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Abstract: Non-functional requirements such as performance, program size, and en-
ergy consumption significantly affect the quality of software systems. Small devices like
PDAs and mobile phones have little memory, slow processors, and energy constraints.
The C programming language has been the choice of many programmers when devel-
oping application for small devices. On the other hand, the need for functional software
correctness has derived several specification languages that adopt the Design by Con-
tract (DBC) technique. In this work we propose a specification language for C, called
CML (C Modeling Language), focused on non-functional requirements. CML is inspired
on the Design By Contract technique. An additional contribution is a verification tool
for hard real-time systems. The tool is the first application developed for CML. The
practical usage of CML is presented through a case study, which is a real application
for a vehicle monitoring system.
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1 Introduction

A software specification is intended to describe the structure and functionality
required for a system[Gannon et al. 1994]. The specification is useful to under-
stand the system and to eliminate errors in the later phases of the development
cycle.

A number of specification languages have been designed to be annotated
directly in the source code. Some of these languages adopts the Design by Con-
tract (DBC) [Meyer 1992, Meyer 1997] technique. Contracts are a breakthrough
technique to reduce the programming effort for large projects. Contracts are the
concept of preconditions, postconditions, errors, and invariants. The idea of a
contract is just an expression that must evaluate to true. If it does not, the
contract is broken, and by definition, the program has a bug in it. Contracts
form part of the specification for a program, moving it from the documentation
to the code itself. And as every programmer knows, documentation tends to be
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incomplete, out of date, wrong, or non-existent. Moving the contracts into the
code makes them verifiable against the program.

The concepts of DBC were introduced in Eiffel [Meyer 1997]. The Java Mod-
eling Language (JML) follows the design by contract paradigm. It is a specifi-
cation language for Java programs, using Hoare style pre- and postconditions
and invariants [Hoare 1969]. The specifications are added as annotation com-
ments to the Java program, which hence can be compiled with any Java com-
piler. There are various verification tools for JML, such as a runtime assertion
checker [Cheon and Leavens 2002] and the Extended Static Checker (ESC/Java)
[Flanagan et al. 2002].

Small devices, such as PDAs and mobile phones, have constrained resources,
like memory, processor power, and energy. Therefore, applications developed
targeting such devices cannot ignore these resources limitations. The C pro-
gramming language has been the choice of many programmers when developing
application for small devices. The capacity for manipulating low level resources
and the existence of efficient compilers justify the popularity of C for these ap-
plications.

Due to side effects caused by pointer manipulation is difficult to prove the
functional correctness of C programs. Thus, although most C programmers like
the idea of DBC, they abandon DBC because it is too inelegant, relies too much
on macros, and is too weak without language support. On the other hand, C
is widely adopted to implement application with stringent resource constraints
(memory, time processing, communication cost, and energy consumption, for
example). Therefore, it is intuitive to define a specification language to describe
non-functional requirements of C programs. Indeed, most C programmers invent
their own strategy to define such requirements, for instance, in form of comments,
informally included in the source code. Additionally, the specification language
should be associated with verification tools. It is important to automatically
check if the non-functional requirement was fulfilled.

This work proposes a specification language for C focused on non-functional
requirements, inspired in the DBC paradigm, called C Modeling Language (CML).
Moreover, the paper contributes with a tool for hard real-time systems based
on CML. The tool receives a C program, composed of several tasks, annotated
with time restrictions, scheduling method (preemptive and non-preemptive), ar-
bitrary inter-task relations (precedence and exclusion), task-to-processor alloca-
tion. It automatically looks for a feasible schedule. If a schedule is found, the
tool generates a scheduler to control the tasks’ execution. It is worth observing
that this is pre-runtime scheduling policy, which is fundamental to satisfy timing
requirements established in the CML specification.

The main contributions of this work are: the CML specification language
focused on non-functional requirements; a tool for hard real-time systems based
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on CML that analyzes C programs according to the defined specification; and a
case study that validates the proposed language (CML) and the analysis tool in
a real application.

2 CML Description

The C Modeling Language (CML) is a specification language developed to de-
scribe non-functional requirements of applications implemented through the C
programming language. CML is particularly useful for applications with strin-
gent constraints in terms of time, memory, area, power, and other limited re-
sources.

Figure 1 depicts an overview of the CML environment. Similar to JML, pro-
grammer includes annotations in the C source code in form of comments. The
CML compiler translates the annotated C code into the file format of the veri-
fication tool employed to check the system against the specified non-functional
requirements.

