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1 Introduction

Formal verification has become a well-established practice in parts of the hardware in-
dustry. A particularly notable success story has been in the area of floating-point arith-
metic. Floating-point algorithms are often subtle and difficult to get right, and floating-
point bugs have led to spectacular or costly problems in the past. On the other hand,
they seem to lend themselves to relatively precise mathematical specification, and real
industrial designs can be proved correct using current verification tools. We present a
short survey of work in the area and outline how it fits into the wider world of for-
mal methods.

2 Progams, Bugs and Verification

As most programmers know to their cost, writing programs that function correctly in
all circumstances —or even saying what that means— is difficult. Most large programs
contain ‘bugs’. In the past, hardware has been substantially simpler than software, but
this difference is eroding, and current leading-edge microprocessors are also extremely
complex and usually contain errors. It has often been noted that mere testing, even on
clever sets of test cases, is usually inadequate to guarantee correctness on all inputs,
since the number of possible inputs and internal states, while finite, is usually astro-
nomically large. For example [Dijkstra (1976)]:

As I have now said many times and written in many places: program testing
can be quite effective for showing the presence of bugs, but is hopelessly inad-
equate for showing their absence.
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The main alternative to testing is formal verification, where it is rigorously proved that
the system functions correctly on all possible inputs. This involves forming mathemat-
ical models of the system and its intended behaviour and linking the two:

Actual system

Mathematical model

Mathematical specification

Actual requirements

�

�

�

Figure 1: Linking the actual requirements to the actual system.

The facts that (i) getting a mathematical proof right is also difficult [DeMillo et al.
(1979)], and (ii) correctness of formal models does not necessarily imply correctness
of the actual system [Fetzer (1988)] caused much controversy in the 70s. But it is now
widely accepted that formal verification, with the proof itself checked by machine, gives
a much greater degree of confidence than traditional techniques. The main impediment
to greater use of formal verification is not these generalist philosophical objections, but
just the fact that it’s rather difficult.

3 A panorama of formal verification

The introductory remarks may have suggested that verification and testing are antithet-
ical approaches to correctness, but this is not so at all. Moreover, there are a number of
approaches to formal verification that have quite different characteristics.

3.1 Verification versus testing

The advantages of formal verification over testing are so clear that it hardly seems worth
enumerating them. Set against that, however, is the great difficulty of performing for-
mal correctness proofs. Even arriving at a precise mathematical specification of how a
computer artifact should behave, let alone proving that it does so, can be remarkably
difficult. Performing a complete formal verification is usually challenging, often de-
manding high levels of expertise in mathematics and programming as well as detailed
understanding of the target.
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However, there need not be such a black-and-white separation of verification and test-
ing. One can consider intermediate possibilities where although a full formal correct-
ness proof is not performed, a more than usually rigorous logical analysis, often using
similar technology, is undertaken. Simple static checking of programs for type errors
or uninitialized variables can be seen as the first step from a purely dynamic approach,
testing particular values at runtime, to a logical analysis of the code itself. This can be
gradually extended to cover, for example, array bounds checking, null pointer derefer-
encing and failure to subsequently deallocate all allocated resources.

Such intermediate levels of verification have achieved some notable successes, in
finding bugs and giving partial correctness guarantees. For example, the Static Driver
Verifier at Microsoft has helped to find non-trivial bugs in Windows device drivers [Ball
et al. (2006)]. Static analysis of the avionics software of the Airbus A380 has verified
that it is impossible, under reasonable environmental assumptions, for a floating-point
overflow exception to be raised.1 In neither case has full correctness been verified, but
in both cases the level of assurance has been substantially increased.

Moreover, verification and testing can sometimes support each other. For example,
one effective methodology for verifying certain floating-point square root algorithms
[Cornea-Hasegan (1998)] combines a relatively clean and simple analytical proof based
on worst-case error bounds with the isolation of the relatively small number of possible
inputs that the simple proof may not cover. A full correctness proof combines the high-
level mathematical verification with explicit checking (albeit in a purely mathematical
sense) of the exceptional cases. These cases, by design, are where floating-point round-
ing is particularly difficult because the decision between rounding up or down to the
closest floating-point number is particularly fine. Thus, as well as being the foundation
of a verification method, they make a very good set of test cases too.

