
Formal Representations of Learning Scenarios:
A Methodology to Configure E-Learning Systems

Denis Helic
(Institute for Information Systems and Computer Media

Graz University of Technology, Austria
dhelic@iicm.edu)

Abstract: Nowadays, advanced E-Learning systems are generally pedagogy-aware.
Commonly, these systems include facilities for defining so-called learning scenarios that reflect
sophisticated pedagogical approaches such as collaborative writing or project-oriented learning.
To support different learning activities from such scenarios the technological infrastructure of
these systems must be appropriately adjusted and configured. Usually, this configuration
process is laced with a number of difficulties. Most of these difficulties are caused by the fact
that scenario capturing is achieved through informal user-developer dialogues. Typically, the
result of such informal dialogues contains inconsistent and incomplete information because of
misunderstandings and the complexity of the interactions within a scenario. Consequently, the
configuration of the system is suboptimal and a number of iterations are required in order to
achieve better results. In this paper an approach to improve this situation is presented. This
approach is based on a general formal representation model for describing learning scenarios. A
particular formal description of a concrete learning scenario is obtained through a user dialogue
with a wizard tool. At the next step, this formal description might be automatically processed to
facilitate configuration process. The paper is concluded with some experiences gained by
applying this approach in two E-Learning projects.

Keywords: E-Learning, E-Learning system, learning scenario, formal representation,
configuration
Categories: H.1.0, H.4.0

1 Learning Scenarios in E-Learning

It is our experience that successful E-Learning projects always concentrate on
pedagogical aspects to enable efficient technology-enhanced knowledge transfer. As
such, these projects are far less focused on the technology itself [Hirumi 2002; Hobbs,
2002; King and Puntambekar, 2003; Leasure et al., 2000; Mioduser et al., 2000;
Oliver et al., 2002]. For example, one of such projects was the project called
CORONET (Corporate Software Engineering Knowledge Networks for Improved
Training of the Work Force) that was funded by the European Commission (IST-
1999-11634). The main purpose of the project was to analyze, implement and
evaluate a number of tools for support of collaborative knowledge transfer processes.
Each of such tools utilized the current and advanced Web technology to facilitate and
spread the flow of knowledge from people possessing that knowledge to people who
needed to acquire it by following a particular collaborative pedagogical approach.
Thus, processes such as Web-based tutoring, Web-based knowledge mining, Web-
based collaborative writing, and collaborative project-oriented learning have been

Journal of Universal Computer Science, vol. 13, no. 4 (2007), 504-530
submitted: 25/10/06, accepted: 23/4/07, appeared: 28/4/07 © J.UCS

supported. The evaluation of the project results with respect to the increase of
learning effectiveness by knowledge sharing and collaborative learning generally
indicated improved learning effectiveness [Pfahl et al., 2004; Helic et al., 2004; Helic
et al., 2005].

One simple strategy to utilize pedagogical aspects in E-Learning is based on
managing so-called learning scenarios. This strategy was successfully applied in a
number of E-Learning projects at the University of Technology Graz [Helic, 2006;
Helic and Durco, 2005; Ebner et al., 2005, Dreher et al., 2004]. In those projects a
learning scenario was defined as a combination of the following components:

• A particular way (i.e. a story) of working with the system to achieve a
particular learning goal. Typically, the story was represented as a collection
of learning activities that need to be carried out to accomplish the goal.

• The user roles that are involved in the story, e.g. teachers, tutors, students, or
learners.

• The system tools, features and services that are needed to support the
activities.

• The educational content relevant to the learning goal.

Using this scenario structure, scenarios such as thematic uploading, thematic
discussion, goal-oriented, or reflective learning were developed in these projects.
Further, one of the important requirements in these projects was a possibility to
introduce new learning scenarios and customize already existing ones. The systems
and technological infrastructure fulfilled that requirement by providing a generic
learning scenario framework. The framework utilized extensibility and
customizability by providing flexible system configuration possibilities. Thus,
supporting a new learning scenario or customizing an existing scenario was
equivalent to providing a new system configuration or adjusting an existing
configuration, respectively.

However, such a general and flexible pedagogy-aware framework is inevitably
technically complex. Therefore, the process of configuring the framework to reflect
the scenarios is related with a number of problems. Typically, these problems are
visible at different stages of such a scenario management process.

Capturing of scenarios is tedious and error-prone. It is carried out in informal
settings through user-developer dialogues. The results of such dialogues are scenario
requirements documents in a narrative form. Typically, this final result contains
inconsistent and incomplete information because of misunderstandings or the
complexity of the interactions within the scenario. Basically, this problem is
equivalent to a general user requirements analysis problem in any software and
system development process [Meyer, 1985; Jarke et al., 1998].

Technical realization, i.e. configuration, and customization are extremely difficult
because of the rich and complex functionality that is needed and because of the
heterogeneity of the technological environment in question. Firstly, in order to
support sophisticated learning activities and scenarios the system must provide
sophisticated functionality. That functionality is typically organized in highly
complex structures and processes. For example, collaborative writing scenario
includes activities such as writing, reading, reflecting, commenting, and discussion.
These activities can be mapped onto the system functionality in the following way.

505Helic D.: Formal Representations of Learning Scenarios ...

The discussion activity is mapped onto a discussion forum. The writing activity is
mapped onto an editor tool with upload functionality. Additionally, the editor is
associated with a version control system to control different versions of the
documents. The reflecting and commenting activities might be mapped onto an
annotation tool, and all of the activities are connected to the user authentication and
user rights module that decide who can do what. Thus, even this simple scenario
example can lead to a complex development and configuration process. Moreover, E-
Learning systems are typically developed in a Web-based technological environment,
which is a very fast evolving and ever-changing environment. Obviously, such a
dynamic environment increases the complexity of the development and configuration
process of E-Learning systems.

We believe that one possibility to remedy these problems is by developing formal
specifications of learning scenarios. Such formal specifications would meet two goals;
firstly, inconsistency and incompleteness of a captured scenario description can be
partially or completely avoided; secondly, strategies and automatic or semi-automatic
procedures for supporting system configuration and customization can be developed
on the top of that formalism. As a consequence of these two goals formal
specifications must be:

• Easy to understand and use for all, i.e., the users of the system (e.g., teachers,
tutors, students, etc.) as well as the developers of the system.

• Sufficiently expressive, yet still simple enough as to allow semi-automatic or
automatic processing and analysis in order to obtain at least a first prototype
of the system at different levels of abstraction and granularity, e.g.,
architectural model, component-model, or even automatically generated
configuration scripts or implementation and integration code if needed.

The idea of formal specification of the user requirements (user scenarios, use

cases) is by no means a new idea in software engineering. For many years now
developers and researchers alike have been trying to apply formal methods in
software development in general and user requirements engineering in particular
[Meyer, 1985; Clarke and Wing, 1996, Hong and Lingzi, 2000]. However, there exist
a number of difficulties related to formal methods in developing information systems
caused by fast changing requirements, user bases, usability and design issues, or
rapidly changing technologies [Land and Hirschheim, 1983; Avgerou, 1987;
Overmyer, 2000; Bolchini and Paolini 2004]. Moreover, such formal methods are
typically applied only for validation and checking purposes rather than as a system
configuration support [German, 2000].

One of the possibilities to reduce the complexity of these problems is to use
domain-specific knowledge in developing a formal representation model. The domain
knowledge can be used not only to support capturing of the user and scenario
requirements but also for automatic or semi-automatic processing and analysis of the
collected scenarios by utilizing the domain-specific semantics. This approach is very
similar to a modern software engineering approach called Model Driven Architecture
(MDA) first proposed by the Object Management Group (OMG). According to this
design approach a system specification is developed in the form of a formal domain
model that can be processed to automatically generate parts of implementation,
integration, or system configuration code [OMG, 2003].

