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Abstract: Programming laws are a means of stating properties of programming con-
structs and resoning about programs. Also, they can be viewed as a program transfor-
mation tool, being useful to restructure object-oriented programs. Usually the appli-
cation of a programming law is only allowed under the satisfaction of side-conditions.
In this work, we present how the conditions associated to object-oriented program-
ming laws are checked by using Prolog. This is a step towards a tool that allows user
definable refactorings based on the application of programming laws.
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1 Introduction

Object-oriented programming has been acclaimed as a means to obtain software
that is easier to modify than conventional software [Meyer 1997]. Restructuring
an object-oriented program is an activity known as refactoring [Opdyke 1992,
Fowler 1999], allowing us, for instance, to move attributes and methods between
classes or to split a complex class into several ones. These modifications just
change the internal software structure without affecting the software behaviour
as perceived by users. Work on refactoring usually describes the steps used for
program modification in a rather informal way [Fowler 1999, Opdyke 1992].

The refactoring practice usually relies on test and compilation cycles, based
on small changes applied to a program. Works in the direction of formalis-
ing refactorings deal mainly with the identification of conditions that must
be satisfied to guarantee that a change to a program is behaviour preserv-
ing [Opdyke 1992, Roberts 1999]. Opdyke [Opdyke 1992] proposes a set of con-
ditions required for application of refactorings, whereas Roberts [Roberts 1999
introduces postconditions for refactorings, allowing the definition of refactoring
chains. The possibility of defining conditions that must be satisfied to apply a
chain of refactorings is a benefit of the introduction of postconditions.

In our approach, programming laws are the basis for the derivation of refac-
toring rules, besides laws that lead to data refinement of classes [Cornélio 2004].
These laws precisely indicate the modifications that can be done to a pro-
gram, with corresponding proof obligations. Using laws, program development
is justified and documented. In order to deal with the correctness of refac-
torings, in our approach the derivation of a refactoring rule is carried out by
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the use of laws that are themselves proved [Cornélio 2004] against the seman-
tics [Cavalcanti and Naumann 1999, Cavalcanti and Naumann 2000] of our lan-
guage. Here we consider sequential programs and we do not take into account
programs with space and time issues.

In order to apply an object-oriented programming law it is necessary to
check side-conditions to its application or to prove some proof obligations. In
this work we present an application of logic programming to verify conditions
of programming laws, determining whether a law can be applied to a program
or not. Program transformations accomplished by the use of programming laws
preserve program behaviour [Cornélio 2004]. The use of logic programming was
inspired by the JTransformer framework [Rho et al. 2003], a query and transfor-
mation engine for Java source code.

This paper is organised as follows. In Section 2 we present our study language
and object-oriented programming laws. In Section 3, we introduce the structure
of the program fact databases that we use for representing program syntax trees.
In Section 4, we describe how we verify conditions of object-oriented program-
ming laws. We discuss some related work in Section 5. Finally, in Section 6, we
present our conclusions and suggestions for future work.

2 The Language and Laws of Programming

The language we use for our study is called ROOL (an acronym for Refinement
Object-Oriented Language) and is a subset of sequential Java with classes,
inheritance, visibility control for attributes, dynamic binding, and recursion
[Cavalcanti and Naumann 2000]. It allows reasoning about object-oriented pro-
grams and specifications, as both kinds of constructs are mixed in the style of
Morgan’s refinement calculus [Morgan 1994]. The semantics of ROOL is based
on weakest preconditions [Cavalcanti and Naumann 2000]. The imperative con-
structs of ROOL are based on the language of Morgan’s refinement calculus
[Morgan 1994], which is an extension of Dijkstra’s language of guarded com-
mands [Dijkstra 1976].

