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Abstract: Most automated reasoning tasks with practical applications can be automatically 
reformulated into a constraint solving task. A constraint programming platform can thus act as 
a unique, underlying engine to be reused for multiple automated reasoning tasks in intelligent 
agents and systems. We identify six key requirements for such platform: expressive task 
modeling language, rapid solving method customization and combination, adaptive solving 
method, user-friendly solution explanation, efficient execution, and seamless integration within 
larger systems and practical applications. We then propose a novel, model-driven, component 
and rule-based architecture for such a platform that better satisfies as a whole this set of 
requirements than those of currently available platforms. 
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1 Introduction  

Over the last two decades, the practical inference needs of intelligent agents and 
systems have led the field of automated reasoning to vastly diversify from its roots in 
monotonic deduction. It now also encompasses abduction, default reasoning, 
inheritance, belief revision, belief update, planning, constraint solving, optimization, 
induction and analogy. Many specialized methods are now available to efficiently 
implement specific subclasses of these tasks in conjunction with some specific 
knowledge representation languages. These languages vary in terms of their two 
commitments, epistemological (e.g., logical, plausibilistic, or probabilistic) and 
ontological (e.g., propositional, first-order relational, first-order object-oriented, high-
order relational or high-order object-oriented) [Russell and Norvig, 03]. This diversity 
in tasks, methods and languages inhibits pervasive embedding of automated reasoning 
functionalities in applications. It confuses the development teams of most applications 
who generally have a sparse background in automated reasoning and it seems to 
prevent cost-cutting reuse of a single generic platform for many such purposes. 
However, a way out of this dilemma is suggested by the fact that whether using 
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propositional [WebCHR 07]), first-order relational [WebCHR 07]) or object-oriented 
[Ait-Kaci and Nasr, 86] representations with either logical [Frühwirth, 94], 
plausibilistic [Jim and Thielscher, 06] or probabilistic [Costa et al, 03] semantics, the 
reasoning tasks of deduction [WebCHR 07]), abduction [Abdennadher S., 01], default 
reasoning [Abdennadher S., 01], inheritance [Ait-Kaci and Nasr, 86.], belief revision 
[Jim and Thielscher, 06], belief update [Thielscher, 02] and planning [Thielscher, 02] 
have now all being reformulated as special cases of constraint solving. An adequate 
Constraint Programming Platform (CPP) could thus be successfully reused as an 
all subsuming engine to implement and seamlessly integrate those diverse tasks, 
methods, and languages [Robin and Vitorino, 06].  

In this paper, after providing some background on constraint programming 
(Section 2), we first identify the key requirements of CPP platforms (Section 3). We 
then review the software architectures of the current CPP and evaluate them with 
respect to those requirements (Section 4). We then propose a new CPP architecture 
based on component, aspect and object models, as well as rewrite rules for constraint 
handling and model transformation, and we argue that it better fulfils the CPP 
requirements than current CPP architectures (Section 5). We conclude by quickly 
describing the current status and next steps in our implementation of this architecture 
(Section 6). 

2 Constraint Programming 

Constraint programming is the cutting-edge IT to automate and optimize tasks such as 
resource allocation, scheduling, routing, layout and design verification in the most 
diverse industries. A constraint program models an application domain using a 
subset of first-order logic restricted to atom conjunctions. Each model consists of 

a set of variables X1, ..., Xn;
for each variable Xi, a corresponding domain Di of possible values (i.e.,
constant symbols), e.g., {red, green, blue} or floating point numbers; 
for each domain Di, a set of functions fi

1, ... fi
o with domain and range in Di

(e.g., mix, +, **); 
a logical formula F of the form C1  ...  Cp where each Ci is an atom that 
relates terms formed from variables, constants and functions (e.g., X1  X2,
X1 = blue, X1 = mix(red,blue), X1  2.0000 * 3.1416 * X2). 

Each Ci in F is called a constraint because it restricts the possible value 
combinations of the  variables X1, ... Xn that occur in it within their respective 
domains D1, ... Dn. A solver takes as input a constraint problem instance Pi in the form 
of a conjunctive formula Fi. If Pi is exactly constrained (e.g., X,Y,Z N  X+Y=Z 
1 X  X Z  X Y  Y Z  Z 6) the solver returns as output a formula Fo in 
determined solved form (i.e., of the form X1 = v1 ...  Xn = vn with Xis variables and 
vis constants) that is logically equivalent to Fi (e.g., X=2  Y=3  Z=5). If Pi is 
overconstrained, (e.g., X,Y,Z N  X+Y=Z  1 X  X Z  X Y  Y Z  Z 4) the 
solver returns false. If Pi is underconstrained (e.g., X,Y,Z N  X+Y=Z  1 X
X Z  X Y  Y Z  Z 7)  the solver returns a formula Fo logically equivalent to Fi

but syntactically simpler (e.g., (X=2  3 Y  Y  4    5  Z  Z 6  Z = Y + 2), or 
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(X=2  ((Y=3  Z=5)  Y=4  Z=6). Key simplicity factors include fewer 
constraints, fewer variables, shorter atoms, higher proportion of atoms in determined 
solved form or (undetermined) solved form (i.e., of the form X1 = t1 ...  Xn = tn
where each Xi is a variable and each ti a term not containing occurrences of  
X1, ..., Xi-1, Xi+1, ..., Xn). Figure 1 gives a simple illustrative example of a constraint 
solving task and solution. It is an instance of the classic map coloring problem: how 
to allocate variables representing regions on a map to values from a finite domain of 
colors, such that any two neighboring regions are allocated different colors?  
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R3 R4 R5