Figure 1: An overview of the CML environment

The CML specification is placed into comment blocks, between /*! and */

patterns. The pattern /*! indicates the beginning of the specification. The pat-
tern */ establishes the end of a specification block. Figure 2 presents a simple
example of a CML specification.

/*!
* @attribute value
*/

Figure 2: A simple CML specification

The complete set of annotation elements proposed for CML is presented in
Appendix A. Table 1 lists a subset of CML defined for specifying hard-real time
systems. We will focus on this subset to illustrate the practical usage of CML.
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Constructor Description Format
@task task name String

@processor processor where the task
will be executed

String

@scheduling task scheduling model NP (Non-preemptive) or
P (Preemptive)

@phase task phase time Integer
@release task release time Integer
@wcet task worst case execution time Integer
@deadline task deadline time Integer
@period task period time Integer
@precedes tasks preceded by this task List of tasks between the

tokens { and } separated by comma
@excludes tasks excluded by this task List of tasks between the

tokens { and } separated by comma
@sends message sent by this task This attribute is followed by:

1. Message name
2. Bus name
3. Worst case communication time
4. Receiver Task

Table 1: Subset of CML for hard real-time systems

Figure 3 presents a CML specification for task T1 (@task T1), which belongs
to a hard real-time system. According to the specification, T1 cannot be pre-
empted (@scheduling NP) and must execute in processor P1 (@processor P1).
The attributes @release, @period, @phase, @deadline, and @wcet are related
to the task timing constraints and expressed in Time Task Units (TTUs). A
TTU is the smallest indivisible granule of a task, during which a task cannot be
preempted by any other task. The attributes @precedes and @excludes speci-
fies the relation between tasks. In the specification example, T1 precedes tasks
T2 and T5. Consequently, T2 and T5 can only start executing after T1 has fin-
ished (@precedes {T2,T5}). @excludes {T3} indicates that task T1 excludes
T3. Therefore, no execution of T3 can start while T1 is executing. Eventually,
message M1 is sent by T1 to the task T4 through the communication bus B1. The
communication should take, in the worst case, 17 TTUs (@sends M1 T4 17 B1).
Section 3 provides a detailed discussion about each attribute included in the
CML specification for hard real-time systems.

The CML compiler developed in this work translates the CML specification
into a XML file. This file is read by an application developed in this work, which
is a software synthesis tool for embedded hard real time systems described in
Section 3. The XML file equivalent to the CML specification in Figure 3 is
presented in Figure 4.
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/*!
@task T1
@scheduling NP
@processor P1
@release 1
@period 9
@phase 1
@deadline 9
@wcet 1
@precedes {T2,T5}
@excludes {T3}
@sends M1 T4 17 B1
*/
void T1(){ //task code }

Figure 3: Example of a task specification

3 A CML Based Software Synthesis for Embedded Hard
Real-Time Applications

The practical usage of CML depends on the implementation of verification tools
integrated with a C programming environment. An additional contribution of
this work is the development of a software synthesis tool for embedded hard
real-time applications.

Embedded hard real-time systems are dedicated computer applications hav-
ing to satisfy stringent timing constraints, or rather, they must guarantee that
critical tasks finish before their deadlines. A failure to meet deadlines may have
serious consequences such as resources damage or even loss of human life. Soft-
ware synthesis has become a key problem in design of embedded hard real-time
systems, since the software is responsible for more than 70% of functions in such
systems [Su and Hsiung 2002].

Scheduling is very important in embedded real-time systems. There are two
general approaches for scheduling tasks: runtime and pre-runtime scheduling.
The former approach computes schedules on-line as tasks arrive, through a
priority-driven strategy. However, in some cases the runtime scheduler is unable
to find a feasible schedule, even if such schedule exists [Xu and Parnas 1993]. On
the other hand, a pre-runtime scheduler computes the schedule entirely off-line.
This strategy improves processor utilization, reduces context switching, makes
execution predictable, and excludes the need for complex operating systems.