A program cds e ¢ in ROOL is a sequence of classes cds followed by a
main command c. Classes are declared as in Fig. 1, where we define a class
Account. Classes are related by single inheritance, which is indicated by the
clause extends. The class object is the default superclass of classes. So, the
extends clause could have been omitted in the declaration of Account. The class
Account includes a private attribute named balance; this is indicated by the use
of the pri qualifier. Attributes can also be protected (prot) or public (pub).
ROOL allows only redefinition of methods which are public and can be recursive;
they are defined using procedure abstraction in the form of Back’s parame-
terized commands [Cavalcanti et al. 1999]. A parameterised command can have
the form val z : T e c or res z : T e ¢, which correspond to the call-by-value
and call-by-result parameter passing mechanisms, respectively. For instance, the
method getBalance in Fig. 1 has a result parameter r, whereas setBalance has a
value parameter s. Initialisers are declared by the new clause. In the main pro-
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class Account extends object
pri balance : int;
meth getBalance = (res r :int e r := self.balance)
meth setBalance = (val s : int e self.balance := s)
new = self.balance :=0

end e

var acct : Account e
acct := new Account();
acct.setBalance(10);

end

Figure 1: Example of program in ROOL

gram in Fig. 1, we introduce variable acct of type Account to which we assign
an object of such class.

For writing expressions, ROOL provides typical object-oriented constructs
(Table 1). We assume that z stands for a variable identifier, and f for a built-in
function; self and super have a similar semantics to this and super in Java,
respectively. The type test e is N has the same meaning as in e instanceof N
in Java: it checks whether non-null e has dynamic type N; when e is null, it
evaluates to false. The expression (N)e is a type cast; the result of evaluating
such an expression is the object denoted by e if it belongs to the class N, other-
wise it results in error. Attribute selection e.z results in a run-time error when
e denotes null. The update expression (e1; x : ez) denotes a copy of the object
denoted by e; with the attribute z mapped to a copy of es. If e; is null, the
evaluation of (e1; = : ep) yields error. Indeed, the update expression creates a
new object rather than updating an existing one.

The expressions that can appear on the left-hand side of assignments, as the
target of a method call, and as result arguments constitute a subset Le of Exp.
They are called left-expressions.

lee Le :=lel |self.lel | ((N)le).lel
lel € Lel ==z | lel.x

The predicates of ROOL (Table 1) include expressions of type bool, and for-
mulas of the first-order predicate calculus.

The imperative constructs of ROOL, including the ones related to object-
orientation concepts, are specified in the Table 2. In a specification statement
x : [11,19], x is the frame, and the predicates i1 and 2 are the precondition and
postcondition, respectively. It concisely describes a program that, when executed
in a state that satisfies the precondition, terminates in a state that satisfies the
postcondition, modifying only the variables present in the frame. In a state that
does not satisfy 1, the program z : [¢01, 2] aborts: all behaviours are possible
and nontermination too. The variable x is used to represent both a single variable
and a list of variables; the context should make clear the case.
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e € Exp :=self | super special ‘references’
| null | error
| new N object creation
| @ variable
| f(e) application of built-in function
| eis N type test
| (N)e type cast
| e.x attribute selection
| (e; z: e) update of attribute
Y € Pred ::= e boolean expression
| =
| (Vi o)
|V : T e

c € Com =le:=c¢e multiple assignment
| z: [1)1, 2] specification statement
| pc(e) parameterised command application
| ¢; ¢ sequential composition
| if [Ji @ ¢b; — ¢; fi alternation
|

rec Y o ¢ end | Y recursion, recursive call
| var z : T e ¢ end local variable block
| avar z : T e ¢ end angelic variable block
pc € PCom ::= pds e ¢ parameterisation
| le.m | (N)le).m  method calls
| self.m | super.m
pds € Pds == @ | pd | pd; pds parameter declarations
pde Pd u=valz:T|resz: T

Table 2: Grammar for commands and parameterised commands

For alternation, we use an indexed notation for finite sets of guarded com-
mands. A method in ROOL can use its name in calls to itself in its body. This
is the traditional way to define a recursive method. ROOL also includes the
construct rec Y e ¢ end, which defines a recursive command using the local
name Y. A (recursive) call ¥ to such a command is also considered to be
a command. The iteration command can be defined using a recursive com-
mand. Blocks var z : T e c end and avar z : T e ¢ end introduce local vari-
ables. The former introduces variables that are demonically initialised; their
initial values are arbitrary. The latter introduces variables that are angelically
chosen [Back and von Wright 1998]. This kind of variable is also known as log-
ical constant, logic variable, or abstract variable. In practice, angelic variables
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only appear in specification statements.

