ) 

Figure 1: A hypothetical fragment of non-ordinary place-transition  net (a) an 
example test point placement (b), and the corresponding reachability graphs  RG(N)  
and  RG( N̂ ) (c and d, respectively) 

Proposition 7 

If J   is a P-cover of   N  then  Ĵ   =df   J   ∪  {
0kî }  is a P-cover of  N̂ .    {Prop.6}  

In a natural manner, the last two propositions can be extended for non-ordinary 
place-transition nets. This is illustrated in the next example. 

Example 1 

Consider the hypothetical fragment shown in Figure 1(a) above. Let  p´  be a test 
point associated with   p  ∈  P  in  N  and  î  be a P-invariant in N̂  such that supp( î )  
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=df  {p, p´}. Using N̂ ⋅ î  =  0  (assuming  î (q)  =df  0, for q  ∈  P − supp( î )) the 
following two equations can be obtained: 

 
a⋅ î (p) 

 

− d⋅ î ( p´) 
 

= 
 

0 

− b⋅ î (p) 
 

+ c⋅ î (p´) 
 

= 
 

0 

Since the edge multiplicities  a  and  b  of  N  are a priori given then  d  and  c  can 
be defined in a unique way by assuming î (p)  =  î ( p´)  =  1. Hence:  d  =df  a  and  c  

=df  b. The obtained  P-invariant  î  is  minimal and positive. 
An example test point placement is shown in Figure 1(b) where an example live, 

bounded, and reversible place-transition net is presented. Assume that  T  =  {t1,t2}  is 
a fault-free. According to Proposition 2 the considered net  N  is   2-distinguishable 
wrt the P-invariant  i  =  (1,1)  having two identical columns. Let  p3  =df   p2´ be a test 
point such that 0M̂ (p3)  =df  max{M(p2) / M  ∈ [ M0 >}  −  M0(p2)  =  3  −  0  =  3. 

According to Proposition 5  î  =df  (1,1,0)  is a P-invariant in  N̂ . Using N̂ ⋅ x =  0  
the following two equations can be obtained: 

 
− 2⋅x1 + 2⋅x2 − d⋅x3 = 0 
     x1 −    x2 + c⋅x3 = 0 

Let  x1 =  0, x2  =  x3  =  1. Then  d  =  2  and  c  =  1. In accordance with 

Proposition 6  2î  =df  (0,1,1)  is another P-invariant where supp( 2î )  =  {p2, p3}. In 

fact, we have  M̂ (p2)  +  M̂ (p3)  =  3 (for any M̂ ∈ [ M̂ 0 >  in  N̂ ). The obtained  P-

invariant matrix   Ĵ    =  ⎥
⎦

⎤
⎢
⎣

⎡
110
011

has all columns different and  N̂  is 1-

distinguishable. The corresponding reachability graphs  RG(N)  and  RG( N̂ )  are 
shown in the above Figure 1(c) and (d), respectively. It can be observed that any  M  
of  N  is a prefix of the corresponding M̂  of  N̂  and the last two reachability graphs 
are isomorphic. Hence, the original boundedness, liveness, and reversibility properties 
of  N  are preserved in  N̂ . □ 

Example 2 

Consider  N  of Figure 2(a) below describing the behaviour of a system consisting 
of one write- and three read-authorised processes [4,6,7]. The interpretation of the 
places and transitions is as follows: p1(p4):  process waiting for three keys (for one 
key), p2(p5):  writing process (reading process), p3(p6):  inactive process (inactive 
processes), p7:  keys, t1(t4):  take keys (take keys), t2(t5):  return keys (return keys), and 
t3(t6):  indication of need (indication of need). 