This work focuses on embedded hard real-time systems. We decided to adopt
a pre-runtime scheduling approach. To find a feasible schedule, we perform a
state space exploration, since it presents a complete automatic strategy for ver-
ifying finite-state systems [Godefroid 1996]. The scheduled code is generated by
traversing the timed Labelled Transition System (LTS), which represents a fea-
sible schedule. Transition’s instances visited are substituted by the respective
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<realtime-table>
<task release="1" period="9" phase="1"

processor="P2" schedulingModel="NP"
oid="1088076" name="T1">

<time>
<computing value="1"/>
<deadline value="9"/>

</time>
<precedes>

<task-ref name="T2"/>
<task-ref name="T5"/>

</precedes>
<excludes>

<task-ref name="T3"/>
</excludes>
</task>

...

<message bus="B1" oid="30377347" name="M1">
<time>

<communication value="17"/>
</time>
<precedes>

<task-ref name="T4"/>
</precedes>

</message>
</realtime-table>

Figure 4: Specification in XML format

code segments. Tasks can be distributed in several processors in order to achieve
the time restrictions.

3.1 A Method for Software Synthesis

This section describes a method for software synthesis considering embedded
hard real-time applications. Our method comprises four main steps:

– Specification: describes the properties of each task in the system, including
time restriction (phase time, release time, worst execution time, deadline,
and period), scheduling method (preemptive and non-preemptive), arbitrary
inter-task relations (precedence and exclusion), task-to-processor allocation,
and task source code; tasks allocated in different processors communicate
through a special task, called communication task; such a task is described by
the worst communication time, communication channel, sender and receiver;

– Modelling: the specification is translated into a Time Petri Net (TPN) model
[Merlin and Faber 1976]; each specification element is modeled through a
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TPN building block; these blocks are composed to form the complete model
[Tavares et al. 2005, Tavares 2006];

– Pre-runtime Scheduler: the next step searches for a feasible scheduling using
the TPN model; the proposed scheduling algorithm performs a depth-first
search on a finite timed Labeled Transition System (LTS) derived from a
TPN model;

– Software Synthesis: the scheduled code is generated by traversing the timed
LTS that represents a feasible schedule, if it exists, and substituting transi-
tion’s instances by the respective code segments.

This work concentrates on the specification and software synthesis phases.
More details about the modeling and pre-runtime scheduler phases may be found
elsewhere [Tavares et al. 2005, Tavares 2006].

3.2 Specification of Hard Real-Time Systems

This subsection describes the specification elements included in CML for mod-
elling hard real-time system.

A task is the basic element in the system. The specification is given in terms
of temporal restrictions on task; the scheduling method adopted; inter-task rela-
tions; and inter-processor communications, which is modeled by a special task,
called communication task.

Temporal Restrictions

In real-time systems, there are, generally, three types of tasks:

– periodic tasks perform a computation that are executed once in each fixed
period of time;

– aperiodic tasks are activated randomly;

– sporadic tasks are executed randomly, but the minimum interval between
two consecutive activations is known a priori.

Pre-runtime method performs scheduling decisions at compile time. It aims
at generating a schedule table for a runtime component, namely, dispatcher,
which is responsible for controlling the tasks during system execution. In order
to adopt such method, the major characteristics of the tasks must be known in
advance. This approach can only be used to schedule periodic tasks.

Definition 3.1 (Periodic Task) Let Ti be a periodic task defined by Ti =(phi,
ri, ci, di, pi), where phi is the initial phase; ri is the release time; ci is the worst
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case computation time; di is the deadline; and pi is the period. A periodic task
samples objects of interest at a fixed rate. The phase (phi) is the delay associated
to the first time request of task Ti after the system starting. phi = 0 whenever
not specified. The release time (ri) is the time interval between the beginning of
a period and the earliest time to start the execution of task Ti. The computation
time (ci) is the worst case computation time required for executing task Ti. The
deadline (di) is the time interval between the beginning of a period and the time
instant at which task Ti must be completed (in each period). The period (pi) is
the time interval in which Ti must be executed.

The initial phase (phi) defines the point in time, after the system starts exe-
cuting, when the task period can be allocated. The definition of phi is important,
since non schedulable system may become schedulable when an initial phase is
specified. For instance, considering two tasks, T1 and T2, having the same timing
constraints (ph1, r1, c1, d1, p1) = (ph2, r2, c2, d2, p2) = (0, 0, 5, 5, 10). This
system is not schedulable, since both takes 5 time units to execute and should
finish at time unit 5. However, if an initial phase is specified, i.e. ph2 = 5, the
system becomes schedulable, because the period of T2 is allowed to start 5 time
units after the beginning of system execution. It is enough for task T1 finishes.
It is worth notice that the deadline is relative to the period and not to the entire
system. Figure 5 presents a feasible schedule for the system.