506 Helic D.: Formal Representations of Learning Scenarios ...

2 Management of Learning Scenarios

One of the basic problems in capturing scenarios is a mutual lack of knowledge about
the technical and pedagogical aspects on the side of the users (teachers) and system
developers, respectively. On the one hand, the users of the systems lack the system
expertise and experience, i.e. they have a particular pedagogical approach in mind,
but they do not know if and how that pedagogical approach or at least part of it is
technically feasible. On the other hand, the system developers have limited
understanding of the domain, the subject matter, and the pedagogy involved in a
learning scenario. Thus, there exists a so-called “impedance mismatch” between the
pedagogical aspects of a learning scenario and its technical realization. In other
words, both the system developers and users are confronted with input from the other
side that is typically inadequate to them. Let us illustrate this problem with two real-
life examples from some of our recent E-Learning projects.

2.1 Problems with Scenario Management: Case Study 1

The first project in question is Ephras [Helic, 2006; Helic and Durco, 2005], a project
that has been funded by the European Commission under the Socrates/Lingua2
programme (117024-CP-1-2004-1-SI-LINGUA-L2). The goal of the project was to
develop a computer supported phraseology learning material for students of foreign
languages for four European languages - German, Slovak, Slovenian and Hungarian
language.

One of the E-Learning components developed within the project was a module
with 150 interactive tests for selected phrases in those four languages. Those tests
served to check understanding and knowledge of the phrases in question, as well as
for improvement of skills for producing these phrases in a written and spoken foreign
language. As such they followed a sound pedagocial approach that has been
developed by the pedagogical partners (foreign language teachers) in the form of an
exercise typology. This exercise typology was a result of expertise and experience of
the teachers collected in a number of years in teaching phraseology in traditional
classroom settings. Additionally, the questions and tests have been aligned according
to language, topic, knowledge, and skill level of the students.

On the technical side, IMS Question & Test Interoperability (QTI) [IMS QTI,
2005] specification has been applied to develop the exercise module. The QTI is a de
facto standard for cross-platform representation of questions and tests in Learning
Management Systems (LMS) and there are freely available tools for authoring,
running, or result processing for QTI tests. While developing the exercise module we
have experienced the following problems caused by the above mentioned “impedance
mismatch” between the QTI standard and its concrete application in a specific subject
area such as foreign language teaching. The mismatch is visible at two levels.

First, the QTI standard is a technical specification which supports development of
questions and tests for various subject domains where the questions and tests are
interoperable at the level of authoring tools, question/test databases or LMS. As such
the QTI standard defines a number of general question types that might be applied in
a number of areas and does not take into account specific question and test types of a
particular domain [Milligan, 2003]. However, there exist a number of specific

507Helic D.: Formal Representations of Learning Scenarios ...

question types which are commonly used in foreign language teaching but are not
reflected in the QTI standard, with crossword puzzles being only one typical example.

Second, the QTI standard is not concerned with pedagogical issues and, as a
matter of fact, it tries to be as pedagogy neutral as possible [Smythe and Roberts,
2000]. Yet the basis for development of the interactive tests in the Ephras project is a
sound and successful pedagogical approach for teaching phrases in foreign languages.
This approach includes learning activities such as phrase recognition, phrase meaning
or phrase pragmatics identification, phrase form and grammar understanding,
consolidation and reflection. Each of these activities is typically represented by a
number of exercise types which are used in accordance with the current context, as
well as the student’s knowledge and skill level. For example, identifying phrase
meaning can be realized with a multiple choice question where the student needs to
select the correct meaning of a phrase from a number of possible answers, with a
short text essay where the student needs to write down the meaning of the phrase,
with a combination of these two question types, or with a simple drag-and-drop
exercise where the student needs to correlate the phrase meaning with a particular
graphical representation of that phrase (see Figure 1).

Figure 1: Drag-and-drop exercise to support phrase meaning identification

Basically, development of scenarios was an iterative process with a number of
repeating steps. The whole process required collaborative efforts on the side of the
system developers and the teachers. The iteration steps of this development process
included:

• Initial discussion between the system developers and teachers. The main goal
of this session was to achieve a better understanding of both the pedagogical
requirements for questions and tests and the technical possibilities offered by
the QTI standard. Thus, the teachers explained the types of questions and
tests that are needed, whereas the system developers explained the features
of the QTI standard.

• Preparation of several QTI samples to illustrate the possibilities of the QTI
standard. The prepared samples already dealt with the questions and tests
from the subject matter.

508 Helic D.: Formal Representations of Learning Scenarios ...

• Agreement on a text-based informal format for defining the questions and
tests by the teachers. Such an informal format was needed because the
teachers were not familiar with creation of formal specifications, i.e. they
had a non-technical background.

• Realization of scenarios by means of QTI standard.
• Test and improvement phase.

Note that some of the steps have been repeated a couple of times to obtain

optimal results. Thus, the sheer amount of the development steps, as well as the
amount of the work needed for communication, testing or improvement resulted in
tedious work. Moreover, because of misunderstandings, communication problems, or
implementation difficulties the whole development process was error-prone.

The difficulties of the scenario capturing process and their technical realization
can be summarized as follows:

• Learning curve for the QTI standard for the teachers was very steep. There
are no sufficient manuals, help files, tutorials or tools that would decrease
the time needed to learn the standard.

• Informal nature of format for defining the needed scenarios leads to
misunderstanding problems between the teachers themselves. The
consequences of such problems become even more serious with an
increasing number of teachers, because format disparity between different
teachers also increases.

• Realization of scenarios using such an informal format is also very difficult
because of misunderstanding problems between the authors and the systems
developers. Again, the disadvantages become more visible as the number of
teachers increases.

2.2 Problems with Scenario Management: Case Study 2

The second project in question is iVISiCE (interactive Visualizations in Civil
Engineering), an E-Learning project to support the study of Civil Engineering at Graz
University of Technology [Ebner and Holzinger, 2002]. Originally, the aim of the
project was to investigate the possibilities of applying Web technology in education
of structural engineering. Due to the fact that civil engineering students need to obtain
intuitive understanding of structural behaviour the pedagogical approach is strongly
based on visualizations. In addition, communication and interaction among all
participants complete the learning scenario. Consequently, a great number of Web
based animations, visualizations and interactive learning objects have been developed
to visualize and to simulate highly complex processes [Ebner and Holzinger, 2003].
This content was implemented in a course management system, which has been made
accessible by the computing department of the University of Technology Graz. The
combination seemed to be quite successful for the first time. Subsequently, the gap
between the sophisticated and up-to-date content [Holzinger and Ebner, 2003] and an
obsolete, rigid content delivering platform became bigger and led to a dissatisfaction
of end users, teachers and students alike. Finally, the course support team decided to
follow a new paradigm where the content delivering system can be adapted and
upgraded in the same way as content complexity and user engagement are growing

509Helic D.: Formal Representations of Learning Scenarios ...

up. For that purpose a novel E-Learning platform called WBT-Master, developed at
the University of Technology Graz, has been chosen [Ebner et al, 2005].

To fulfill the requirements of the iVISiCE project a WBT-Master component for
management of so-called training objects has been applied (http://coronet.iicm.edu)
[Helic et al., 2004]. A typical example of such training objects is a simple learning
unit (i.e. a number of documents combined into a reusable, navigable collection), but
this is only a single simple type of available training objects. Discussion forums,
chats, quizzes, virtual laboratories, or project management rooms are also training
objects which can be managed in WBT-Master. Each training object implements a
particular training paradigm. For example, students are supposed to answer questions
if they use an "examination room"; upload and discuss reports, if they use a "thematic
discussion"; follow online/offline step-by-step explanations of most difficult topics in
a “tutoring session” or in a “mentoring session”; or develop a project in collaboration
with colleagues, if they use a "project management room". Additionally, training
objects can be combined into a new single entity called "training course". A training
course is just a combination of training objects selected for a particular study that
provides also some additional communication, collaboration, and user administration
tools such as evaluation, or grading tools [Helic et al., 2005a].