The following P-cover can be obtained: J  =  {i1,i2,i3} , where: i1  =  
(1,1,1,0,0,0,0), i2  =  (0,0,0,1,1,1,0)   and    i3  =  (1,4,1,0,1,0,1).. According to 
Proposition 2,  N  is  3-distinguishable. The obtained test point improving is shown in 
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Figure 2(b).  The net N becomes 2-distinguishable for J   =  {i2,i3,i4}  or also J   =  
{i1,i2,i4}, where i4  =  (0,3,0,0,1,0,1). In the last case the number of test points can be 
reduced to 2 (e.g. by removing p9). □                                                                   {Df.2, Prop.2, T1}  

 

 

                            (a)  N                                                (b) N̂  

Figure 2: A system consisting of one write- and three read-authorised processes (a) 
and a net distinguishability improving using test points p8,p9 and p10 (b). 

In general, the process of test point placement is related to the problem of finding 
minimal cost P-cover J   such that the obtained diagnostic resolution is maximal (this 
is omitted). The following theorem is satisfied. 

Theorem 2 
Let  N  be live, bounded, and reversible place-transition net and  'k0

p    be a test 

point associated with  
0kp .Then  N̂  is also live, bounded, and reversible.  

Proof: 

Without losing any generality, assume that  J   is a P-cover of   N.  Then  Ĵ   =df   J   

∪  {
0kî }  is a P-cover of  N̂ .Otherwise,  a P-cover of  N  can be obtained by 

assuming additional test points. According to Definition 5  0M̂  is bounded. Hence  

N̂   is bounded. 
Let  M   =df   max{M(

0kp ) / M  ∈ [ M0 >}  and  T(M)  =df  {t  ∈  T / t  is  M-

enabled in  N}. Assume that   t1  ∈  T(M). Hence   t1  ∈  T( M̂ )  iff   M̂ (
0kp )  +  a   ≤  

M  and  M̂ ( 'k0
p  )  ≥  a  (see the above Figure 1(a) assuming  p  =df  0kp  and  p´ =df  

'k0
p  ). However, in accordance with  Definition 5   M̂ (

0kp )  =   M(
0kp )    (for any  

M ∈    [ M0 > ). Hence  M̂ (
0kp )  +  a   =   M(

0kp )  +  a  ≤  M . Moreover,  
0kî is a 

Boolean vector. Then  M̂ (
0kp )  +  M̂ ( 'k0

p )  =  M  (for any M̂ ∈ [ M̂ 0 >  in  N̂ ). 
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Hence:  a  +  M̂ (
0kp )  +  M̂ ( 'k0

p )  =  M  +  a.  Since  a   +  M̂ (
0kp )  ≤  M  then  

M  +  M̂ ( 'k0
p )  ≥  M  +  a. Hence  M̂ ( 'k0

p )  ≥  a  and  t1  ∈  T( M̂ ). 

Assume now that  t2  ∈  T(M). Hence  t2  ∈  T( M̂ )  iff  M̂ (
0kp )  ≥  b  and  

M̂ ( 'k0
p )  +  b  ≤  M .Since  M̂ (

0kp )   =   M(
0kp )  the first condition  M̂ (

0kp )  ≥  b  

is satisfied. Hence, using  M̂ (
0kp )  +  M̂ ( 'k0

p )  =  M  we can obtain:  b  +  

M̂ ( 'k0
p )  ≤  M .  

Hence:  t  ∈  T(M)  iff  t  ∈  T( M̂ ) (for t  ∈  {t1,t2} ).And so, the liveness and 
reversibility properties of  N  are preserved in  N̂ . □                              {Df.5, Prop.6, Prop.7}                                                     

Test points can be placed independently each other. Hence Theorem 2 can be 
generalised for any finite subset of such points.  

4 The Fault Isolation Method 

Testing of a system is an experiment in which the system is exercised and its resulting 
response is analysed to ascertain whether it behaved correctly. If incorrect behaviour 
is detected, a second goal of testing experiment may be to diagnose, or locate, the 
cause of the misbehaviour. Diagnosis assumes knowledge of the internal structure of 
the system under test. These concepts of testing and diagnosis have a broad 
applicability (consider, for example, medical tests and diagnoses, test-driving a car, 
diagnosability analysis of computer networks or large-scale plants, debugging a 
computer program, etc.).  