Figure 5: A feasible schedule for the system

Scheduling Method

The scheduling methods are all-preemptive and all-non-preemptive. In the all-
preemptive scheduling method tasks are implicitly split into all possible sub-
tasks. This scheduling method permits running other conflicting tasks, implying
that one task could preempt another task. In turn, with the all-non-preemptive
scheduling method processor is just released after finishing the entire computa-
tion.

Arbitrary Inter-Task Relations

A task Ti precedes task Tj, if Tj can only start executing after Ti has finished.
In general, this kind of relation is suitable whenever a task (successor) needs
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information that is produced by another task (predecessor). A task Ti excludes
task Tj, if no execution of Tj can start while task Ti is executing. If it is considered
a single processor, then task Ti could not be preempted by task Tj. Exclusion
relations may prevent simultaneous access to shared resources. In this work it
is considered that the exclusion relation is not symmetrical, that is, when A
EXCLUDES B, not necessarily implies that B EXCLUDES A.

Inter-Processor Communication

When adopting a multiprocessing environment, all inter-processor communica-
tions have to be taken into account, since these communications affect the system
predictability. An inter-processor communication is represented by a special task,
namely, communication task, which is described as follows.

Definition 3.2 (Communication Task) Let µm ∈ M be a communication task
defined by µ = (Ti, Tj, ctm, busm), where Ti ∈ T is the sending task, Tj ∈ T is
the receiving task, ctm is the worst case communication time, and busm ∈ B is
the bus, where B is the set of buses.

It is worth observing that the bus is an abstraction for a communication
channel used for providing communication between tasks from different proces-
sors.

3.3 Scheduled Code Generation

The proposed method for code generation includes not only tasks’ code (imple-
mented through C functions), but also a timer interrupt handler, and a small dis-
patcher. Such dispatcher automates several control mechanisms required during
the execution of tasks. Timer programming, context saving, context restoring,
and tasks’ calling are examples of such additional controls. The timer interrupt
handler always transfers the control to the dispatcher, which evaluates the need
for performing either context saving or restoring, and calling a specific task.

An array of registers (struct ScheduleItem) is created to store the schedule
table. Each input represents the execution part of a task instance. In case of
preemption, a task instance may have more than one execution part. The register
struct ScheduleItem contains the following information: (i) start time; (ii)
flag, indicating if the task was preempted before; (iii) task id; and (iv) a pointer
to a function (the respective task code). Figure 6 depicts the schedule table for
a preemptive application. It includes two instances of TaskA, two instances of
TaskB, two instances of TaskC, and one instance of TaskD. TaskA1 and TaskA2

are preempted in time 4 and 20, respectively. TaskB1 is preempted twice: first in
time 6 and, then, in time 10. Therefore, the schedule table contains 11 entries.
Figure 7 presents the respective timing diagram.
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struct ScheduleItem scheduleTable [SCHEDULE_SIZE] =
{{ 1, false, 1, (int *)TaskA}, TaskA1 starts
{ 4, false, 2, (int *)TaskB}, TaskB1 starts and preempts TaskA1
{ 6, false, 3, (int *)TaskC}, TaskC1 starts and preempts TaskB1
{ 8, true, 2, (int *)TaskB}, TaskB1 resumes executing
{10, false, 4, (int *)TaskD}, TaskD1 starts and preempts TaskB1
{11, true, 2, (int *)TaskB}, TaskB1 resumes executing
{13, true, 1, (int *)TaskA}, TaskA1 resumes executing
{18, false, 1, (int *)TaskA}, TaskA2 starts
{20, false, 3, (int *)TaskC}, TaskC2 starts and preempts TaskA2
{22, false, 2, (int *)TaskB}, TaskB2 starts
{28, true, 1, (int *)TaskA} TaskA2 resumes executing
};

Figure 6: Example of a Schedule Table

Figure 7: Timing Diagram for Schedule Table in Figure 6

A brief explanation of the dispatcher (Figure 8) is as follows: before calling a
task, the dispatcher check some situations: (a) If the current task was preempted,
the dispatcher saves its context (line 4); (b) If the next task has been preempted,
and now it is being resumed, the dispatcher restores the context (line 5); and
(c) If it is a new task instance, the dispatcher just stores the function pointer
(line 7) in the variable taskFunction that will be called by the interrupt handler.
Additionally, the table representing the feasible schedule is accessed as a circular
list (line 9). The timer is automatically programmed using the start time of the
next task instance to be called (line 10). After all these activities, the timer is
activated to interrupt at the start time of the next task (line 11).