If we compare WBT-Master with existing E-Learning solutions one essential
advantage can be recognized and that is the system’s flexibility and customizability:
these features are just as desirable for any other E-Learning solution but they are an
inherent part of the WBT-Master training paradigm. Any teacher selects just a few
components and combines them into a new training course to provide a required
training curriculum and system functionality [Ebner et al., 2005].

The new pedagogical paradigm in the iVISiCE project supported by means of
WBT-Master was based on the assumption that although learning is an active
cognitive process on the part of the learner, it is also a social process and develops
through conversation [Motschnig-Pitrik and Holzinger, 2002]. Therefore, interaction,
participation and communication have been recognized as crucial elements for
iVISiCE, in which the learning environment has to enforce the possibility of
community building. It should be pointed out, that the aim of this new paradigm was
to compensate for the lack of communication features. More precisely, the problem
was the missing communication tools developed for a specific user group – students
of Civil Engineering. Thus, a new training course has been developed. Besides
content management features and user management facilities this training course
combined a number of communication tools such as [Ebner et al., 2005]:

• A discussion forum for writing contributions in a structured manner.
• A Web-based whiteboard for synchronous textual and vector graphic based

communication.
• A thematic upload tool to help students upload, manage and discuss their

practical examples for passing the examination. Furthermore, the tool assists
the teachers regarding the correct time management, i.e. upload was not
possible after a predefined time limit (see Figure 2).

• FAQs for exporting frequent questions from the discussion forum and
arranging them into an easily navigable FAQ taxonomy.

510 Helic D.: Formal Representations of Learning Scenarios ...

Figure 2: Thematic upload tool for management of student examples

Again, the development process was iterative and span over a number of terms
and student groups with gradual improvements in the pedagogical approach, but also
in the technical infrastructure needed to support that approach. The typical steps of
the development process included:

• Initial discussion between the system developers and teachers, again to
achieve a better understanding of both the pedagogical requirements, as well
as technical possibilities offered by WBT-Master.

• Preparation of a first prototype in the form of a training course to illustrate
the possibilities of WBT-Master.

• Test and improvement phase.
• Deployment and production phase, where the prototype was constantly

improved by adding new training objects, customizing features, or adding
new functionality.

Basically, all of these steps have been iterated at all times, with the current result

achieved after three school years, two different courses, and a production phase with
more than 200 Civil Engineering students.

In this project, the difficulties of the scenario capturing and realization process
are similar to those experienced in the Ephras project: a steep learning curve for the
system in question; the informal nature of scenario capturing; and complexity of the
pedagogical approach - all lead to misunderstanding problems, incomplete, and
inconsistent information.

There is also another difficulty characteristic for the iVISiCE project. Since the
pedagogical approach used in the project was based on interaction, communication,
collaboration, community building, and other social aspects of learning, the learning
environment in question exhibited a highly dynamic nature. In such an environment
the requirements are never stable and change on a regular basis. As a consequence,
the technical infrastructure is in a constant “beta” state, similar to social applications
typical for Web 2.0 platforms, and needs to be improved, adjusted, and customized
very frequently. This deepens the problem not only for the system developers who
need to react to ever-changing user requirements, but also for the teachers who
manage the student community, and need to provide almost immediate feedback to

511Helic D.: Formal Representations of Learning Scenarios ...

students’ request. In many cases, especially when the teachers are already experienced
users of the system and understand the possibilities offered by the system such
problems are easily handled by the teachers themselves. For example, the teachers
might demonstrate to the students how to use a particular feature in a proper way,
point to a system component which might be used in a particular learning situation, or
ask the system developers to extend the system functionality if there is a need for this.
However, in the situation where the teachers do not posses sufficient system expertise
(i.e. in the initial learning sessions) this can lead to serious problems. On the one
hand, the teachers might reject an excellent student idea for improvement of the
learning environment because they do not believe that the idea is technically feasible.
On the other hand, they might accept an improvement suggestion for which the
technical realization might be very difficult or even not possible at all.

2.3 Problems with Scenario Management: Conclusions

In both of the case studies scenario management process was related with a number of
difficulties. Besides the common issues related to the user requirements engineering
such as misunderstandings, incomplete and inconsistent information, or complexity of
the domain (e.g. sophisticated pedagogical approaches), the dynamics of a socially-
aware collaborative learning environment in the second case study introduced another
level of complexity in the process. In both cases, such issues could be only resolved
through an iterative development and management process over a longer period of
time. Thereby, at each new iteration step a new prototype has been introduced that
represented a slightly closer approximation of what the users really wanted.

These two case studies demonstrate very clearly that scenario management in E-
Learning is inherently complex, i.e. the difficulties exist at all levels of abstraction or
granularity of a learning scenario. For example, from the pedagogy point of view in
the iVISiCE project we have been working on a higher abstraction level, i.e. the
teachers defined a number of learning activities for their students and the system
developers integrated a number of tools into a training course to support those
activities. The activities included structured discussion, chat, drawing, or preparing
and uploading materials. The teachers did not go into details of these activities
because in this case the details did not have pedagogical relevance (except for
preparing and uploading of materials where details such as deadlines, format, quantity
and quality of material have been defined). On the other hand, in the Ephras project
the teachers worked on a lower pedagogical abstraction level, i.e. they defined a
single learning activity (exercises) but with a finer granularity. However, in both
cases the difficulties have been present in capturing and technically realizing learning
scenarios. Also, complexity of the management process was inescapable in both
cases.

Consequently, if we want to deal with more complex learning scenarios that work
at different pedagogical abstraction levels with a fine granularity at each of these
levels the overall complexity of the learning scenario management process grows. For
example, suppose that in the iVISiCE project the teachers wanted to conduct an
online examination using a question-test module from the system. For instance, the
examinations could follow a common examination strategy from traditional settings
in Civil Engineering education and include multiple choice questions, fill-in-blank,
free essays, calculus problems, or drawing and designing engineering solutions. Each

512 Helic D.: Formal Representations of Learning Scenarios ...

of these question types might require additional properties to be defined, e.g. for a fill-
in-blank question the teachers might need to define how many blanks exist or how
many positions each blank has. Obviously, capturing and realizing these scenario
requirements is very similar to the Ephras project, i.e. we need to deal once more with
the same difficulties at this lower level of abstraction.

Such difficulties are by no means new in the software engineering field and have
been recognized previously. For example, Brooks states that “the complexity of
software is an essential property, not an accidental one” [Brooks 1987]. As Booch
points out the main reason for that complexity is the complexity of the problem
domain [Booch 1993]. Obviously, such a complexity is inherent in pedagogy-aware
E-Learning systems. A common strategy for tackling such difficulties in complex
pedagogical scenarios, as well as in software development is to hide irrelevant details
by working at an appropriate abstraction level and only switch to the next abstraction
level or to a finer level of granularity when there is a need for it. Therefore, each
technical solution for the scenario capturing and realization problem needs to follow a
similar strategy, i.e. it needs to provide a mechanism for hiding irrelevant details as
well as a mechanism for switching between different abstraction and granularity
levels.