3.2 Hardware versus software

Only in a few isolated safety-critical niches of the software industry is any kind of
formal verification widespread, e.g. in avionics. But in the hardware industry, formal
verification is widely practised, and increasingly seen as necessary. We can identify at
least three reasons:

• Hardware is designed in a more modular way than most software. Constraints of inter-
connect layering and timing means that one cannot really design ‘spaghetti hardware’.

• More proofs in the hardware domain can be largely automated, reducing the need for
intensive interaction by a human expert with the mechanical theorem-proving system.

• The potential consequences of a hardware error are greater, since such errors often
cannot be patched or worked around, and may in extremis necessitate a hardware re-
placement.

1 See http://www.di.ens.fr/˜cousot/COUSOTtalks/AcadSci06.shtml for a recent pre-
sentation of this work.
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3.3 The spectrum of formal verification techniques

There are many formal verification techniques in widespread use including:

• Propositional logic [Stålmarck and Säflund (1990), Biere et al. (1999), Sheeran and
Stålmarck (2000), Abdulla et al. (2000), Bryant (1986), Moskewicz et al. (2001), Gold-
berg and Novikov (2002)]

• Symbolic simulation [Carter et al. (1979), Bryant (1985)]

• Symbolic trajectory evaluation [Seger and Bryant (1995), Yang (2000)]

• Temporal logic model checking [Clarke and Emerson (1981), Queille and Sifakis
(1982)]

• Decidable subsets of first order logic [Burch and Dill (1994),Velev and Bryant (1999)]

• First order automated theorem proving [Schumann (2001)]

• Interactive theorem proving [Kaufmann et al. (2000b), Kaufmann et al. (2000a)]

• Higher-order logic theorem proving [Gordon and Melham (1993)]

Such a range of competing approaches may seem surprising, but can be explained by
the fact that, generally speaking, techniques with a more limited range of applicability
have the compensatory advantage of permitting fuller and/or more efficient automation,
or simply of fitting better into the traditional design flow. (For example, symbolic sim-
ulation is a natural generalization of standard testing methods.) The above list has been
arranged on this basis, with the ‘limited but efficient’ methods first and the ‘general but
inefficient’ ones at the end.

Actually, they need not be considered as competing approaches; on the contrary
there is considerable interest in combining them [Seger and Joyce (1991), Joyce and
Seger (1993), Rajan et al. (1995)]. Intel is actively pursuing the development of tools
combining general higher-order theorem proving and other techniques such as sym-
bolic trajectory evaluation and temporal logic model checking [Aagaard et al. (1999)].
Such combinations have proved invaluable in several real hardware verification projects
[Leary et al. (1999), Kaivola and Aagaard (2000)]. Another ‘hybrid’ application of for-
mal verification is to prove correctness of some of the CAD tools used to produce
hardware designs [Aagaard and Leeser (1994)] or even of the abstraction and reduction
algorithms used to model-check large or infinite-state systems [Chou and Peled (1999)].

4 Floating-point verification

Representation of real numbers on the computer is fundamental to much of applied
mathematics, from aircraft control systems to weather forecasting. Most applications
use floating-point approximations, though this raises significant mathematical difficul-
ties because of rounding and approximation errors. Even if rounding is properly con-
trolled, ‘bugs’ in software using real numbers can be particularly subtle and insidious.
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Yet because real-number programs are often used in controlling and monitoring phys-
ical systems, the consequences can be catastrophic. A spectacular example is the de-
struction of the Ariane 5 rocket shortly after takeoff in 1996, owing to an uncaught
floating-point exception. Less dramatic, but very costly and embarrassing to Intel, was
an error in the FDIV (floating-point division) instruction of some early Intel® Pen-
tium® processors in 1994 [Pratt (1995)]. Intel set aside approximately $475M to cover
costs arising from this issue.

So it is not surprising that a considerable amount of effort has been applied to formal
verification in the floating-point domain, not just at Intel [Leary et al. (1999), Kaivola
and Aagaard (2000)], but also at AMD [Moore et al. (1998), Rusinoff (1998)] and
IBM [Sawada (2002)], as well as in academia [Jacobi (2002), Boldo (2004)]. Floating-
point algorithms are in some ways an especially natural and appealing target for formal
verification. It is not hard to come up with widely accepted formal specifications of
how basic floating-point operations should behave. In fact, many operations are spec-
ified almost completely by the IEEE Standard governing binary floating-point arith-
metic [IEEE (1985)]. This gives a clear specification that high-level algorithms can rely
on, and which implementors of instruction sets and compilers need to realize. In some
other respects though, floating-point operations present a difficult challenge for formal
verification.