Whenever considering hard real-time embedded system design based on mul-
tiple processor platforms, the mechanism for processors synchronization is an im-
portant concern. A specific architecture was designed for this purpose. A master
processor performs the time counting. It periodically sends synchronization mes-
sages to slave processors. There is no runtime scheduler running in each proces-
sor, but a runtime dispatcher. The scheduling is performed using a pre-runtime
approach, as described before. Master processor is only responsible for perform-
ing the time counting and for notifying slave processors. It does not execute any
task, but only a dispatcher. In addition, slave processors do not have their own
real-time clocks. The real-time clock only resides in the master processor.
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1 void dispatcher() {
2 struct ScheduleItem item = scheduleTable[scheduleIndex];
3 globalClock = item.clock;
4 if(currentTaskPreempted) { // context saving }
5 if(item.isPreemptionReturn) { // context restoring }
6 else {
7 taskFunction = item.functionPointer;
8 }
9 scheduleIndex = ((++scheduleIndex)%SCHEDULE_SIZE);
10 programTimer(scheduleTable[scheduleIndex].clock);
11 activateTimer();
12}

Figure 8: Simplified Version of the Dispatcher

In the proposed approach, all communication tasks are also taken into ac-
count in the code generation. Each communication task (µm) is translated into
two special tasks: sendMm and receiveMm. Both tasks are executed at the same
moment for guaranteeing the correct data transmission. sendMm and receiveMm

are considered in the pre-runtime schedule table and both cannot be preempted.
Section 4 presents an example of a system considering inter-processor commu-
nication.

4 A Case Study: Vehicle Monitoring System

This section presents a real application case study to illustrate the practical usage
of CML for modeling a vehicle monitoring system. The example is particularly
useful to demonstrate the application of CML for modeling systems executing
in a multiple processing environment where inter-processor communication is
required.

The system is composed of a set of sensors employed to verify whether the
car components are working properly. If a component fails or works erroneously,
the system notifies the driver through the dashboard. The vehicle monitoring
system relies on multiple processors, since several sensors are considered and the
microcontroller adopted (8051) contains only four 8-Bit I/O ports. In this way,
two processors are used for interfacing with the sensors.

4.1 The specification model

A set of tasks were defined to check the status of the engine (TV and TR),
breaks (TB), water (TW), gearing (TG), and temperature (TT). Finally, the
data processed is sent to the task TRA, which is responsible for notifying the
driver. Table 2 details the system specification, which is composed of 14 tasks, in-
cluding the communication task M1. It implements the communication between
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TaskID Task Name Release Comp. Deadline Period
Proc.
/Bus From To

TV0 ReadVelocity 0 231 20000 120000 P1 - -
TV1 ProcVelocity 20000 5487 40000 120000 P1 - -
TB0 ReadBreaks 20000 221 40000 120000 P1 - -
TB1 ProcBreaks 40000 236 60000 120000 P1 - -
TR0 ReadRPM 40000 232 60000 120000 P1 - -
TR1 ProcRPM 60000 238 80000 120000 P1 - -
TRA Notifier 80000 2444 120000 120000 P1 - -
TW0 ReadWater 0 237 20000 120000 P2 - -
TW1 ProcWater 20000 241 40000 120000 P2 - -
TT0 ReadTemperature 20000 259 40000 120000 P2 - -
TT1 ProcTemperature 40000 234 60000 120000 P2 - -
TG0 ReadGearing 40000 224 60000 120000 P2 - -
TG1 ProcGearing 60000 236 80000 120000 P2 - -
M1 - - 1700 - B1 TG1 TRA -

Table 2: Task Timing Specification

processors P1 and P2. The implementation splits task TV into two subtasks:
one (TV0) reads the sensor; and the other (TV1) processes the information. The
same is done for tasks TR, TB, TW, TG and TT.

Figures 9 and 10 presents the CML specification for the vehicle monitor-
ing system. The communication between processors P1 and P2 is implemented
through the communication task M1. Two functions are generated to implement
M1: receiveM1, in the receiving side; and sendM1, in the sending side. B1 is the
bus used to transmit the message, which takes 1700 Time Task Units (TTUs) in
the worst case. Task TG1 is responsible for sending the message from processor
P2 to processor P1. The message sent to the processor P1 is received by the task
TRA, which notifies the driver about the vehicle status.