3 Representation of Learning Scenarios

As a solution to the above mentioned difficulties a formal representation model has
been developed. The representation model comprises three components: a meta-
model that defines the modeling elements and their semantics; domain models that
represent particular domains and that are developed using the elements of the meta-
model; a formal binding that defines an XML binding to export domain models. On
top of this representation two tools have been developed: a GUI tool that supports
capturing of a particular learning scenario by displaying the elements of a domain
model in a user-friendly manner and an automatic processing component that
processes captured learning scenarios to infer a corresponding system configuration.
Both of these components work with XML-based representations (that are valid XML
documents in respect to the defined XML binding) of domain models and learning
scenarios.

3.1 Meta-model

The above discussion shows that the scenario capturing and realization difficulties
exist at different levels of abstraction and granularity. Thus, the first requirement for
the meta-model is a possibility to represent these different abstraction and granularity
levels. Furthermore, to reduce the complexity of a domain model it should be possible
to hide irrelevant details of that model as the need arises.

Object-oriented representation seems to be a perfect fit for such a meta-model
because it is a general-purpose domain representation mechanism. The basic
elements of object-orientation include objects, attributes, classes, instantiation,
encapsulation and details hiding, structural relations (i.e. specialization, generalization
and composition), inheritance, and associations. Let us look now at these basic

513Helic D.: Formal Representations of Learning Scenarios ...

modeling elements in detail to investigate how they fit into the above defined
requirements.

Objects are used to represent concepts or real-life entities. Objects typically have
one or more attributes that represent the current state of an object. Similar objects
belong to a class of objects that defines all attributes that these similar objects might
have. Usually, we speak of objects as instances of a particular class that encapsulate
and hide their current state in the form of attributes. The instantiation property is
typically represented by means of an “is-a” relation. The encapsulation and hiding
mechanism is a very important concept that allows us to hide irrelevant information
from the rest of a domain model and only dive into the details if there is a need for it.
In addition, objects and classes are typically related with other objects and classes.

With structural relations we can express domain knowledge with differing levels
of abstraction and details. There are three typical structural relations in object-
oriented modeling: specialization, generalization (which can be comprehended as an
inverse relation of specialization), and composition.

Specialization reflects a so-called “is-a-kind-of” relation between two domain
classes and states that a particular class is a special case of another class. For example,
the QTI standard defines questions of type multiple-choice - it is a question type
where students can select one or more answers from a number of answers to a
particular question. Further, the standard defines a number of special cases of
multiple-choice questions regarding the format and type of the answers – there can be
only textual answers (text multiple-choice), image answers (image multiple-choice),
or hotspot multiple-choice where students can select a particular area of an image as
an answer.

Composition reflects a so-called “is-a-part-of” (“part-whole”) relation between
two objects. For instance, the QTI standard defines a notion of a test or a quiz, which
is a collection of questions of different types, i.e. the questions are related with an “is-
a-part-of” relation with the quiz.

Through the mechanism of inheritance we can further utilize specialization
relation. Inheritance means that a special case of a class inherits all the properties
(attributes and relations) of the general class. Further, the special case can refine and
redefine these properties if needed. For example, typical attributes of a multiple-
choice question include the question, the number of possible answers, the number of
correct answers, the number of answers that students might select, and the answers
themselves. One special case of a multiple-choice question is a standard true/false
question, where all attributes of a general multiple-choice are inherited but the special
case sets the values for those attributes by a definition. Thus, the number of possible
answers is two, the number of correct answers is one, the number of answers that
students might select is also one, and the answers are “true” and “false”. The
structural relations, i.e. specialization and composition and the inheritance mechanism
allow us to create domain models at different abstraction and granularity levels. We
can utilize these different levels by means of a clever user-interface that will support
users in working on a single level of abstraction or granularity, and only going into
details (a lower level of abstraction or a finer granularity level) when there is a need
to describe these details as well. Such a user-interface would reduce the complexity of
scenario capturing process to a great extent.

514 Helic D.: Formal Representations of Learning Scenarios ...

By means of associations we might express relations between objects and classes
across the whole model, i.e. across the different levels of abstraction, across different
levels of granularity, as well as across compositions. Let us here investigate shortly an
example from WBT-Master. Suppose that a special training course should be created
supporting a collaborative writing pedagogical approach. In a typical collaborative
writing scenario students write and comment on a series of documents. The teacher
might provide feedback for the students. In the next step, the learners work on
improving the documents. At the highest abstraction level (at the pedagogical level) a
model of the scenario might include the following student activities: writing, reading,
commenting, reading feedback, improving results. However, we still need a technical
infrastructure that will support these activities in a learning environment. Thus, that
technical infrastructure needs to be reflected in the model and related to the
pedagogical abstraction level. Obviously, the model of the technical infrastructure is
on another abstraction level and we need to relate objects and classes between these
two abstraction levels to realize the connection between them. For that purpose we
might use associations. For example, we might introduce a “supports” association to
model the fact that a particular tool supports an activity from the pedagogical level.
Thus, we might say that a document viewer “supports” reading activity; a document
editor “supports” writing activity; or an annotation tool “supports” commenting
activity. In addition to associations between objects and classes from different
abstraction levels, the objects and classes from one and the same abstraction level
might be associated with each other. For example, the document editor that supports
the writing part of the collaborative writing needs to deal with different versions of
the documents. Typically, the editor communicates with an external version control
tool to manage the document versions. Thus, we can say that the document editor
“depends on” the version control tool. Note here, that such associations are of crucial
importance for the automatic processing phase where associations might be processed
in a number of ways, e.g. to automatically infer the tools that are needed, to highlight
dependencies between the tools, or simply to obtain configuration settings that might
support a particular learning scenario.

For a better understanding object-oriented domain models are commonly
represented in a graphical way. For simplicity we use simple directed labeled graphs
to represent object-oriented models of learning scenarios with the following definition
of graph semantics. All the objects and classes regardless of abstraction level, as well
as all attribute values are represented as graph nodes. The proper abstraction level and
the distinction between the objects, classes, and attributes are typically visible from
the context of a node. All the structural relations, associations, and attribute names are
represented as directed labeled edges between the nodes. Again, the distinction
between different edges and their semantics is typically trivial and visible from a
wider context of an edge. Figure 3 shows an example of a domain model of QTI that
represents quiz, multiple-choice question and true/false question (a specialization of
multiple-choice question).

515Helic D.: Formal Representations of Learning Scenarios ...

Figure 3: Graphical representation of a part of a QTI domain model

Here a short comparison of the presented meta-model with similar modelling
approaches in E-Learning is needed. Recently, an international standard has been
developed called IMS Learning Design (IMS-LD). IMS-LD provides a formalized
way of describing activity-based learning scenarios and expressing different
pedagogical concepts in the form of so-called Units-of-Learning. Units-of-Learning
can be exchanged between different E-Learning systems for execution. Additionally,
IMS-LD Units-of-Learning might refer to the external learning content (e.g., by
linking the content via Web addresses) or might refer to the tools and services
available in an E-Learning system [Koper and Burgos, 2005]. However, in the current
version of IMS-LD those tools and services are restricted only to four simple services
such as e-mail and discussion forum. Also, IMS-LD totally lacks the possibilities to
express domain knowledge in a form of general class and composition hierarchies.
Basically, an IMS-LD Unit-of-Learning simply defines a sequence of learning
activities at the pedagogical level. As such IMS-LD does not include a mechanism to
map the learning procedure onto the execution procedure, i.e. onto a system
configuration. This means that this part of the learning scenario is basically
unsupported by IMS-LD and it is up to the implementers of the IMS-LD specification
how such a mapping can be accomplished. This represents a serious drawback of
IMS-LD [Leo et al., 2004; Torres et al., 2005].