R1

r b g

R7

r b g

r b g

r b g r b g r b g

r b g

Solving Task as Logic Formula:
R1 {r,b,g} R2 {r,b,g} R3 {r,b,g} 
R4 {r,b,g} R5 {r,b,g} R6 {r,b,g} 
R7 {r,b,g} R1 R2 R1 R3 
R1 R4 R1 R7 R2 R6 R3 R7
R4 R5 R4 R7  R5 R6 R5 R7

One Solving Solution as Logic Formula:
R1=g R2=b R3=r R4=r R5=g R6=r R7=b
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R1 {r,b,g} R2 {r,b,g} R3 {r,b,g} 
R4 {r,b,g} R5 {r,b,g} R6 {r,b,g} 
R7 {r,b,g} R1 R2 R1 R3 
R1 R4 R1 R7 R2 R6 R3 R7
R4 R5 R4 R7  R5 R6 R5 R7

One Solving Solution as Logic Formula:
R1=g R2=b R3=r R4=r R5=g R6=r R7=b

Figure 1: Constraint Solving Task and Solution Example 

Figure 1 shows the problem and one solution for it in two formulations: a logic 
formulation on the left hand side, and a constraint graph formulation on the right-hand 
side. This graph contains one node per variable/region and one arc per neighboring 
constraint. Above or below each node, the corresponding variable’s domain is shown 
(with r, b, and g respectively abbreviating red, blue and green). One color 
allocation solution is indicated by the grey box in each domain.  

A CPP integrates the constraint task modeling syntax with that of a general 
purpose host programming language.  It typically works by interleaving three main 
subtasks: 

simplifying a set of constraint into a simpler equivalent, e.g., simplifying 
R  {r,b}  R = g into false, or simplifying R  {r,b,g}  R  {r,b} into 
R  {r,b}; 
propagating some logical consequences of a set of constraint thus making 
explicit some constraints that they entail, e.g., propagating  R1  {r,b,g} 
R1  R2  R2 = r   R1  R3   R2 =  b into R1 = g; 
searching the space of possible variable combination values, e.g., searching 
in R1   {r,b}  R2  {r,b} given R1  R2 to find  (R1 = r  R2 = b) 
(R1 = b  R2 = r). 
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3 Constraint Programming Platforms Requirements 
A thoughtful engineering process chooses between various architectural designs based 
on a prior identification of the key functional and non-functional requirements to 
make the software under construction a most practical and useful tool. What are such 
requirements for a CPP? 

The first requirement is to provide an expressive input task modeling language.
This is clearly decisive for the CPP's versatility and its ability to fulfill the promise of 
an integrated platform for the diverse automated reasoning needs of an application. 
Less obvious, is that it is also crucial for its overall efficiency, for the key of efficient 
solving often lays as much on the way the task in modeled as it does on the chosen 
solving method and how this method is implemented. A platform with a very limited 
task modeling language does not allow for many logically equivalent formulations of 
the same task. For many tasks, it thus risks of not supporting any of the formulations 
that lend themselves to efficient solving. 

For the same versatility and overall efficiency reasons, the second key requirement 
is to provide many solving method customization and combination facilities. This 
allows exploiting the peculiarities of subtly different solving task sub-classes, which 
often results in dramatic efficiency gains for many task instances.  

A third requirement in the overall efficiency puzzle is efficient implementation
techniques for the available solving methods. It is somewhat conflicting with the first 
two since raising expressiveness often has the undesirable side-effect of increasing 
theoretical worst-case complexity, while method tweaking, mixing and matching 
facilities often brings some configuration and assembly run-time overhead. 

A fourth requirement is solution adaptation. Consider two task instances T1 and 
T2 that differ only by a few more and/or a few less constraints. Once it has computed 
a solution Si

1 for T1, an adaptive solver is able to reuse Si
1 so as to (a) find a solution 

Sa
2 for T2 that is minimally distant from Si

1 and (b) find it more quickly than a 
solution Ss

2 computed from scratch. A non-adaptive solver can only solve T2 from 
scratch which may lead to a solution Ss

2 that has very few common components with 
Si

1. In the practical application context, a large distance between Ss
2 and Si

1 often 
makes Ss

2 unusable. For example, imagine than Si
1 was an initial task schedule for a 

large engineering project that requires adjustment due to execution delays. A schedule 
Ss

2 computed from scratch for the uncompleted tasks may well promise a shorter 
revised delivery date estimate than that of an adaptive schedule Sa

2 which additionally 
strives for stability from the original Si

1. But if Ss
2 allocates resources in a vastly 

different way than Si
1 for the uncompleted tasks, the associated allocation reshuffling 

overhead cost generally far outweigh the gains of a shorter delivery date. Most 
available CPP do not provide adaptive solving.  

The fifth key requirement of a practical CPP is a user-friendly, detailed solution 
explanation facility. Consider again the examples above, where a CPP propose 
alternative rescheduling plans for a late several billion dollars engineering project of a 
company flagship product. With so much at stake, adopting one of these alternatives 
requires the CPP to provide explanations that justify its discarding millions of 
possible others. It also requires to provide a concise summary of the contrasting trade-
offs embodied in two proposed alternative plans. The key challenge for such 
explanations and summaries is to be as directly understandable as possible by the 
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executives with decision making power but no technical constraint solving 
background. 