Testing methods can be classified according to many criteria, e.g. on-line 
(concurrent) testing or also off-line testing (if it is important to know when is testing 
performed), etc. Two different diagnosis test strategies are discussed below, i.e. 
combinational and sequential fault diagnosis (assuming  MTBF → ∞  and   MTTR  →  0, 
respectively). The combinational fault diagnosis approach can be classified as on-line 
fault diagnosis (any interruptions for testing purposes are not allowable during the 
work of the system). And so, in some cases this approach may be too expensive. The 
sequential (called also adaptive) fault diagnosis approach assumes some minimisation 
of the testing time. In sequential fault diagnosis the process of fault isolation is carried 
out step by step, where each step depends on the result of the diagnostic experiment at 
the previous step. Hence, any sequential diagnosis procedure can be graphically 
represented as diagnostic tree (in short: D-tree). 

The concurrent systems we are considering here are those that can be represented 
by a live and bounded place-transition Petri net. Without losing any generality we 
shall also assume below any such net  N  is reversible. It can be observed 
boundedness, liveness, and reversibility are independent of each other. Hence, the 
main purpose of the proposed fault isolation method is to locate the physical fault(s) 
in the Petri net model of the considered system. The degree of accuracy to which 
faults can be located (i.e. the diagnostic resolution) is given in a unique way by the 
obtained k-distinguishability measure. Any place  p  ∈  P  of  N  having an incorrect 
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behaviour is said to be a faulty place (denoted also by  pα). The single faulty place 
model will be assumed below (called in short: p-fault model). Hence, it is assumed 
that any faulty marking  Mα  is a consequence of some  pα . This faulty place will 
implicate a violation of the firing rule. The violated firing rule will make the P-
invariant assertion  J   ‧ ΔMT  =  0   false. Any validation of the last equation can be 
interpreted as a validation of the logical value  ∈  {‘true’,’false’} of some two-
argument predicate  R(Mk,is),  obtained for a given  Mk  ∈ [ M0 >α  and  is  ∈  J  . 
Hence, the obtained proposition will be  ‘true’  iff   ΔM ‧ is  ≡  0 . And so, this 
validation can be represented as an elementary test (or measurement)  τs  ∈  Θ of the 
considered system, where  Θ  is the set of all such tests, i.e.  Θ  =df  {  τs  / is  ∈  J  }. 

We observe that for a given   Mk  ∈ [ M0 >α  there exists one-to-one 
correspondence between tests  τs  and the P-invariants  is  of  N. Hence the  P-invariant 
matrix J  can be interpreted as a diagnostic matrix. Moreover, any such matrix can be 
considered as an information system  (P, J  , {0,1}, ϕ), where  ϕ :  P  × J   →  {0,1}  is 
the corresponding information function [Pawlak 1991]. Next we shall assume that the 
set of  P-invariants J   (i.e. ‘attributes’ of this information system) is a reduced set  (or 
reduct wrt some superfluous P-invariants: the process of reduction is omitted here). 

Let   ℝ≥  be the set of all nonnegative reals and   c : Θ  →  ℝ≥  be a cost function 
such that  c(τ)  ∈  ℝ≥  be the cost of using the elementary test  τ  ∈  Θ.  The total cost 
(in short: TC) in the case of the combinational fault diagnosis approach is given by 

∑=
∈Θτ

.)c(τdf TC It can be observed  TC is the cost of the P-cover of  N, i.e. the 

cost of the family  {P1, P2, ... ,P⎜J   ⎜}, where  Ps  =df  supp(is)  ⊆  P (s = 1, 2, ... , J ). 
The corresponding cost in the case of the sequential fault diagnosis approach will 

depend on the probability  Prob{p} ∈  [0,1]   that  p  ∈  P  is a faulty place. Obviously  
.1

Pp
Prob{p} =∑

∈
Hence, the cost of D-tree (in short:  CDT) is defined as follows:  

∑=⋅∑=
∈∈ Θ(p)τdfPpdf .)c(τc(p)wherec(p),Prob{p}CDT By  Θ(p)  ⊆  Θ  it is 

denoted the subset of tests isolating (or locating) fault in  p.  
The above considered costs  TC and  CDT  correspond to the notions of P-

cover and k-distinguishability, respectively. Moreover, it can be observed that  CDT  
≤  TC. In fact, since   Θ(p)  ⊆  Θ   we can obtain:   
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CDT 
 