3.2 Domain Models

Using the presented object-oriented meta-model we can now develop a number of
domain models. The domain model development consists of identifying the key
classes, their attributes, and relations with other classes in a particular domain. Note

516 Helic D.: Formal Representations of Learning Scenarios ...

here that such domain models can be at different levels of granularity, i.e. one domain
model can be a detailed model of a single class from another model. The possibility to
hierarchically structure different abstraction and granularity levels provided by the
meta-model makes it highly expressive. However, through the mechanism of
encapsulation and information hiding the domain models are kept simple – this allows
a possibility to provide a mechanism for automatic processing of such domain
models.

3.2.1 Domain Model: QTI

The model of the QTI standard is a rather simple one. Note here that we will not deal
with all the features of QTI because that is, obviously, out of the scope of this paper.
Rather, a simple conceptual model of the QTI standard will be developed only to
illustrate modeling capabilities of the object-oriented meta-model. Thus, in the QTI
standard we might identify the following classes:

• Question is a basic unit of the QTI standard. Each question has the text of the
question, and might have information on response processing, i.e. feedback
for students in the case that the answer was correct, feedback for students in
the case that the answer was wrong, or the number of points that students get
for a correct answer.

• Quiz (Test) is a collection of a number of question instances.
• Multiple-Choice question is a specialization of the question class that

requires from students to choose one or more correct answers from a number
of answers. There are several subtypes of the general multiple-choice
question such as single correct answer, true/false question, or multiple
correct answers. These subtypes provide different default values for some of
the attributes of the general concept. Moreover, different types might be
identified regarding the format of answers such as textual answers, image
answers, image hotspot answers, or mixed answers.

• Fill-in-blank question is another specialization of the question class where
students need to type in a correct answer into allocated space in the form of a
text. Depending on how the text is interpreted different subtypes of the
general concept can be identified. For example, the QTI standard defines the
following interpretations: string, integer, and decimal. A special case of the
fill-in-blank question is a so-called short essay which defines an alternative
way of result processing, namely it allows students to enter free text, and
therefore only provides hints for students as a response.

• Drag and drop question where students need to drag objects with mouse to
appropriate positions on the screen. Again, there are several subtypes of this
question depending of the kind of the objects that can be dragged (textual
objects or images). Also, depending on the spatial distribution of objects and
spatial direction in which the objects can be dragged a number of subtypes
might be identified. For example, sometimes the objects might be dragged
only in horizontal or vertical direction making that question a simple objects
ordering exercise.

517Helic D.: Formal Representations of Learning Scenarios ...

Note here that the QTI standard includes additional question types and a more
detailed specification of their attributes, or result processing possibilities. However,
with the simple model from above and the capabilities of object-oriented modeling
discussed above (i.e. composition, inheritance, and encapsulation) we have been able
to create very sophisticated models of QTI quizzes and questions that completely
covered scenario requirements in the Ephras project.

3.2.2 Domain Model: WBT-Master

The model of WBT-Master is a rather complex one, since WBT-Master is a fully-
fledged E-Learning system that is based on a wide range of pedagogical and
pedagogical concepts realized with sophisticated and complex technical
infrastructure. For example, the question and test module that is based on the QTI
standard is only a single component of WBT-Master. However, as mentioned above
inheritance and encapsulation might be used to represent the hierarchical nature of
such a system and to hide irrelevant details from a model. Here we will describe only
two higher abstraction levels of WBT-Master and will not go into details of different
modules.

WBT-Master is based on a sound pedagogical approach, i.e. it is based on
collaborative, socio-constructivist, and activity-oriented learning theory. As such it
supports students and teachers in a wide range of activities that are centered on a
community building process. This pedagogical level is the highest abstraction level of
WBT-Master. It includes the following classes:

• User role refers to different pedagogical roles that users might have in a
learning scenario, e.g. there are students, tutors, trainers, teachers, or
lecturers. Each of these roles is modeled as a specialization of the user role
concept.

• Activity is a single task that is executed by a user with a specific role. There
exist a wide range of activities, each of them reflecting a particular
collaborative learning task. For example, there are activities such as reading,
writing, uploading, testing (recollect that if there is a need for detailed
modeling of this activity we might use the QTI model from above – similar
models might be developed for other activities as well), or communicating.
Some of these activities have subtypes, e.g. communicating might be
discussion, commenting, providing feedback, chatting, collaborative
drawing, and similar.

• Activity pattern is a composite activity that might include a number of other
activities in a single new activity. For example, collaborative writing is such
a composite activity that has as its components writing, reading, reflecting,
and commenting activities.

At the same abstraction level we can identify a so-called learning environment,

but we will look onto it separately for comprehension purposes. The learning
environment contains the following classes:

• Training (learning) object which is a basic unit of learning material or
content. Typically, each activity is associated with one or more training
objects, e.g. a reading activity is associated with a document.

518 Helic D.: Formal Representations of Learning Scenarios ...

• Training course provides a particular learning context by enclosing a number
of activities and training objects into a coherent learning entity. In addition, a
training course might provide a training curriculum, additional
communication features to enhance community building process (e.g. user
awareness features, group management features, and similar).

Lastly, let us define classes that are related to the technological infrastructure of

the system. Note here that the classes from this abstraction level are typically related
with the classes from pedagogical level by means of associations, e.g. by means of the
“supports” association. Some of the technological classes include:

• Training object library which is a collection of a number of training objects
that supports the creation of training courses.

• Training object editor that supports authoring, editing, and managing of
training objects.

• Discussion forum which supports asynchronous moderated or non-
moderated discussion and communication.

• Annotation tool which supports commenting and feedback activity.
• Assessment tool which supports grading feedback activity.
• E-Mail which supports asynchronous exchange of messages.
• Instant messaging tool which supports synchronous exchange of messages.
• Chat tool which supports synchronous communication.
• Whiteboard tool which supports synchronous communication enhanced with

possibilities to exchange images, vector graphics, or to draw in a
synchronous manner.

• Quiz/test module that supports authoring, management, and execution of
questions, quizzes and tests.

• Upload tool to support publishing of student results.
• Editor tool that supports writing and editing of documents.
• User management tool that utilizes authentication facilities and user rights

management. Typically, all other tool and modules depend on the user
management tool.

Note here that the list of technological classes does not raise a claim on

completeness – rather it tries to serve only as an illustrative example of a domain
model of the technological infrastructure of an E-Learning system.

3.3 Formal binding: XML

To export domain models an XML binding has been developed. The basic XML
model is a labeled ordered tree where labels represent node names. Edges are always
directed (to preserve the tree order) and do not have labels. Additionally, XML
supports a referencing mechanism between nodes, which basically facilitates
modeling of arbitrary graphs. In this way directed-labeled graphs might be
represented by means of XML documents. An excerpt from an XML document that
formally represents hierarchy of multiple-choice question types (see Figure 3) is
shown in Listing 1. Note also the representation of attributes.

519Helic D.: Formal Representations of Learning Scenarios ...

<model>
 <name>QTI</name>

<class id="1">
 <name>Question</name>

<attribute key="question_text"
type="string"/>

…
</class>
<class id="11">

 <is-a-kind-of refid="1"/>
<name>Multiple Choice</name>
<attribute key="answer_count" type="int"/>
…

</class>
<class id="111">

 <is-a-kind-of refid="11"/>
<name>True/False (Text)</name>
<attribute key="answer_count" default="2"/>
…

</class>
…

</model>

Listing 1: XML-based representation of multiple-choice questions

Through the referencing mechanism for XML documents a number of models
might be combined. For example, an XML document that represents WBT-Master
model might simply refer to the QTI representation to provide a model of its
question/test module.