The sixth key requirement for a practical CPP is seamless integration within a 
variety of applications. Today, most of them are developed using Component-based 
Object-oriented Imperative Platform (COIP) such as EJB or .Net. There are two 
main reasons for this. The first is that these frameworks provide as consolidated built-
ins the application independent services that constitute most of the running code of 
most information systems. These built-ins include high level API for database and 
GUI development, transparent secure persistence, scalable concurrent transaction 
handling and distributed deployment (including fully automated code generation to 
publish the various system functionalities as web services). The second is that the 
most advanced full life cycle software engineering methods and supporting CASE 
tools are based on the COI paradigm. This allows full integration of these CASE tools 
with COIP IDE and brings high gains in software productivity and quality. Thus, in 
today's practice, seamless integration of a CPP in applications, means encapsulating it 
as a Java or .Net component. 

4 Constraint Programming Platform Architectures 
Having defined the requirement of practical CPP, let us now review the various 
software architectures of available CPP and evaluate how they meet each of these 
requirements. 

4.1 Component-based Object-oriented Imperative Platform API 

The simplest CPP architecture is a library of classes or a component framework in a 
COIP, as summarized in Figure 2.  

ca Handling
COIP Class ...... ...cb Handling

COIP Class 

COIP Solver for ..., ca,..., cb ,...

COIP API Call: {... && ca && ... && cb && ...}

ca Handling
COIP Class 
ca Handling
COIP Class ...... ...cb Handling

COIP Class 
cb Handling
COIP Class 

COIP Solver for ..., ca,..., cb ,...

COIP API Call: {... && ca && ... && cb && ...}

Figure 2: COIP API CPP 

This is the case for example of the Java firstcs library [Wolf, 06] and the commercial 
C++ ILOG Solver [Puget, 94]. CP with such COIP consists in writing an object-
oriented program that uses the CP API to first create variables in the domains built in 
the API, then create constraints among these variables for which solvers are built in 
the API and finally call the primitive operations for constraint propagation and finite 
domain combinatorial search. These primitive operations process the variable and 
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constraint objects created by the previous calls which together defined the constraint 
solving task. They return a collection of solution objects for that task.  

The first weak point of this architecture is to provide the least expressive 
constraint task modeling language: a restriction of the one described in Section 2, 
with the constraints, functions and constants all from the closed, fixed set
implemented by the class library. Another drawback of the COIP architecture is its 
poor customizing facility, which is possible only through time-consuming low-level 
imperative code alterations. A COIP API provides some low-cost method 
combination facilities through component assembly. But the generation of solving 
step justifications for adaptation and explanations are cross-cutting concerns that 
cannot be encapsulated as separate components. To the best of our knowledge, there 
is neither an aspect-oriented nor comprehensively adaptive COIP API available to 
date. The main strengths of the COIP API architecture are implementation efficiency 
for the fixed set of available methods, seamless constraint solving services integration 
in application as components or classes, and the availability of COIP IDE and GUI 
development API. 

The COIP API architecture 
represents the solving tasks procedurally by embedding API operation calls 
inside a special purpose COIP program; 
structures the solving methods declaratively as components and objects, but 
represents its behavioral details procedurally as operations; 
deploys the code as compiled components and objects; 
uses a compiling method that is generally structured declaratively as objects, 
but represented in details procedurally as operations. 

4.2 Prolog + Procedural Libraries 

The most widely used CPP architecture is the so-called parametric Constraint Logic 
Programming scheme CLP(D1,...,Dq) [Marriott and Stuckey, 98]. The task modeling 
language of CLP extends that of Section 2 with the equivalence and disjunction 
connectives and with arbitrary symbolic atoms. A CLP(D1, ..., Dn) program consists 
of Horn rules of the form: H :-  G1 ,..., Gr. The head H is an arbitrary first-order 
symbolic atom, and each goal Gi is either a symbolic atom (which appears as head in 
another rule) or a constraint atom (which does not appear as head in another rule) 
from a fixed set of built-ins that relate terms formed from functions and constants of a 
given domain Di. The goal conjunction is called the body of the rule. Under CLP's 
closed-world assumption [Russell and Norvig, 03], the logical semantics of each rule 
subset sharing the same head, {H :-  G1

1,..., Gr
1., ...,  H :-  G1

s,..., Gt
s.}, is  

H  (G1
1 ...  Gr

1) ...  (G1
s ...  Gt

s). The overall CLP program semantics is the 
conjunction of these equivalences. This extended expressivity allows modeling 
complex domain knowledge with high-level concepts declaratively defined from 
built-in constraints using Horn rules. Since these rules can be recursive and can 
contain function symbols, CLP provides a Turing-complete declarative constraint 
modeling language. It also provides a constraint query language: queries are simply 
headless rules. In CLP parlance, the task models and queries that a COIP API permits 
to express correspond to headless rules containing only built-in constraint atoms. 
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The first internal CPP architecture following the CLP(D1,...,Dq) scheme is shown 
in Figure 3. 

CLP Engine

Procedural Library Lb
- Solver for cb

Procedural Library Ld
- Solver for cd

Prolog Engine:
- CLP Search
- Solver for ..., sc, se, ...