The system was verified using the tool presented in Section 3. A feasible
schedule was found after visiting 78 states. Figure 11 presents the timing di-
agram with the schedule for the vehicle monitoring system. The schedule was
automatically generated by the tool.

More applications, such as Pulse Oximeter and Heated-Humidifier, have al-
ready been developed with CML support. These applications are described in
[Barreto 2005].

5 Related Work

Meyer introduced the concept of Design by Contract [Meyer 1992, Meyer 1997],
a lightweight formal method that allows for dynamic runtime checks of spec-
ification violation. Design by Contract establishes that a relationship between
a class and its clients is viewed as a formal agreement, which expresses each
party’s right and obligations. A precondition states the properties that must
hold when a routine is called; the postcondition states the properties that the
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/*! /*!
* @task TV0 /*! * @task TB0 /*!
* @processor P1 * @task TV1 * @processor P1 * @task TB1
* @scheduling NP * @processor P1 * @scheduling NP * @processor P1
* @phase 0 * @scheduling NP * @phase 0 * @scheduling NP
* @release 0 * @phase 0 * @release 20000 * @phase 0
* @wcet 231 * @release 20000 * @wcet 221 * @release 40000
* @deadline 20000 * @wcet 5487 * @deadline 40000 * @wcet 236
* @period 120000 * @deadline 40000 * @period 120000 * @deadline 60000
* @precedes {TV1} * @period 120000 * @precedes {TB1} * @period 120000
*/ */ */ */
void TV0() {...} void TV1() {...} void TB0() {...} void TB1(){...}
/*!
* @task TR0 /*! /*!
* @processor P1 * @task TR1 * @task TRA
* @scheduling NP * @processor P1 * @processor P1
* @phase 0 * @scheduling NP * @scheduling NP
* @release 40000 * @phase 0 * @phase 0
* @wcet 232 * @release 60000 * @release 80000
* @deadline 60000 * @wcet 238 * @wcet 2444
* @period 120000 * @deadline 80000 * @deadline 120000
* @precedes {TR1} * @period 120000 * @period 120000
*/ */ */
void TR0(){...} void TR1(){...} void TRA(){...} void receiveM1(){...}

Figure 9: CML specification for tasks in processor P1

/*! /*!
* @task TW0 /*! * @task TT0 /*!
* @processor P2 * @task TW1 * @processor P2 * @task TT1
* @scheduling NP * @processor P2 * @scheduling NP * @processor P2
* @phase 0 * @scheduling NP * @phase 0 * @scheduling NP
* @release 0 * @phase 0 * @release 20000 * @phase 0
* @wcet 227 * @release 20000 * @wcet 259 * @release 40000
* @deadline 20000 * @wcet 241 * @deadline 40000 * @wcet 234
* @period 120000 * @deadline 40000 * @period 120000 * @deadline 60000
* @precedes {TW1} * @period 120000 * @precedes {TT1} * @period 120000
*/ */ */ */
void TW0() {...} void TW1(){...} void TT0(){...} void TT1(){...}
/*! /*!
* @task TG0 * @task TG1
* @processor P2 * @processor P2
* @scheduling NP * @scheduling NP
* @phase 0 * @phase 0
* @release 40000 * @release 60000 —
* @wcet 224 * @wcet 236
* @deadline 60000 * @deadline 80000
* @period 120000 * @period 120000
* @precedes {TG1} * @sends M1 B1 1700 TRA
*/ */
void TG0(){...} void TG1(){...} void sendM1(){...}

Figure 10: CML specification for tasks in processor P2

routine guarantees when it returns. As a consequence, pre and postconditions
enforce behavior with contracts, which is also expressed by the term software
contract.

JML [Burdy et al. 2005, Leavens et al. 2006] is a notation used to formally
specify the behaviour and interfaces of classes and methods written in Java
[K. Arnold and J. Gosling 1996], which follows the ”software contract” concept
introduced in the Eiffel language. By using JML, one can specify both the in-
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Figure 11: The schedule for the vehicle monitoring system

terface of methods and classes as well as their behavior. Interface specification
usually includes type information and visibility modifiers, for instance. We can
specify the interface of methods (including name, visibility, number of arguments,
return type, and so on), attributes (name, type and modifiers), and types (name,
modifiers, whether it is a class or interface, its supertypes and so on). In fact,
JML uses Java syntax to specify all such interface specification.