3.4 User Interface

In order to simplify capturing of learning scenarios a user-interface module has been
implemented on the top of the defined XML binding. The most important requirement
for the user-interface module was the usability, i.e. it should be intuitive and easy-to-
use. For that purpose the user-interface module has been developed in the form of a
wizard. The wizard leads the users in a step-by-step fashion through the model in
question. In addition, it allows them to explore different domain classes in more detail
by navigating through the model’s hierarchical structure, exploring and learning
different model features. For example, the users might retrieve a more detailed
description of a particular class, or compare that class with other similar classes or
with classes from the same abstraction level. Structural relations (“is-a-kind-of” and
“is-a-part-of”) serve as the basis for the navigation direction within the wizard, i.e. the
users investigate at each moment only a single class but are provided with links to
access components of that class or its specializations (see Figure 4). In the cases of
multiple inheritances or whenever a class belongs to a number of classes a history
stack is utilized to support the users in navigation to the opposite direction.

Additionally, at each navigation step the users might select a particular class to
include it in a current learning scenario. If a particular class has attributes they are

520 Helic D.: Formal Representations of Learning Scenarios ...

first populated with default and inherited values, and in addition the users might be
asked to enter remaining attribute values (see Figure 5). Basically, selecting a class
for the scenario and populating its attributes with values is equivalent to instantiation
in object-oriented sense, i.e. the users create instances of that particular class and
define their current state in this way.

Figure 4: Wizard-like user interface of the QTI model

Figure 5: Setting attributes of a multiple-choice question

521Helic D.: Formal Representations of Learning Scenarios ...

Figure 6 depicts the relation between a particular domain model and a captured
learning scenario. The scenario contains a number of objects that are instances of
classes defined in the domain model.

Figure 6: Relation between a domain model and a captured learning scenario

Lastly, after the users finish their exploration session a simple (formal)
description of the current learning scenario is obtained. That description lists all of the
created class instances together with the values of the associated attributes. The
current learning scenario is also represented as an XML document. That document is
used as the basis for further automatic processing of the scenario.

3.5 Processing of Scenarios

The formal XML-based representation of a scenario obtained during a user
exploration session might be automatically processed to support system configuration.
There are several strategies for such an automatic processing – the choice of an
appropriate strategy depends on the degree to which a particular system or module
can be dynamically configured or customized.

Thus, there are two classes of systems – the first one is a class of systems that are
dynamically configurable. For example, a QTI quiz is a simple collection of a number
of questions. Since the QTI standard defines an XML binding a QTI quiz might be
easily represented as a number of valid XML documents. Obviously, transforming an
XML document that captures a scenario onto a number of standard QTI documents is
a trivial task that can be accomplished by means of different technologies such as
XSLT, a simple transformation script, or a special transformation program. Note here,
that the obtained QTI XML documents might be used as a certain kind of templates to

522 Helic D.: Formal Representations of Learning Scenarios ...

rapidly produce instances of these questions and quizzes. The templates might be
loaded into a standard compatible QTI editor to enter the specific question, answers,
or feedback. Figure 7 shows such a template that has been used in the Ephras project
– the template is a very simple quiz that combines a short essay and a multiple-choice
question.

Figure 7: Editing of an automatically created QTI quiz

The second class is a class of systems that exhibit a total or partial lack of
possibility for dynamic configuration or customization. For example, some of the
features and functionality in WBT-Master can be easily customized in the form of a
new training course. However, there are certain features or modules that are
preconfigured and their configuration can not be in any way dynamically or
automatically adjusted. For instance, a discussion forum in WBT-Master offers a
standard possibility to attach a local file to a posting. There is no technical possibility
whatsoever to remove that feature from a discussion forum in an automatic way
because that feature is hard-coded in the implementation of the discussion forum.
Moreover, WBT-Master offers more than 20 predefined and preconfigured training
courses which reflect a wide range of common collaborative pedagogical approaches
such as project-oriented learning, collaborative writing, or brainstorming. Again,
certain modules of these training courses are hard-coded and can not be automatically
customized. As a matter of fact, the software architecture of WBT-Master does not
provide a possibility for a complete dynamic configuration of a training course, i.e.
there is always a need to manually adjust configuration scripts or source code to
implement a completely new training course. It is our experience that most of the
current E-Learning systems exhibit the same behavior, i.e. it is not possible to
configure them dynamically in full. Obviously, in such cases a partial solution should
be achieved. How such a partial solution looks like depends on a particular
configuration strategy being applied.

523Helic D.: Formal Representations of Learning Scenarios ...

Firstly, the system can compare the selections made by the user with the
predefined configurations and try to estimate a best-match configuration. The
estimation can be implemented in a number of ways. For example, a very simple
solution would be to base the estimation on a Boolean model, i.e. whenever the user
selects a particular scenario feature the system investigates all predefined
configurations and keeps only those where the selected feature is contained. At the
next step the system marks the remaining features either as selectable or as non-
selectable and reflects this via the user-interface. The selectable features are only
those features that are components of one of the remaining configurations. Finally, the
users obtain an exact match for their requirements; however, they are restricted in
possibilities of what they can select. A slightly better solution might be to use an
algebraic or probabilistic model for estimation algorithm. In both of these cases the
users are not restricted in what they can select, i.e. they can select any available
feature. At the next step, their current selection is modeled as a multidimensional
vector (an algebraic model) and compared with vectors representing predefined
configurations to obtain an optimal match. Note here, that the obtained match might
include features which are not selected at all or might miss certain required features,
i.e. it is an approximation of what the users required.

Secondly, the system might simply collect the user requirements without making
a particular estimation on the best or optimal match for the collected requirements.
Rather, the system might try to produce a prototype configuration which meets the
requirements. That prototype can be seen only as a starting point to obtain the proper
configuration - at the next step the system developers might work on the prototype to
meet the requirements in full.

Thirdly, in some cases even creating a prototype will not be possible. In those
cases the collected requirements might be used to configure the system manually from
scratch. However, one huge advantage in this case is the fact that the requirements are
formally defined as an XML document.

4 First Experiences with Formal Representations of Learning
Scenarios

We have applied the presented method for management of learning scenarios at the
end of the Ephras project. Additionally, we have started a test phase for the new
approach by including the wizard tool into WBT-Master. Here are in short some of
the first experiences gained.

4.1 Experiences from Ephras

In the Ephras project the wizard tool has been presented to the teachers at the end of
the project. Therefore, the teachers had already some knowledge of what can be
expected from the technical realization of their ideas. Nevertheless, they could deepen
their knowledge about the technical possibilities by simply using the wizard tool for
exploration and reading about different QTI question types. In addition, a possibility
to automatically and immediately obtain a quiz and define details of questions that
have been chosen for the quiz tremendously improved the understanding of the
technical possibilities of the system. This in turn, influenced the way how the teachers

524 Helic D.: Formal Representations of Learning Scenarios ...

designed their new exercises from the pedagogical point of view. Basically, they
focused more on such learning scenarios which are technically feasible and they also
introduced new learning scenarios which can be characterized as specific learning
scenarios for a computer-aided instruction, i.e., the teachers did not use such learning
scenarios in a traditional classroom settings for paper exercises because they lacked
the interactive possibilities offered by an E-Learning system.

On the other hand, the system developers got a far better understanding of the
pedagogical requirements within the project. By analyzing automatically obtained
quizzes, question types, and questions the system developers could identify which
question types are the most important for the teachers and, more importantly, the
system developers could identify the combinations of the questions which are
typically used. For example, one combination that has been very frequently used was
a combination of a larger text where a number of sentences might be selected with a
single correct selection. In addition, there is a multiple-choice question where a single
answer can be selected to replace the selected a sentence from the text. The
replacement itself is achieved by means of dragging-and-dropping the selected answer
from the multiple-choice question. Technically, this is a very complex combination,
that includes a hot-spot area question for selecting a sentence form the text (using hot-
spot in this particular case is actually a workaround since QTI does not define a
question type “select a text”), a multiple-choice question, and a drag-and-drop
question. Note that hot-spot area and drag-and-drop questions include also a spatial
component, i.e., the developer needs to define positions on the screen where the
answers are located or might be dropped with the mouse.