CLP Rules:  ...
ha :- ..., sc ,..., cd ,... .
sc :- ..., se ,..., cf ,... .
...               CLP Query: ? ..., ha, ,..., cb ,... .

...... ...

CLP Engine

Procedural Library Lb
- Solver for cb

Procedural Library Ld
- Solver for cd

Prolog Engine:
- CLP Search
- Solver for ..., sc, se, ...

CLP Rules:  ...
ha :- ..., sc ,..., cd ,... .
sc :- ..., se ,..., cf ,... .
...               CLP Query: ? ..., ha, ,..., cb ,... .CLP Query: ? ..., ha, ,..., cb ,... .

...... ...

Figure 3: Prolog with Procedural Solver Libraries CPP. 

 This architecture consists of n+1 components: a Prolog engine and n specialized 
library, L1, ..., Lq, one for each domain Di. Each library implements in a low-level 
imperative language (generally C or C++) fixed constraint simplification and 
propagation algorithms and heuristics, fine-tuned to the built-in constraints over Di
terms. The Prolog engine provides the solver for the arbitrary symbolic atoms, as well 
as a generic Chronological Backtracking (CBT) to search valid value combinations 
from underconstrained finite domains not reducible to singletons through 
simplification and propagation.  Most CLP engines are simple extensions of backward 
chaining Prolog engines that upon encountering a constraint goal Ci of domain Di 
adds it to a constraint store of the form C1  ...  Cu and calls the imperative library 
for Di to solve the updated store. If the store simplifies to false, the engine 
backtracks to the previous goal. Otherwise, it proceeds to the next goal. Data is 
exchanged between the solving library and the Prolog engine through instantiations of 
logical variables shared among the rule-defined goals and the built-in constraint goals.   

Today, most Prolog platforms include some set of procedural libraries for CLP. 
This is the case in particular of SWI Prolog [SWI 07], XSB Prolog [XSB 07], YAP 
Prolog [YAP 07], SICStus Prolog [SICStus 07], as well as the CHIP [CHIP, 07] 
ECLiPSe [ECLiPSe 07] CLP platforms. Beyond task model expressiveness, the other 
strong point of the CLP Scheme is its efficient implementation, combining special 
purpose procedures with general purpose compiled Prolog code. As for weak points, 
the first is method customization and combination that requires changing low-level 
imperative library code that is not component-based and often not even object-
oriented. The other weaknesses of the CLP scheme are inherited from Prolog: (a) no 
adaptation, (b) verbose, reasoning trace rarely presented in user-friendly GUIs 
supporting browsing at multiple abstraction levels, and (c) extremely difficult 
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integration within applications for lack of components, interfaces, encapsulation, 
concurrent execution, and standard API for databases and GUI. More often than not, 
CLP engines only offer brittle bridges to C, C++ or more rarely Java as sole mean of 
integration. The wide, conceptual impedance mismatch between the logic 
programming and COI paradigms constitutes in itself a serious integration barrier.  

The Prolog + Library architecture 
represents the solving task declaratively by CLP Horn rules; 
represents the solving method in part declaratively as CLP Horn rule and in 
part procedurally as imperative libraries; 
deploys the code as a rules to be applied by a CLP engine which is accessible 
via programming language bridges with no access to the embedded 
procedural solvers; 
uses a compiling method that are declarative as Horn rules for the Prolog 
engine but procedural for the constraint libraries.  

4.3 Prolog + CHR 

Constraint Handling Rules (CHR) [Frühwirth, 94] was initially conceived to bring 
rapid method customization and combination to the CLP scheme by making it fully 
rule-based. The idea is to substitute by a CHR base each procedural built-in solver of 
a CLP engine. The task modeling language of Prolog + CHR solver remains the same 
than in the Prolog + Library approach, since CHR are only used to declaratively 
define solving methods and not tasks. A CHR program is a set of constraint 
simplification rules, which are conditional rewrite rules of the form, 
S1 ,..., Sa <=> G1 ,.., Gb | B1 ,..., Bc, and a set of constraint propagation rules, which are 
guarded production rules of the form: P1 ,..., Pd ==> G1 ,.., Ge | B1 ,..., Bf. Each Si, Pi,
Gi and Bi is a constraint atom. The Sis and Pis are called heads, the Gis guards and 
the Bis goals. A goal conjunction is called a body. Constraint atoms that appear in a 
CHR head can only appear in other CHR heads and in CLP rule goals. They are called 
Rule Defined Constraint (RDC) atoms to distinguish them from Built-In 
Constraint (BIC) atoms that can appear only as guards and goals in CHR and only as 
head of Prolog rules that contain no constraint atoms in their bodies. Both kinds of 
constraint atoms can appear in CHR and CLP rule bodies. The logical semantics of 
simplification and propagation rules are G1 ...  Gb  (S1 ...  Sa  B1 ...  Bc)
and G1 ...  Ge  (P1 ...  Pd  B1 ...  Bf) respectively. A CHR engine maintains 
a constraint store. Operationally, a rule fires when all its heads match against some 
RDC in the store, while its guards (together with the logical variable bindings 
resulting from the match) are entailed by the BIC in the store. A fired CHR rule adds 
its goals to the store. In addition, a fired simplification rules also deletes its heads 
from the store. A Prolog + CHR engine proceeds as a Prolog + Library engine, except 
that constraints are solved by forward chaining CHR rules instead of by calling a 
library procedure. CHR forward chaining stops when the store simplifies to false or 
when it reaches a fixed point, i.e., when no applicable rules can further simplify the 
store nor add new constraints to it. 
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As shown in Figure 4, Prolog plays multiple roles in the Prolog + CHR CPP 
architecture.