=df c(p)Prob{p}
Pp

⋅∑
∈

 

 = ))c(τ(Prob{p}
Θ(p)τPp
∑⋅∑

∈∈
 

 ≤ ))c(τ(Prob{p}
ΘτPp

∑⋅∑
∈∈

 

 = TCProb{p}
Pp

⋅∑
∈

 

 = 1TC ⋅  

 = TC. □ 

 
A particular case can be obtained by assuming that  N  is a directed elementary 

cycle having two places (e.g. p1  and  p2) and only one test point (considered as a 
hardcore). Then we have:  CDT  =  Prob{p1}⋅c(τ) + Prob{p2}⋅c(τ)  =  (Prob{p1} + 
Prob{p2})⋅c(τ)  =  1⋅ c(τ)  =  TC. 

According to Definition 4 the above presented  p-fault model can be generalised to 
the set of all vertices  x  ∈  P  ∪  T  of  N. In particular, assuming that  P  is fault-free, 
the single faulty transition model can be obtained (called in short:  t-fault model).  Let  
J ´  and  ΔM´ be  J   and  ΔM  for  N´ (the net simulator of  N). Next by  J ´/ X and  
ΔM´/ X we shall denote J ´  and  ΔM´ restricted to the subset of columns 
corresponding to  X, where  X  ∈  {P,T} (obviously, we have: J   = J ´/ P ).  

Proposition 8 

If a  t-fault model is assumed for  N  then:  J ´⋅ ΔM´T  =  J ´/ T ⋅ ΔM´T/ T. 

Proof: 

J ´⋅ ΔM´T = [J ´/ P, J ´/ T] ⋅ [ΔM´/ P, ΔM´/ T]T 
 = J ´/ P ⋅ ΔM´T/ P   +  J ´/ T ⋅ ΔM´T/ T 
 = 0  + J ´/ T ⋅ ΔM´T/ T 
 = J ´/ T ⋅ ΔM´T/ T. □ 

Definition 7 

The Petri net  N  is a  p-fault k-distinguishable net (a t-fault k-distinguishable net)  
iff  N  is a  k-distinguishable net under  Ω  assuming the p-fault model (t-fault model). 
Example 3 (combinational fault diagnosis: p-fault model) 

Let consider the place-transition net  N  of  Figure 4(a) corresponding to the 
manufacturing system shown in Figure 3 below [Zhou and DiCesare 1993]. The 
places represent resource states or operations and the transitions represent start or 
completion of the corresponding discrete event. The interpretation of the places and 
transitions is as follows:  p1: represents pallets available, p2: machine 1 loads, fixtures 
and processes a palleted raw part, p3: robot unloads an intermediate part to the buffer, 
p4: buffer stores an intermediate part, p5: machine 2 loads and processes an 
intermediate part, p6: robot unloads a final product from machine 2, defixtures and 
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returns pallet, p7: represents the availability of machine 1, p8: represents buffer 
available, p9: represents the availability of machine 2, p10: represents robot available, 
t1: models the start of activity of  p2, t2: the stop of activity in  p2  and the start of 
activity of  p3, t3: the stop of p3 and the start of the storage activity p4, t4: the stop of p4 
and the start of  p5 activity, t5: the stop of activity  p2 and  the start of  p6, and t6: 
models the stop of  p6  activity. 

 

Figure 3: A simple manufacturing system 

The system consists of two different machines, a robot, and a buffer. Every part 
from the input storage must be processed by Machine 1 first and then by Machine 2 to 
produce a final product. The robot is used for unloading both machines and the buffer 
is used to store intermediate parts. 

 

                   (a)  N                                                             (b)  N´ 

Figure 4: The Petri net model  (a) corresponding to the system of Figure 3 and the 
corresponding net simulator (b) 
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Hence J ´ = 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

111000
001100
110110
000111
111111

0100110000
0010001000
1000100100
0001000110
0000111111

,  

where  J ´ =  [J ´/ P, J ´/ T] and the maximal number of identical columns in J ´/ P  (in 
J ´/ T) is  1 (is 2). According to Proposition 2,  N  is a p-fault 1-distinguishable net 
and a t-fault 2-distinguishable net. Here the revised P-invariant matrix  ρ´  = J ´. 