To implement and configure such combinations the developers introduced so-
called templates, i.e. generic implementations of the desired behaviour that can be
used to create instances by configuring it. The configuration process typically
involves setting of a couple of parameters. However, the problem was how to
recognize that the teacher wants to have a particular template. The solution for the
problem is very simple. The developers simply included the created templates into the
domain model for QTI as special classes that combined a number of questions into a
single entity. In this way the teachers could simply explore a template as any other
class from the model and see its components. If the template fits into their scenario
requirements the teachers simply include it in the scenario. Note how the meta-model
through its extensibility (supported in this case by means of a composition
mechanism) greatly facilitated this problem.

The last difficulty that the system developers have been confronted with is not
directly related to the presented approach but to the QTI standard and the way the
presentation of questions is defined in QTI. Basically, QTI XML files mix together
the content and its presentation. For each question apart from its actual content the
developer needs to define its presentation, e.g. the coordinates on the screen where the
question will be presented. This is a serious design flaw since it violates a well-known
principle in software development called separation of concerns [Dijkstra, 1982].
Consequently, whenever the developer modifies the content of a question its
presentation has to be modified as well because the spatial relations within the
question need to be updated. Especially, creating template instances can be very
tedious because of this difficulty. Referring to the example from above suppose that
the text (from which sentences might be selected) is modified. This means that the

525Helic D.: Formal Representations of Learning Scenarios ...

developer needs to update the positions of hot-spot areas as well as position of areas
where replacement sentences might be dropped. The only way to achieve this when
using QTI is to update the template instance manually either by using a QTI editor or
by editing QTI XML files with an XML editor.

4.2 Experiences with WBT-Master

WBT-Master belongs to the class of systems that cannot be fully dynamically
configured, i.e. the system offers about 20 predefined configurations from which a
single configuration might be selected. Additionally, the system developers can
introduce a new configuration to fit the requirements of a particular learning scenario
by manually creating a new training course.

To select a particular configuration, the users (teachers of Civil Engineering
courses at the University of Technology Graz) operated the wizard tool to explore the
WBT-Master domain model and select the features which fit into their learning
scenario. The system then offered an optimal preconfigured training course that was
the best fit for the selected pedagogical features. Here two configuration strategies
have been applied.

The first strategy was based on a Boolean model, i.e. whenever the users select a
feature all other features not related with the selected one in any of the existing
configurations cannot be selected anymore. However, the users can still explore all of
the existing features and learn in that way more about the system. This approach has
been successful with novel users of the system because at the end of a learning
scenario capturing session the training course that was configured by the wizard tool
was an exact match of what the users selected.

For more experienced users who were already familiar with WBT-Master this
approach was too restrictive. Therefore, for experienced users we based the
configuration strategy on an algebraic model (a vector space model). Here, the users
could select any feature to include it in their learning scenarios. The selected features
were then modelled as a multidimensional vector and then compared with predefined
configurations (also modelled as multidimensional vectors) to find an optimal match.
The success of this configuration strategy depends strongly on the underlying vector
space model. In particular, it depends on the dimensions of the vector space, as well
on how these dimensions are weighted in the model. For WBT-Master we included
for example communication, tutoring, self-initiated learning, testing, content creation,
or student content creation as dimensions in the vector space model. At the next step
each feature has been modelled as a vector in this vector space, and a particular
learning scenario or a predefined configuration is simply a sum of vectors of all
selected features. Obviously, by selecting appropriate dimension weights it is possible
to emphasize that a particular dimension is more important than the other one. In the
case of WBT-Master the communication dimension and student content creation
dimension have been weighted the most.

The approach based on non-restrictive selection of pedagogical features has
another important property. Basically, we have used this approach to collect the data
about desired and needed learning scenarios. At the next step we have analyzed that
data and tried to identify certain usage patterns of pedagogical features, e.g. how
pedagogical features are typically combined. This information has been used to
develop a number of new training courses that reflected the identified patterns. These

526 Helic D.: Formal Representations of Learning Scenarios ...

training courses have been included in WBT-Master, as well as in its domain model
for the wizard tool. Thus, the system evolution has been facilitated in this way.

5 Conclusions and Further Work

This paper argued that modern E-Learning systems which support pedagogical
aspects of E-Learning are inevitably technically complex. Also, there is a gap
between the pedagogical and technical aspects in such systems. Typically, this
situation leads to suboptimal usage of the systems. To bridge that gap a huge effort on
both sides, i.e. the teacher side as well as the system developer side is needed. In
particular, in order to support pedagogically sophisticated learning scenarios an
iterative system configuration and management process is needed. The paper
presented a possible solution for this problem based on formal representation of
learning scenarios by modelling the pedagogical as well as technical domain in
question. The first results with the presented solution were positive, especially in such
E-Learning systems where a complete dynamic configuration is possible. In a system
where that is not the case the presented solution tries to estimate an optimal
configuration. Additionally, it supports the system evolution through the analysis of
the user’s needs.

Although the results of the presented approach are encouraging we see it only as a
first step in automatic management of learning scenarios. Currently, this approach
does not take into the account the dynamics of a learning scenario. Thus, the users
select the pedagogical features which they would like to include in a learning scenario
but they cannot impose a structure on top of these features. For example, for
collaborative writing scenario a user would include activities such as writing, reading,
reflecting, commenting, and discussion. The system would offer a particular
configuration that includes tools to support each of these activities. All of these tools
would be presented to the students in a single user-interface and will be present at all
times. However, there is a certain temporal structure which can be imposed on the top
of these activities, i.e. firstly, the students need to read a particular document;
secondly, the students need to write their own document; thirdly, the teacher provides
comments; lastly, students are involved in reflecting activity. In parallel, the
discussion activity is carried out. Thus, there is a certain (process-oriented) execution
sequence within this particular learning scenario and that execution sequence should
be also supported by the system. For example, during the writing activity the students
should have at their disposal only a text editor to write their contributions and a
discussion forum to discuss all current issues with the teacher and their peers. At the
next step during the commenting activity the students can only read the teacher’s
comments and do not have the text editor at their disposal anymore. In this way the
learning process within a learning scenario might be facilitated. Thus, our future work
would include an extension of the presented approach to include management of the
process-oriented aspects of learning scenarios.

527Helic D.: Formal Representations of Learning Scenarios ...

References

[Avgerou, 1987] Avgerou, C. The Applicability of Software Engineering to Information
Systems Development. Information & Management, 13, pp. 135-142, 1987.

[Bolchini and Paolini, 2004] Bolchini, D., Paolini, P. Goal-driven requirements analysis for
hypermedia-intensive Web applications, Requirements Engineering, Volume 9, Issue 2, May
2004, pp. 85-103, 2004.

[Booch 1993] Booch, G. Object-oriented analysis and design with applications (2nd ed.),
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, 1993.

[Brooks 1987] Brooks, F.P. No Silver Bullet Essence and Accidents of Software Engineering,
Computer, Volume 20, No. 4, pp. 10- 19, 1987.

[Clarke and Wing, 1996] Clarke, E. M., and Wing, J. M. Formal Methods: State of the Art and
Future Directions. ACM Computing Surveys, Volume 28, No. 4, pp. 626-643, 1996.

[Dijkstra, 1982] Dijkstra, E. W. On the role of scientific thought, in Selected Writings on
Computing: A Personal Perspective, Springer-Verlag, pp. 60-- 66. 1982.