Figure 4: Prolog with CHR CPP Architecture. 

First it solves the arbitrary symbolic constraints of the CLP model. Second, its 
built-in CBT search is reused to search finite domains that cannot be entirely reduced 
through CHR simplifications and propagations. Third, it is used as host platform to 
implement the CHR built-in constraints. Fourth, its built-in unification is reused to 
check the guard entailment precondition to the firing of each CHR rule.  

Adding and altering CHR allows one to rapidly customize, extend, mix and match 
various solving methods. There are two main options for the CHR engine: it can 
interpret the CHR, or it can compile them into imperative style Prolog rules [Holzbaur 
and Frühwirth, 98]. These Prolog rules (together with the application CLP rules and 
the Prolog rules that define the CHR built-ins) are then in compiled to execution 
platform native code, through an intermediate level of CLP virtual machine code. The 
Prolog + CHR approach share all the adaptation, explanation and integration 
weaknesses of the Prolog + Library approach.  

The Prolog + CHR architecture 
represents the solving task declaratively by CLP Horn rules; 
represents the solving method declaratively by CHR conditional rewrite rules 
and Prolog Horn rules; 
deploys the code as a hybrid CLP, CHR, Prolog rule base processed by a 
CLP-CHR engine which is accessible from an application via programming 
language bridges; 
uses Prolog rules to declaratively compile the CLP, CHR and Prolog rules 
into a CLP virtual machine code and then from such intermediate code to 
native code. 

CLP Engine Prolog Engine:
- CLP Search
- Solver for ...,sg, gh,...
- CHR Guard Entailment

CHR Engine:
- Simplification
- Propagation

CHR solver for cb: ...
..., cb ,... <=> ..., gi ,... | ..., bj ,... .
..., cb ,... ==> ..., gk ,... | ..., bl ,... .
...                   

CHR solver for cd: ...
..., cd ,... <=> ..., gm ,... | ..., bn ,... .
..., cd ,... ==> ..., go ,... | ..., bp ,... .
...                   

CLP Rules:  ...
ha :- ..., sc ,..., cd ,... .
sc :- ..., se,..., cf ,... .
...           CLP Query: ? ..., ha, ,..., cb ,... .

Prolog Rules:  ...
gi :- ..., sq ,... .
...                   

... ... ...

...

CLP Engine Prolog Engine:
- CLP Search
- Solver for ...,sg, gh,...
- CHR Guard Entailment

CHR Engine:
- Simplification
- Propagation

CHR solver for cb: ...
..., cb ,... <=> ..., gi ,... | ..., bj ,... .
..., cb ,... ==> ..., gk ,... | ..., bl ,... .
...                   

CHR solver for cd: ...
..., cd ,... <=> ..., gm ,... | ..., bn ,... .
..., cd ,... ==> ..., go ,... | ..., bp ,... .
...                   

CLP Rules:  ...
ha :- ..., sc ,..., cd ,... .
sc :- ..., se,..., cf ,... .
...           

Prolog Rules:  ...
gi :- ..., sq ,... .
...                   CLP Query: ? ..., ha, ,..., cb ,... .CLP Query: ? ..., ha, ,..., cb ,... .

...

... ... ...
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4.4 Prolog CHR

CHR [Abdennadher S., 01] extends CHR with disjunctive bodies, i.e., allowing rules 
of the form  

S1 ,..., Sa <=> G1 ,.., Gb | (B1
1,..., Bc

1) ;...; (B1
g ,..., Bh

g)  and  
P1 ,..., Pd ==> G1 ,.., Ge | (B1

1 ,..., Bi
1) ;...; (B1

j ,..., Bk
j)

with the expected corresponding logical semantics 

G1 ... Gb  (S1 ... Sa  (B1
1 ... Bc

1) ... (B1
g ... Bh

g) and
G1 ... Ge  (P1 ... Pd  (B1

1 ... Bi
1) ... (B1

j ... Bk
j).

Operationally, disjunctive bodies introduce the need for backtracking search in the 
CHR engine. When a disjunctive rule R triggers, one of its alternative bodies (Bl

m ,..., 
Bl

n) is chosen to be added to the constraint store and the engine then continues CHR 
forward chaining. However, if at a latter point, the store simplifies to false, instead 
of terminating, the CHR  engine then backtracks to (Bl

m,...,Bl
n) and deletes it from 

store together with all the constraints that were subsequently added (directly or 
indirectly) based on the its presence in the store. It then adds to the store the next 
alternative body (Bo

p,...,Bo
q) in R and resumes rule forward chaining. CHR  not only 

extends CHR with disjunctive bodies, but it also extends Prolog with multiple heads 
[Abdennadher S., 01]. Recall from Section 4.2 that the semantics of Prolog rules that 
share the same head is: 

H  (G1
1 ...  Gr

1) ...  (G1
s ...  Gt

s).  