Let now  pα  =df  p4   be a single faulty place  and  Mα  =df   (4,0,0,1,0,0,1,2,1,1).  
Hence  ΔM  =  Mα   −  M0  =   (0,0,0,1,0,0,0,0,0,0)  and  J ´/ P ⋅ ΔM´T/ P  = J ‧ ΔMT  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

0
0
0
0
0
0
1
0
0
0

0100110000
0010001000
1000100100
0001000110
0000111111

  =  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
1
0
0
1

.  

Hence, the fourth column of  J   is obtained and this corresponds to fault in  p4  . In 
fact, assuming  a =df  (1,0,0,1,0)  we can obtain:   Ω(a)  =  P1  ∩  P2´ ∩  P3´ ∩ P4  ∩ 
P5´  =  {p4}, where  P1  =  {p1, p2, p3, p4, p5, p6}, P2´ =  {p1, p4, p5, p6, p8, p9, p10}, P3´ =  
{p1, p2, p4, p5, p7, p8, p9}, P4  =  {p4, p8}, and  P5´ =  {p1, p2, p3, p4, p7, p8, p10}. 

The problem becomes worse in the case of multiple faults. The corresponding fault 
isolation process may not be correctly realised. For example, assuming the multiple 
fault  (p2, p3)α , i.e. Mα  =df   (4,1,1,0,0,0,1,2,1,1) we can obtain:  J ‧ ΔMT =  
(2,2,1,0,0). Hence  a =df  (1,1,1,0,0), the third column of  J   is obtained and this 
corresponds to single fault in  p3 . Similarly, for  (p5, p6, p7)α with  Mα  =df   
(4,0,0,0,1,1,0,2,1,1)  we have: J ‧ ΔMT =  (2,−1,1,0,2). Hence a =df  (1,1,1,0,1)  and  
Ω(a)  = P1  ∩  P2  ∩  P3  ∩  P4´ ∩  P5  =  ∅.  In fact, there is no any column in  J   
identical with  aT. □ 

Example 4 (combinational fault diagnosis: t-fault model) 

Consider the same net  N  as in the previous example. The net simulator   N´ of  N  
is shown in Figure 4(b).  Here  ti

±  are assumed to be fault-free (i = 1, ... ,6 ) , where  
s(N´)  =  38  +  4⋅6 =  62  [Tabakow 2000]. The net transitions  t ∈  T  can be 
interpreted, e.g. as start or completion of the corresponding event [Zhou and DiCesare 
1993]. Hence   t+  and   t−  can be related to the initial and final time needed for 
realisation of any such event. 
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Since  N  is a t-fault 2-distinguishable, to distinguish between faults in  t5  and  t6, 
an additional test point  p17  is placed (as it is shown in Figure 4(b), using dashed line). 
The extended P-invariant submatrix of  N´, i.e. the P-invariant matrix of N̂ ´, Ĵ ´/ T  =  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1010000
0111000
0001100
0110110
0000111
0111111

. Since Ĵ ´/ T  has all columns different, any single faulty 

transition can be identified, e.g. assuming  0M̂ ´  =df  (4,0,0,0,0,0,1,2,1,1,0,0,0,0,0,0,1)   

and  αM̂ ´ =df (4,0,0,0,0,0,1,2,1,1,0,0,1,0,0,0,1)  we can obtain: M̂Δ ´  =  

(0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0). Hence  M̂Δ ´/ T  =  (0,0,1,0,0,0,0). In accordance 
with Proposition 8  we have: Ĵ ´/ T ⋅ M̂Δ ´T/ T  =  (1,1,1,1,0,0)T. And so, the third 

column of  Ĵ ´/ T  is obtained and this corresponds to fault in  p13 , i.e.  t3.  In fact, pα 