[Dreher et al., 2004] Dreher, H., Scerbakov, N., Helic, D. Thematic Driven Learning,
Proceedings of E-Learn 2004, pp. 2594-2600, AACE, Charlottesville, USA, 2004.

[Ebner and Holzinger, 2002] Ebner, M., and Holzinger, A. E-Learning in Civil Engineering:
The experience applied to a lecture course in Structural Concrete. Scientific Journal of Applied
Information Technology (JAPIT), pp. 1-9, 2002.

[Ebner and Holzinger, 2003] Ebner, M., and Holzinger, A. Instructional Use of Engineering
Visualization: Interaction Design in e-Learning for Civil Engineering. In Jacko, J. and
Stephanidis, C. eds. Human-Computer Interaction Theory, 2003.

[Ebner et al., 2005] Ebner, M., Scerbakov, N., Maurer, H. New Features for eLearning in
Higher Education for Civil Engineering, Proceedings of E-Learn 2005, pp. 635-642, AACE,
Charlottesville, USA, 2005.

[German, 2000] German, D. M. Hadez, a framework for the specification and verification of
hypermedia applications. PhD Thesis, University of Waterloo, 2000.

[Helic et al., 2005] Helic, D., Krottmaier, H., Maurer, H., Scerbakov, N. Enabling Project-
Based Learning in WBT Systems, International Journal on E-Learning (IJEL), Vol. 4, Num. 4,
pp.445-461, 2005.

[Helic et al., 2004] Helic, D., Maurer, H., Scerbakov, N. Knowledge Transfer Processes in a
Modern WBT System, Journal of Network and Computer Applications, Vol. 27, Num. 3,
pp.163-190, 2004.

[Helic, 2006] Helic, D. Template-based Approach to Development of Interactive Tests with
IMS Question and Test Interoperability, Proceedings of ED-MEDIA 2006, pp. 2075-2081,
AACE, Charlottesville, USA, 2006.

[Helic and Durco, 2005] Helic, D., Durco, P. Aspects of an XML-Based Phraseology Database
Application, Proceedings of the Third International Seminar on Computer Treatment of Slavic
and East European Languages, SLOVKO 2005, pages 99-108, VEDA, Bratislava, Slovakia,
2005.

[Helic et al., 2005a] Helic, D., Maurer, H., Scerbakov, N. A Didactics Aware Approach to
Knowledge Transfer in Web-based Education, In Claude Ghaoui, Mitu Jain, Vivek Bannore

528 Helic D.: Formal Representations of Learning Scenarios ...

(Editors), Studies in Fuzziness and Soft Computing, Volume 178/2005, Chapter 9, pp 233-260,
Springer-Verlag GmbH, 2005.

[Hirumi, 2002] Hirumi, A. The Design and Sequencing of E-Learning interactions: a Grounded
Approach. International Journal on E-Learning, 1(1), pp. 19–27, Norfolk, VA: AACE, 2002.

[Hobbs, 2002] Hobbs, D. L. A Constructivist Approach to Web Course Design, a Review of the
Literature. International Journal on E-Learning, 1(2), pp. 60–65, Norfolk, VA: AACE, 2002.

[Holzinger and Ebner, 2003] Holzinger, A., Ebner, M. Interaction and Usability of Simulations
& Animations: A case study of the Flash Technology. Proceedings of Interact 2003, pp. 777-
780, 2003.

[Hong and Lingzi, 2000] Hong, Z., Lingzi, J. Scenario Analysis in an Automated Tool for
Requirements Engineering, Requirements Engineering, Volume 5, Issue 1, Jul 2000, pp. 2–22,
2000.

[IMS QTI, 2005] IMS Global Learning Consortium Question & Test Interoperability
Specification (QTI), http://www.imsglobal.org/question/

[Jarke et al., 1998] Jarke, M., Bui, X. T., and Carroll, J.M. Scenario Management: An
Interdisciplinary Approach. Requirements Engineering, 3, 3/4, pp. 155-173, 1998.

[King and Puntambekar, 2003] King, F., and Puntambekar, S. Asynchronously Conducted
Project-based Learning: Partners with Technology. International Journal on E-Learning, 2(2),
pp. 46–54, Norfolk, VA: AACE, 2003.

[Koper and Burgos, 2005] Koper R. and Burgos D. Developing advanced units of learning
using IMS Learning Design level B. International Journal on Advanced Technology for
Learning, Vol. 2, Num. 4., pp.252-259, 2005.

[Land and Hirschheim, 1983] Land, F. F., Hirschheim, R. A. Participative Systems Design:
Rationale, Tools and Techniques. Journal of Applied Systems Analysis, 10, pp. 91–107, 1983.

[Leasure et al., 2000] Leasure, A., Davis, L., and Thievon, S. Comparison of Student Outcomes
and Preferences in a Traditional vs. World Wide Web-based Baccalaureate Nursing Research
Course. The Journal of Nursing Education, 39(4), pp. 149–154, 2000.

[Leo et al., 2004] Leo D.H., Perez J.I.A., Dimitriadis Y.A. IMS learning design support for the
formalization of collaborative learning patterns, Proceedings. IEEE International Conference
on Advanced Learning Technologies, 2004. 30 Aug.-1 Sept. 2004. pp.350 – 354, 2004.

[Meyer, 1985] Meyer, B. On Formalism in Specifications. IEEE Software, 2, 1 (January), pp. 6-
26, 1985.

[Milligan, 2003] Milligan C. Question and Test Interoperability (QTI): Extending the
specification for Mathematics and Numerical Disciplines, Maths CAA Series, The Maths, Stats
& OR Network, University of Birmingham, UK, 2003

[Mioduser et al., 2000] Mioduser, D., Nachmias, R., Lahav, O., and Oren, A. Web-based
learning Environments: Current Pedagogical and Technological State. Journal of Research on
Technology in Education, 33(1), 2000.

[Motschnig-Pitrik and Holzinger, 2002] Motschnig-Pitrik, R., Holzinger, A. Student Centered
Teaching Meets New Media: Concept and Case Study, IEEE Journal of Educational
Technology & Society, Vol. 5, pp. 160-17, 2002.

[Oliver et al., 2002] Oliver, R., Harper, B., Reeves, T., Strijker, A., and Westhuizen, D.
Learning Management Systems: One Size Fits All? Proceedings of World Conference on

529Helic D.: Formal Representations of Learning Scenarios ...

Educational Multimedia, Hypermedia and Telecommunications, pp. 1498– 1499, Norfolk, VA:
AACE, 2002.

[OMG, 2003] Object Management Group: Model Driven Architecture,
http://www.omg.org/mda

[Overmyer, 2000] Overmyer, S. P. What's Different about Requirements Engineering for Web
Sites? Requirements Engineering, Volume 5, Issue 1, Jul 2000, pp. 62-65, 2000.

[Pfahl et al., 2004] Pfahl D., Trapp S., Helic D. A Methodology-Driven Software Infrastructure
for Work-Based Learning, Michael Kelleher, Andrew Haldane, Eelco Kruizinga (Editors),
Researching Technology for Tomorrow's Learning: Insights from the European Community,
Chapter 3, pp.85-95, CIBIT Consultants|Educators, 2004.

[Smythe and Roberts, 2000] Smythe, C., and Roberts, P. An Overview of the IMS Question &
Test Interoperability Specification, Computer Aided Assessment (CAA'2000), Leicestershire,
UK, 2000.

[Torres et al., 2005] Torres J., Dodero J.M., Aedo I., Zarraonandia T. An architectural
framework for composition and execution of complex learning processes, Fifth IEEE
International Conference on Advanced Learning Technologies, 2005. ICALT 2005. 5-8 July
2005. pp.143 – 147, 2005.

530 Helic D.: Formal Representations of Learning Scenarios ...