This precisely matches the semantics of the single head, CHR  rule: H <=> (G1
1,..., 

Gr
1) ;...; (G1

s ,..., Gt
s). Thus, CHR  is a single language that is more expressive to 

model constraint tasks than CLP and more expressive to model constraint methods
than CHR. Using CHR  instead of CLP to model constraint tasks provides the power 
of full first order logic to define complex constraints from a minimum set of very 
primitive ones like true, false and  = (syntactic equality between first order logic 
terms). Any first order logic formula F can be converted to a semantically equivalent 
formula N in the implicative normal form P1 ...  Pn  B1 ...  Bo which is precisely 
the semantics of a guardless CHR  propagation rule. 

All currently available implementations of CHR  are Prolog-based. Their 
architecture is shown in Figure 5. Similarly to the hybrid Prolog + CHR architecture, 
some implementations interpret the CHR  rules, while others compile them into 
imperative style Prolog rules. While this architecture uses CHR  instead of CLP rules 
to model the solving task and to implement the arbitrary symbolic constraints, it 
nevertheless still relies on Prolog rules to define the CHR  built-in constraints and on 
Prolog's naive CBT search to process disjunctive bodies and underconstrained finite 
domains. This makes them significantly slower than procedural libraries that rely on 
more efficient methods for these tasks such as Conflict-Directed Backjumping
(CDBJ). This also makes them inherit the other already mentioned weaknesses of the 
Prolog-based CPP architectures. 
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Figure 4: The Prolog with CHR CPP Architecture. 

The Prolog CHR   architecture 
represents the solving task declaratively by CHR  disjunctive conditional 
rewrite rules; 
represents the solving method declaratively by CHR  disjunctive conditional 
rewrite rules and Prolog Horn rules; 
deploys the code as a hybrid CHR , Prolog rule base processed by a CLP-
CHR engine which is accessible from an application via programming 
language bridges; 
uses Prolog rules to declaratively compile the CHR  and Prolog rules into a 
CLP virtual machine code and then from such intermediate code to native 
code.  

Prolog engines SICStus [SICStus, 07] and ECLiPse [ECLiPSe CPS, 07] offer all 
three Prolog-based CPP architectures. 

4.5 Compiling CHR to COIP API 

This most recent CPP architecture, shown in Figure 6, attempts to combine the 
respective strengths of the COIP API and Prolog + CHR architectures by 

representing the solving task declaratively by CHR conditional rewrite rules; 
representing the solving method in part declaratively by CHR conditional 
rewrite rules and in part procedurally by COIP class operations; 
deploying the code as COIP objects. 
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Figure 5: The CHR to COIP Compiling CPP Architecture. 

These deployed objects result from a two stage compilation scheme: (a) 
compiling the CHR to COIP source code, followed by (b) compiling the resulting 
source code, together with the COIP classes that implement the CHR built-in 
constraint handlers, into deployable code. The compiling method is declaratively 
structured as COIP classes but its details are procedurally represented as operations.  
In this approach, a COIP such as Java substitutes Prolog as the underlying host 
language for the CHR [KULeuven, 07], [Wolf, 06]. This requires re-implementing 
from scratch in the COIP services that were provided by reusing Prolog built-ins: 
unification to check the CHR guard entailment condition and CBT for finite domain 
search. While requiring more work, this also creates new opportunities such as relying 
on more efficient specialized algorithms for these tasks e.g., CDBJ instead of CBT. It 
also allows incorporating solution adaptation techniques such as Justification-Based 
Truth-Maintenance (JTMS) [Wolf, 00], where each constraint in the store is kept 
with the indexes of the rule which firing inserted the constraint in the store and of the 
justification for such firing, namely the unique identifiers of the RDC that matched 
the rule heads and the matching equations and BIC that entailed the rule guards. For 
example, firing the rule: i@ c(X,Y)j  d(X)k ==> (X = a)m | e(Y)n, where i is the rule 
name and j, k, m and n are the respective unique identifiers of the rule's constraints, 
results in adding to the RDC the constraint e(Y)n with the justification 
{i, j, k, m}. The Java CHR engines JCHR [KULeuven, 07] and DJCHR [Wolf, 06] 
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follow this architecture, with the latter incorporating a JTMS scheme to provide 
efficient solution adaptation. As interface, they only provide a Java API. The lack of 
an interactive GUI makes them unpractical for rapid testing and application-specific 
customization and combination of solving methods. 

5 A New Architecture for Constraint Programming Platforms 

In the previous section, we have seen that all CPP proposed so far only very partially 
fulfill the six key requirements for a practical CPP. In this section, we propose a new 
CPP architecture that aims to simultaneously fulfill them all. The first key idea is to 
integrate in synergy three cutting-edge reuse fostering software architecture concepts: 
Component-Based Architecture, Aspect-Oriented Architecture and Model-Driven 
Architecture. In what follows, we first briefly introduce each of these concepts, before 
explaining how they can be combined and put into practice using currently available 
CASE tools.  We then list seven principles to apply the combination of these three 
general software architecture concepts to our specific concern of conceiving a 
software architecture for a practical CPP that satisfies the six requirements for such a 
platform. These principles explain how to integrate these three software architecture 
concepts together with the most powerful CP concepts that we identified in section 4. 

5.1 Cutting-Edge Reuse Fostering Software Architecture Concepts 

To achieve low-cost portability to multiple execution platforms and automate more 
development process sub-tasks, a Model-Driven Architecture (MDA) [Stahl and 
Völter, 06] switches the software engineering focus away from low-level source code 
towards high-level models, metamodels (i.e., models of modeling languages) and 
model transformations that automatically map one kind of model into another. It 
prescribes the construction of a fully refined Platform Independent Model (PIM)
together with two sets of model transformation rules to translate the PIM into source 
code via an intermediate Platform Specific Model (PSM).