In many other areas of verification, significant success has been achieved using
highly automated techniques, usually based on a Boolean or other finite-state model
of the state of the system. But it is less easy to verify non-trivial floating-point arith-
metic operations using such techniques. The natural specifications, including the IEEE
Standard, are based on real numbers, not bit-strings. While simple adders and multipli-
ers can be specified quite naturally in Boolean terms, this becomes progressively more
difficult when one considers division and square root, and seems quite impractical for
transcendental functions. So while model checkers and similar tools are of great value
in dealing with low-level details, at least some parts of the proof must be constructed in
general theorem proving systems that enable one to talk about high-level mathematics.
For verification of the arithmetic hardware itself, most work at Intel is based on a tool
that effectively combines a general theorem prover and a rich array of automated model
checking techniques. As a paradigmatic example of how it may be used, a divider circuit
might be verified by an inductive proof that certain invariants are maintained, while the
circuit-level details are verified by symbolic trajectory evaluation [Leary et al. (1999),
Kaivola and Aagaard (2000)]. As the floating-point algorithms become higher-level,
e.g. implementing transcendental functions like sin on top of the hardware primitives,
automated enumerative techniques become less useful, and the key is a programmable
environment for general mathematical proofs.

There are many theorem proving programs with different strengths and weaknesses
[Wiedijk (2006)]. Several of these, including at least ACL2, Coq, HOL Light and PVS,
have been applied to floating-point verification. Our own work is conducted using the

633Harrison J.: Floating-Point Verification



HOL Light system [Harrison (1996)].2 This is a general framework for verification of
mathematical proofs, based on higher-order logic, implemented using a very simple
kernel of basic logical inference rules, to provide a high level of assurance.

5 A typical high-level verification

To give a flavour of what the verification of a typical high-level floating-point algorithm
involves, consider the sin/cos algorithm described in [Harrison (2000)]. As usual in
modern transcendental function implementations [Tang (1991), Muller (1997)], the al-
gorithm can be considered as three phases: (i) initial range reduction, (ii) core compu-
tation, (iii) reconstruction.

For our trigonometric functions, the initial argument x is reduced modulo π/2.
Mathematically, for any real x we can always write:

x = N(π/2)+ r

where N is an integer (the closest to x · 2
π ) and |r| ≤ π/4. The core approximation is then

a polynomial approximation to sin(r) or cos(r) as appropriate, similar to a truncation
of the familiar Taylor series:

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ . . .

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .

but with the pre-stored coefficients computed numerically to minimize the maximum
error over r’s range, using the so-called Remez algorithm [Remes (1934)]. Finally, the
reconstruction phase: to obtain either sin(x) and/or cos(x), just return one of sin(r),
cos(r), −sin(r) or −cos(r) depending on N modulo 4, e.g. sin((4M + 3)(π/2)+ r) =
−cos(r). In order to verify this algorithm we need to prove:

• The range reduction to obtain r is done accurately. This is by no means trivial since
large floating-point numbers can come very close to multiples of π/2. We need to for-
malize some elementary theorems from diophantine approximation.

• The mathematical facts used to reconstruct the result from components are applicable.
In this case, this just amounts to a few trigonometric identities, but is sometimes more
involved.

• Stored constants such as the approximations to π and the polynomial coefficients are
sufficiently accurate. This involves a combination of high-level mathematics and actual
numerical approximation.

2 See also http://www.cl.cam.ac.uk/˜jrh13/hol-light/
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• The power series approximation does not introduce too much error in approximation.
The power series used are not Taylor expansions with a simple analytical error bound,
so more general means must be employed.

• The rounding errors involved in computing with floating point arithmetic are within
bounds. Every computation in the machine may deviate from its exact mathematical
counterpart, and all the errors must be checked, bounded, and approved.

Most of these parts are non-trivial. Moreover, some of them require more pure mathe-
matics than might be expected. Some parts (e.g. accumulating and bounding rounding
errors) are unbearably tedious to do without programmability and machine checking,
yet much of the high-level mathematics is beyond simple automated verification tools.
Thus the use of a general framework such as HOL Light seems essential.

6 Concluding remarks

Formal verification is becoming established as best practice in several important niches
of the hardware industry; this paper has just given a brief overview of the rich variety
of methods in use. For more detail on hardware verification see [Kropf (1999), Peled
(2001)] as well as the recent lectures in [Bernardo and Cimatti (2006)].
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