∈{p11, p12, p13, p14, p15, p16}  ∩  {p11, p12, p13}  ∩  {p12, p13, p15, p16}  ∩  {p13, p14}  ∩  
{p11, p12, p13, p17}  ∩ {p11, p12, p13, p14, p16}  =  {p13}. The total cost  TC  =  c(τ1) + 
c(τ2) + c(τ3) + c(τ4) + c(τ5) + c(τ6), where any  τs  corresponds to  is´/T. Hence, in the 
case of homogeneous costs, i.e. c(τs)  =  1 (for any s) we have:  TC  =  6. □ 

Example 5 (sequential fault diagnosis: t-fault model) 

According to the previous example, the process of fault isolation can be carried 
out step by step, where each step depends on the result of the diagnostic experiment at 
the previous step. The graphical representation of this approach is is illustrated below, 
where two example D-trees are shown (see Figure 5(a,b) where any is´ corresponds to 

M̂Δ /T‧ sî ´/T = 0? , s = 1,2,...,6). Now, to distinguish between faults in  p15 (i.e. t5 ) 
and  p16 (i.e. t6 ), the additional place invariant  i6´/T is used (corresponding to the 
above introduced test point  p17). The obtained fault isolation improvement is shown 
using dashed line. The cost  CDT / D-tree 1  = Prob{p17}⋅c(τ1) + Prob{p11}⋅(c(τ1) + 
c(τ4) + c(τ3)) + Prob{p13}⋅(c(τ1) + c(τ4) + c(τ5)) + Prob{p14}⋅(c(τ1) + c(τ4) + c(τ5)) + 
Prob{p12}⋅(c(τ1) + c(τ4) + c(τ3) + c(τ5)) + Prob{p16}⋅(c(τ1) + c(τ4) + c(τ3) + c(τ5) + 
c(τ6)) + Prob{p15}⋅(c(τ1) + c(τ4) + c(τ3) + c(τ5) + c(τ6)). 

For example, by assuming an uniform distribution, i.e. a constant probability 

for any  p  ∈  P  we can obtain: CDT / D-tree 1  =  ⋅
7
1 c(τ1) + ⋅

7
1 (c(τ1) + c(τ4) + c(τ3)) 

+ ⋅
7
2 (c(τ1) + c(τ4) + c(τ5)) + ⋅

7
1 (c(τ1) + c(τ4) + c(τ3) + c(τ5)) + ⋅

7
2 (c(τ1) + c(τ4) + 

c(τ3) + c(τ5) + c(τ6))  =  c(τ1) + ⋅
7
4 c(τ3) + ⋅

7
6 c(τ4) + ⋅

7
5 c(τ5) + ⋅

7
2 c(τ6)  <  c(τ1) + 

c(τ2) + c(τ3) + c(τ4) + c(τ5) + c(τ6)  =  TC.  Hence, in the case of homogeneous costs:   
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CDT / D-tree 1 =  ⋅
7

24   In a similar manner,  for D-tree 2 of Figure 5(b) we can 

obtain:  CDT / D-tree 2  =  
7
20   <  

2
1

7
42

⋅    ( =  
2
1 TC⋅  ). □ 

 
                     (a) D-tree 1                                                                              (b) D-tree 2 

Figure 5: Two example D-trees for N´ of Figure 4(b) 

5 Conclusions 

The above-considered approach gives a possibility of fault isolation in concurrent 
systems. This process is realised by using the Petri net model of the considered 
system. The degree of accuracy to which faults can be located, i.e. the diagnostic 
resolution is given in a unique way by the obtained k-distinguishability measure. The 
complexity of the proposed method depends on the effectivity of the existing 
algorithms for computation of the P-cover, i.e. the set of P-invariants covering N. The 
choice of diagnosis strategies, i.e. combinational or also sequential is depending on 
the used time requirements for testing. Moreover, an additional cost-minimisation can 
be obtained by assuming the considered test point set as a “hardcore”. This approach 
can be extended for higher level Petri nets, e.g. such as coloured nets or also to design 
self-diagnosable circuit realisations of Boolean interpreted Petri nets.  
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