The behavior of a method or type specifies the transformations that are
performed by them. The style of specification of JML is usually called model-
oriented [Wing 1990]. Indeed, specifications written in JML follow the style of
refinement calculus [Morgan 1994]. The attributes to which we can assign in a
method are described by the method’s frame-axiom. States to which methods
are defined are formally described by means of assertions (the method’s pre-
condition); states that may result from the normal execution of methods are
described by logical assertions, are called the method’s normal postcondition.
The relationship between the state in which a method is called and the states
that may result from throwing an exception are described by the method’s ex-
ceptional postcondition. We can also specify class invariants in JML, describing
properties that hold in all visible states [Leavens et al. 2006]. We can also deal
with refinement in JML.

A distinguishing feature of JML is the range of tools available. We can check
the correctness of JML specifications using the runtime assertion checker jmlc,
the JML compiler. Unit test is partially automated by the jmlunit tool that
generates test classes that rely on the JML runtime assertion checker. The jml-
doc tool produces HTML browsable pages in the style of pages generated by
javadoc. Other tools with distinct purposes are also available: ESC/Java (static
checker) [Flanagan et al. 2002], LOOP tool [Jacobs et al. 1998] (compilation to
PVS [Owre et al. 1992] theories), and JACK (program checker) [Burdy et al. ].

Although most of the JML annotations are directed to functional require-
ments, there are some annotations, which are related with expressions that can
be used to express non-functional requirements. For instance, a duration expres-
sion describes the specified maximum number of virtual machine cycle times
needed to execute a method call. Also, a space expression describes the amount
of heap space allocated to an object given as argument. The CML handles this
kind of assertions in a higher-level way, dealing not simply with time associated

695de Oliveira Jr. F., Lima R., Cornelio M., Soares S., Maciel P., Barreto R., ...



to machine cycles, but to the execution of tasks and scheduling. Besides that,
we deal with memory use, and energy consumption.

The Spec# programming system [Barnett et al. 2004] provides a complete
infrastructure, including libraries, tools, design support, and integrated edit-
ing capabilities for C# programs specification. Part of this system is composed
by the Spec# programming language, which is a subset of the existing object-
oriented .NET programming language C#. Like JML, the Spec# language fo-
cuses on specification of functional aspects. On the other hand, CML deals with
specification of non-functional aspects of programs written in the C language.

The tool Jass [Bartetzko et al. 2001] translates Java annotated programs
into pure Java programs in which compliance with the specification is dynami-
cally tested during runtime. Assertions are written as comments into Java code;
they are simply boolean expressions. Different kinds of assertions are allowed:
method pre and postconditions; class invariants; loop invariants and variants;
refinement checks; and trace assertions that specify the intended dynamic be-
havior of objects in time, describing allowed traces of events. In CML, we can
also express the order in which tasks must be executed, but we go further since
we can also express requirements on time, power and memory, for instance. On
the other hand, in CML we cannot check tasks refinements.

The Bandera Specification Language [Corbett et al. 2000] is a source-level,
model-checker independent language for expressing temporal properties of Java
programs action and data. An assertion sublanguage allows programmers to de-
fine constraints on programs by writing pre- and postconditions. A temporal
property sublanguage provides support for defining predicates on control points
(method call and return) and data (object instantiation) present in Java pro-
grams. This sublanguage allows specifying temporal properties between system
actions. The language provides specification patterns that describe properties
like precedence. The patterns mentioned in [Corbett et al. 2000] can also be de-
scribed in CML. However, we do not deal with pre and postconditions as in the
assertion language of Bandera.

6 Conclusions

Non-functional requirements (NFR) has long been recognized as a fundamental
issue in software development. The popularity of small devices and embedded
systems increases the importance of NFR. Due to the limited amount of re-
sources, the correctness and quality of software targeting these platforms relies
equally on functional and non-functional aspects. This work presented CML (C
Modeling Language), a specification language to describe non-functional require-
ments of C programs. We decided to focus on the C language because it is widely
employed to develop applications with severe non-functional restrictions, such
as performance, memory allocation, and energy consumption.
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The development of CML was inspired in the Design By Contract (DBC)
technique. Thus, specifications are added as annotation comments to the C
program, which hence can be compiled with any C compiler. We believe that
this tight integration between specification and implementation languages con-
tributes for motivating programmers to use the specification language in practice.
It is worth notice that, CML does not follow the DBC technique. For instance,
the concepts of preconditions, postconditions, and invariants have no interpre-
tation in CML. On the other hand, a CML specification establishes a kind of
contract, in the sense that: from the NFR perspective, if the specification was
respected, the system will work properly. We believe that CML can contribute
to improve the quality of software systems. In particular, those with stringent
resource limitations and performance requirements.