To achieve low-cost evolution, a Component-Based MDA [Atkinson et al, 02] 
structures the PIM, PSM and source code as assemblies of reusable components, each 
one clearly separating the services interfaces that it provides to and requires from 
other components from its encapsulated realization of these services (itself potentially 
a recursive sub-assembly). 
To achieve separation and reuse of cross-cutting concerns (i.e., bits of processing 
that cannot be satisfactorily encapsulated in a single component following any 
possible assembly decomposition), Aspect-Oriented MDA [Stahl and Völter, 06] 
prescribes to model such concerns as PIM to PIM model transformations that weave 
the corresponding additional model bits at appropriate locations scattered throughout 
the main concern PIM.  

Today, a component-based MDA can be fully specified using the UML2 standard 
[Eriksson, Penker et al, 04] for it incorporates (a) a platform independent component 
metamodel, (b) the high level object-oriented functional constraint language OCL2 
[Warmer and Kleppe, 03] to fully detail, constraint and query UML2 models, and (c) 
the Profile mechanism to define, in UML2 itself, UML2 extensions with platform 
specific constructs for diverse PSM. Model transformations for PIM to PIM aspect 
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weaving and PIM to PSM to code translation can be specified using the rule-based, 
hybrid declarative-procedural Atlas Transformation Language (ATL) [ATL, 06], 
which reuses OCL2 in the left-hand and right-hand sides of object-oriented model 
rewrite rules. These rules are applied by the ATL Development Tool (ATLDT), 
conveniently deployed as an Eclipse Plug-in [Eclipse, 07].  In a Component-Based 
Aspect-Oriented Model-Driven Architecture (CBAOMDA), only the core concern 
PIM and the model transformations are hand-coded. The other models and the code 
are automatically generated from the core concern PIM by applying the 
transformation pipeline to it. 

5.2 Software Architecture Principles for a Practical CPP  

The new CPP architecture that we propose is based on seven principles to instantiate 
the general idea of CBAOMDA so as to integrate it with the CP concepts that our 
review of the field revealed as the most promising to fulfill the six key requirements 
of a practical CPP. These principles are the following: 

1. To combine very expressive solving task modeling with rapid method 
customization and combination, use CHR  as an uniform language to 
declaratively represent both the solving task and the solving method
(except for a minimal set of CHR built-in constraint solvers represented by 
Boolean operations of COIP classes). 

2. To combine solution adaptation with solution explanation generation, 
incorporate the JTMS techniques of DJCHR and extend them to deal with 
disjunctive CHR.

3. To provide rapid prototyping deploy the CHR engine as an Eclipse plug-in
[Eclipse, 07] with a GUI to interactively submit queries and inspect 
solution explanations at various levels of details. 

4. To combine efficient solving implementation techniques with seamless 
integration in applications, build the first CHR  to COIP compiler.

5. To go one extra step towards reuse and extensibility, follow a an object-
oriented, component-based, model-driven architecture for the overall 
CHR  engine. 

6. To go one extra step towards easy to customize declarative code, define the 
CHR  compiler as a base of object-oriented model transformation rewrite 
rules.

7. To go one extra step towards separation of concerns, represent the solving 
explanation generation processing models as orthogonal aspects separate 
from the core solving model and incorporated them by using weaving model 
transformations. 
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5.3 An Adaptive CHR  to COIP Compiling CBAOMDA for CPP 

The high-level blueprint of the new constraint platform architecture that we propose is 
given in Figure 7 where the hand-coded elements are highlighted in gray while those 
automatically generated through model transformation rules are in white.  

As an MDA, it represents the system at four layers of abstractions: the PIM, the 
PSM, the source code and the deployed code. This last layer is omitted from Figure 7 
for conciseness reasons. Each layer is entirely generated from the highest layer in a 
fully automated way. First the PSM is fully generated from the PIM by applying ATL 
model transformation rules using ATL-DT. Then, the source code is fully generated 
from the PSM by ATL code generation transformation meta-code. Finally, the 
deployed code is fully generated from the source code by the target COIP compiler 
and deployment IDE. Our architecture thus belongs to the most advanced, fully 
generative, model transformation based MDA. But even as compared to such 
advanced MDA, it further innovates in three ways: 

by dividing the PIM layer into a declarative rule-based sub-layer in CHR
and a procedural object-oriented sub-layer based on UML2 component and 
class diagrams, composite structure diagrams and activity diagrams, all three 
fully annotated by OCL2 constraints;  
by fully automatically generating part of the procedural PIM sub-layer from 
the declarative PIM sub-layer, more specifically by generating the 
procedural UML2/OCL2 constraint handler component model as output of a 
CHR  compiler; 
by implementing this compilation process itself as the application by the 
ATL-DT of a pipeline of three ATL model transformation rule bases. 

