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1 Introduction

Building large scale software with both high quality and effectiveness is a huge chal-
lenge. Quality is meant in the sense that the software should be robust, reliable, secure,
and serve the intended needs of users, and effectiveness is meant in the sense that the
group of people building the software should be productive, and effective at their tasks.
The process of building large scale software contains several stages including:

• Requirements gathering: understanding what software needs to be built and how the
software is intended to interact with its environment. The environment typically in-
cludes users, hardware and other software.

• Design: coming up with the architecture of the software that meets the requirements,
taking into account constraints on resources and performance.

• Implementation: coding the design in a programming language, and fleshing out all
the details, so as to conform to the design, and satisfy all the requirements.

• Testing: checking if the software indeed satisfies requirements by trying it out on im-
portant scenarios, whether it functions with expected performance, whether it is robust,
reliable and secure in terms of adversarial inputs.

• Deployment: installing the software to the users, and collecting feedback on how the
software works.

These stages are typically iterated in the software life cycle. Most successful software
has a long shelf-life, and is typically modified and evolved so as to fix errors, and ac-
commodate changing requirements. This article surveys the state of the art in tools and
methodologies for building software, and points out opportunities for further research.

2 State of the art

Several people with varying backgrounds and skills need to interact to produce useful
software. Gathering of requirements is best done by domain experts that understand
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the intended use of the software. For example, insurance experts are the best people
to determine the requirements of insurance software. Design is a black-art that is not
well understood today. People get ‘good’ at design, from the experience of repeatedly
building software. Implementation, testing and deployment are done by programmers
who typically have basic education in computer science, or have basic education in
mathematics or science or engineering with some training in programming. From re-
quirements to deployment, the ‘intent’ of some domain experts gradually gets refined
to ‘working code’.

2.1 Tools for implementation and testing

Over the past decade or so, we have witnessed a revolution in tools to improve produc-
tivity of implementation and testing. The biggest breakthrough in this area has been the
use of static analysis. Static analysis works by examining the program without running
it, and can check if the program could ever violate simple properties. This is fundamen-
tally different from running the program on a few scenarios during testing, and ensuring
that violations don’t occur during those runs. In contrast to testing which only finds er-
rors that ’did happen’, static analysis finds errors that ‘could happen’. The flip side of
static analysis is that some of the errors reported by static analysis tools might be ‘false
errors’ that can never manifest in any concrete execution of the program. Static analysis
tools are intended to augment, rather than replace, testing. These tools do not typically
ensure that the software implements intended functionality correctly. Instead, they look
for specific kinds of error more thoroughly inside the program by analyzing how control
and data flow through the program.

Heuristic analyzers. Heuristic analyzers such as PREFix [Bush et al. (2000), Larus
et al. (2004)], PREFast [Larus et al. (2004)] and Metal [Engler et al. (2000)] do not
attempt to cover all paths. Further, along each path they do approximations. However,
they manage to exercise code paths that are difficult to exercise using testing. Thus they
are able to detect property violations that remain undetected after testing. Due to their
heuristic nature, they are neither sound nor complete. They manage false errors by using
filtering mechanisms to separate high-quality error reports, and statistical techniques
to rank error reports. However, these tools have provided impressive utility to their
users. PREFix and PREFast have been successful in reporting useful errors over tens of
millions of lines of Windows code, and are now used routinely as part of the Windows
build process. Metal has similarly found useful errors over several millions of lines of
open source code.

Sound analyzers. Sound analyzers explore the property state machine using a conser-
vative abstraction of the program. Usually, the abstraction used is the control flow graph,
augmented with the state machine representing the property. Thus, the analyses explores
all the feasible executions of the program, and several more infeasible executions. How-
ever the analyses do not explore individual paths. Instead, they explore abstract states.
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The complexity of the analysis is typically the product of the number of nodes of the
property state machine and the size of the control flow graph of the program. Thus, for a
100,000 line program, and a 5-state property, the analysis can be done in 500,000 steps
which is very feasible on modern processors. However, sound analyzers are necessarily
incomplete, and consequently report false errors. A promising technique to reduce false
errors is counterexample driven refinement [Kurshan (1994),Clarke et al. (2000),Ball
and Rajamani (2001)]. Here, abstract counterexamples are simulated in the original pro-
gram to check if they are true errors. If they are not true errors, then the analysis auto-
matically adds more state to track in the abstraction. Counterexample driven refinement
has been used to build tools that have a very low false error rate [Ball and Rajamani
(2001), Henzinger et al. (2002), Chakiet et al. (2004)]. Expressive type systems have
also been used to state and check properties [DeLine and Fähndrich (2001), Foster et
al. (2002)]. Since types are integrated into the programming language, the approach has
several advantages. Recent approaches allow enhanced programmability of properties
using types [Chin et al. (2005)]. While type based approaches are very natural for
specifying protocols on one object at a time, they have difficulties specifying protocols
that involve multiple objects. Abstract interpretation [Cousot and Cousot (1977)] is a
generic theory for building sound static analyzers. Tools based on abstract interpreta-
tion have been tuned using domain knowledge to produce very few false errors in large
safety critical software [Blanchet et al. (2003)].

Early detection of programming errors using static analysis has come of age in
the past decade, and is widely used in industrial practice in companies like Microsoft
[Larus et al. (2004), Hackett et al. (2006), Ball et al. (2006)].

3 Opportunities for improvement

In spite of the advancements in implementation tools, the biggest problem in software
engineering continues to be the bridging of the ‘gap’ between the intent captured in
requirements and expressed at a high level, and the detailed encoding of this intent in the
code. There are no good tools, either mental or mechanical, that allow comprehension
of large programs, and provide a mapping between how different parts of the code
work together to satisfy the requirements. Thus, looking for any high-level requirements
within a million line program is analogous to running around New York City looking for
a lost cat, without a map, and without any street signs. This problem cannot be remedied
without a fundamental change in the way software is built, and without changing our
belief about what software is.

So, what constitutes software? Today, most people would say that software consists
of code written by programmers, and the compiled executable that runs on the hardware,
and is shipped to customers. Herein lies the problem. Software needs to be much more
than an instruction stream that communicates with the hardware at a detailed level about
what instructions to execute. It needs to be a medium of communication between all the
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different people who are using it and building it, ranging from the users, domain experts,
architects, developers and testers. It needs to be a repository of actual requirements that
the software is intended to satisfy, high level design decisions that have been taken about
the architecture of the code, and how different components of the software interact
through interfaces. Such information is present only in the ‘brains’ of senior developers
and architects in software companies today. Much can be improved if this information
can be represented as higher level abstractions of the software, and if these higher level
abstractions can be maintained and kept synchronized with code, as the code evolves.

This would require innovations in the way requirements are specified, the ways by
which architectural and design decisions can be represented, rich description of inter-
faces that convey more of the semantics of the interfaces, and tools and technologies to
tie these down to the actual code. Such knowledge has to be imparted as part of edu-
cation given to both software practitioners and computer scientists. This would require
people with different skills, domain experts, programmers, testers, and academic com-
puter scientists to communicate and work together. Most importantly, it requires a fun-
damental change in attitude as to what constitutes software. If that attitude is changed,
we can certainly hope that someday we will consummate David Parnas’ dream: that
software engineering becomes a true marriage between computer science and engineer-
ing [Parnas (1997)]!
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