In addition to the proposition of CML itself, this paper contributed with the
first verification tool based on CML The tool receives a CML specification for
embedded hard real-time systems and checks if exists a feasible schedule for the
system. If the answer was yes, the schedule is automatically generated and the
code for the system is synthesized considering a pre-runtime scheduling strategy.

In order to show the practical feasibility of the proposed software synthesis
method, we specified a vehicle monitoring system. This is a multiple processing
application, which was useful to demonstrate the modeling of inter-processor
communication in CML. The system was then analyzed through the tool and
the scale was found after visiting 78 states.

6.1 Future Works

The current CML implementation does not cover the whole language construc-
tors. Through an incremental approach, we first implemented the elements that
address hard-real time systems. The implementation was then validated using a
real application. Other verification tools considering the remaining set of CML
constructors (see Appendix A) will be released in near future.

We are currently working to implement a verification tool considering two
constructors (@pesaccess and @optaccess) related to concurrent access poli-
cies, in order to guarantee safe execution, and therefore, data consistency. The
concurrent access policies are responsible to control a function execution in order
to avoid undesirable interferences in a concurrent environment. There are two
possible access policies: pessimistic (@pesaccess) and optimistic (@optaccess).
In the pessimistic access policy the function access is made through a critical
section using a default or a used-defined lock variable. This technique guarantees
that while a thread/task is executing a function with this annotation no other
thread/task can execute the same function. This is basically the synchronization
of all functions execution. Since this synchronization might be too restrictive
and decrease performance, an alternative access policy (@optaccess) considers
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the function semantics in order to decide when block and when allow concur-
rent access to a function. This optimistic policy considers that in some cases it
is possible to define when two or more threads/tasks executions might conflict
to each other [Soares and Borba 2001]. For instance, a function might not be
concurrently executed if both executions are using the same arguments values.

We are constantly reviewing the language to include/remove constructors
and constructors’ parameters. New versions of CML will be released soon.

The tool presented in this work as well as more information about CML can
be found at www.dsc.upe.br/cml.
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A The Complete Set of CML Constructors

Constructor Description Format
Program/
Function
†

Require-
ment

@task task name String F –

@processor processor to task
allocation

String P and F resource al-
location

@scheduling task scheduling
strategy

NP (Non-preemptive)
or P (Preemptive)

F scheduling

@phase task phase time Integer F temporal
restrictions

@release task release time Integer F temporal
restrictions

@wcet worst case execu-
tion time

Integer P and F temporal
restrictions

@deadline task deadline time Integer F temporal
restrictions

@period task period time Integer F temporal
restrictions

@precedes tasks preceded by
this task

List of tasks between
the tokens { and } sep-
arated by comma

F inter-task
relation

@excludes tasks excluded by
this task

List of tasks between
the tokens { and } sep-
arated by comma

F inter-task
relation

@sends message sent by
this task

This attribute is fol-
lowed by: 1-message
name, 2-bus name, 3-
worst case communi-
cation time, 4-receiver
task

F
inter-task
communi-
cation

@usedmemory �
maximum
amount of me-
mory to use

Integer (Kb) P and F memory use

@codesize � generated binary Integer (Kb) P and F memory use

@cachehit �

maximum num-
ber of accesses to
cache (L1 and L2
levels)

L1:Integer, L2:Integer P and F performance

@cachemiss �

maximum num-
ber of cache
misses (L1 and
L2 levels)

L1:Integer, L2:Integer P and F performance

@pagefault �
maximum num-
ber of page faults Integer P and F performance

@power �
maximum energy
consumption Real (Joules) P and F Power

@pesaccess �

no concurrent ac-
cess is allowed;
optionally, specify
a lock variable

String (var) F Safety/data
consistency

@optaccess �

some concurrent
access is allowed;
specify a variable
or parameter list
as the function se-
mantics

List of variables be-
tween the tokens { and
} separated by comma

F Safety/data
consistency

† Constructor granularity: P→ whole program; F→ single function.
� CML constructors not considered in the current implementation
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