The first element of this pipeline transforms the original CHR  base into a 
semantically equivalent base in a restricted core of CHR from which it is simpler to 
generate a semantically equivalent procedural representation. This first element 
includes transformations to axiomatize the disjunctions in the body of a CHR  rule 
into a CHR constraint (e.g., by transforming a body c1; ... ;cn into a constraint 
or(c1,...,cn) where or becomes a constraint symbol and the constraint 
symbols of c1,...,cn become functions symbols.  This allows taking the search 
necessary to deal with disjunctive bodies out of the constraint handler and into a 
separate search component. This separation of orthogonal concerns prevents the 
resulting solver to be limited to a single search strategy hard-wired in the constraint 
handlers. Instead, various search strategies can be assembled with the same handlers. 
The first element of the compiler pipelines also includes full CHR to core CHR 
transformations to simplify subsequent transformation of this core into a procedural 
handler model. One such transformation is to shift the constants in the heads as new 
guard equations to allow for a simpler, uniform procedural rule head matching 
process (e.g., transforming the CHR c(a,Y) <=> true into the operationally 
equivalent CHR c(X,Y) <=> X = a | true).
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Figure 6: Our New CHR  to COIP Compiling CBAOMDA for CPP. 
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The second element of the pipeline in the CHR  to UML2 compiler transforms 
the core CHR into a procedural UML2 model. This model however concerns itself 
exclusively with efficiently solving constraints in an adaptive manner by reusing the 
JTMS techniques of DJCHR. It ignores the orthogonal concern of generating a trace 
of this adaptive solving process to be used for reasoning explanation purposes. This 
orthogonal concern is represented as a PIM level aspect. It is inserted onto the UML2 
procedural constraint handler PIM by the third element of the pipeline that consists of 
transformations that weave the UML2 elements modeling the reasoning trace 
generation activity into specific point cuts scattered among the UML2 elements 
modeling the constraint handling activity. It makes our architecture aspect-oriented in 
addition to model driven. Finally, our architecture is also component-based: at the 
four procedural layers (PIM, PSM, source code and deployed code), it consists of an 
assembly of four components: 

the constraint handler that encapsulates the constraint simplification and 
propagation techniques; 
the search component needed to process CHR  disjunctions and finite 
domains not reducible to singletons by the handler; 
the adaptive entailment component to determine which CHR  can be fired 
given the current state of the constraint store; 
a GUI to type in queries with which to initialize the store and provide 
explanation for the solver answer and reasoning. 

This innovative architecture reconciles: 
expressive solving task modeling in CHR ;
rapid method customization and combination in CHR ;
efficient method implementation by compiling CHR  onto procedural COIP 
classes which are then compiled to bytecode or native code; 
solution adaptation by incorporating JTMS; 
solution explanation by generating a solving trace exploiting the JTMS 
justifications and featuring a trace browsing GUI; 
seamless integration in application by providing the solving services as a 
COIP interface. 

It thus promises to be the first to fulfill all six key requirements of a CPP.   
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Table 1 sums up how each CPP architecture fulfils these requirements. 

COIP
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Handler
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Prolog
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Prolog
CHR

CHR to 
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Compiler 
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* ** ** *** ** ***

Method
Customization
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Efficient
Implement. 

*** ** * * * **

Solution
Adaptation

* * * * *** ***

Solution
Explanation 
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Seamless 
Integration

** * * * ** ***

Table 1: Compared fulfillment of CPP requirements by CPP architectures. 

6 Conclusion and Future Work 

In this paper, we identified six key requirements for a versatile and practical CPP. We 
used these requirements to critically review five prominent architectures among 
currently available CPP. We showed that each of them fails to adequately fulfill 
roughly half of these requirements. There is thus much room for improvement in the 
field of CPP architecture. To contribute to such improvement we proposed an 
innovative CPP architecture that 

integrates in synergy rule-based, component-based, object-oriented, aspect-
oriented and model-driven architectural principles; 
compiles CHR  rules into COIP source code, in several stages, using UML2 
as an intermediate language; 
incorporates JTMS techniques to support efficient solution adaptation and 
explanation; 
includes a GUI to pass as query input a constraint task instance and browse 
the generated justification-based explanation at various levels of detail; 
also includes an API to seamlessly provide the same query, solving and 
explanation facility to external software. 

We discussed why such architecture is the first one ever proposed with the 
potential to fulfill all key six requirements of a CPP. Confirming such potential will 
require implementing a running prototype of the architecture, measuring its efficiency 
against state of the art solvers on benchmark tasks and integrating it in within various 
practical applications for usability validation. We now stand midway towards the first 
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of these goals. We have developed in UML2/OCL2 the fully refined PIM of an 
adaptive guard entailment component, as well as the ATL rules to compile a CHR
base into a constraint handler PIM in UML2/OCL2. The detail of this compiler is the 
object of another publication currently in preparation. The pieces still missing from 
puzzle are the PIM for the search and GUI components, as well as the ATL rules for 
the PIM to PSM and PSM to source code translations. Together, our innovative 
architecture and its implementation will make practical contributions to several fields 
beyond constraint programming.  To automated reasoning, it will provide the first 
scalable yet highly versatile base component on top of which to assemble and 
integrate deduction, abduction, default reasoning, inheritance, belief revision, belief 
update, planning and optimization services. To innovative programming language 
compiler and run-time system engineering, it will show the benefits of the 
component-based, aspect-oriented and model-driven approaches. It will also extend 
the scope of application of these approaches by showing that their practical benefits 
are even greater for cutting edge systems that perform intelligent processing with high 
aggregated value than for the straightforward GUI to database back to GUI 
translations performed by the standard web information systems for which these 
approaches were initially conceived. 
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