As methods are seen as parameterised commands, which can be applied to a
list of arguments, yielding a command, a method call is regarded as the applica-
tion of a parameterised command. A call le.m refers to a method associated to
the object denoted by le. In a method call e;.m(e2), e; must be a left expression.

As we intend to apply object-oriented programming laws as a means to prove
more complex transformations like refactorings, we consider the application of
object-oriented programming laws as two-fold: verification of conditions and pro-
gram transformation itself. Below we present an example of a law. We write ‘(—)’
when some conditions must be satisfied for the application of the law from left
to right. We use ‘(«)’ to indicate the conditions that are necessary for applying
a law from right to left. We use ‘(<) to indicate conditions necessary in both
directions. Conditions are described in the provided clause of laws.

To eliminate a class to which there are no references in a program, we apply
Law 1 {class elimination), from left to right. This application requires that the
name of the class declared in cd; must not be referred to in the whole program.
In order to apply this law from right to left, the name of the class declared in
cdy must be distinct from the name of all existing classes; the superclass that
appears in the declaration cd; is object or is declared in cds. Finally, only
method redefinition is allowed for the class declared in cd;. The application of
this law from right to left introduces a new class in a program.

Law 1 (class elimination)
cds cdy @ ¢ = cds e ¢

provided
(—) The class declared in cd; is not referred to in cds or ¢;

(<) (1) The name of the class declared in cd; is distinct from those of all
classes declared in cds; (2) the superclass appearing in c¢d; is either
object or declared in cds; (3) and the attribute and method names
declared by cd; are not declared by its superclasses in cds, except in
the case of method redefinitions.

a

Using Law 2 (attribute elimination), from left to right, we remove an at-
tribute from a class, since this attribute is not read or written inside such class.
The notation B.a refers to access to an attribute a via expressions whose static
type is exactly B. Applying this law from right to left, we introduce an attribute
in a class, since this attribute is new, not declared by such class, nor is declared
by any superclass or subclass.

Law 2 (attribute elimination)

class B extends A class B extends A
pri a: T; ads - ads
—cds,c
ops ops
end end
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provided
(—) B.a does not appear in ops;

(<) a does not appear in ads and is not declared as an attribute by a
superclass or subclass of B in cds.

a

To eliminate a method from a class we use Law 3 (method elimination). We
can eliminate a method from a class if it is not called by any class in cds, in the
main command ¢, nor inside class C'. For applying this law from right to left,
the method m cannot be already declared in C nor in any of its superclasses or
subclasses, so that we can introduce a new method in a class. The notation B.m
refers to calls to a method m via expressions whose static type is exactly B. We
write B < A to denote that a class B is a subclass of a class A.

Law 3 (method elimination)

class C extends D class C extends D
ads _ ads
meth m = pc end; ops ods, e ops

end end
provided

(=) B.m does not appear in cds, ¢ nor in ops, for any B such that
B <C.

(<) m is not declared in ops nor in any superclass or subclass of C
in cds.

a

There are also laws to deal with moving attributes and methods to super-
classes, changing types of attributes and parameters, eliminating method calls,
for instance, and other features [Borba et al. 2004, Cornélio 2004]. Some pro-
gramming laws presented in [Borba et al. 2004, Cornélio 2004] can be considered

basic refactorings when compared to the classification of refactorings presented
by Opdyke [Opdyke 1992].

3 Program Facts Database Structure

Our aim is to check side-conditions of programming laws relying on a Prolog
factbase that represents the abstract syntax tree of a ROOL program. The main
reason to use Prolog is due to its declarative nature, allowing us to concentrate
in the solution, not in the process to describe a solution. We have implemented
a compiler to translate a ROOL program to a fact base. In fact, the input to our
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package (PackageId, MainId).
package (PackageId, ClassId).
class(ClassId, ClassName).
extends(ClassId, SuperClassId).
main(MainId, ‘‘Main’’).
mainCommand (MainId, MainCmdId).

Figure 2: Class and main command program facts

attribute(AttributeIld, ClassId, ’AttributeName’).
attributeType (AttributeIld, ’Type’, ’Visibility’).
method (MethodId, ClassId, ’MethodName’).
methodVal (MethodId, ValParamId).

methodRes (MethodId, ResParamId).

methodStat (MethodId, StatementId).

Figure 3: Attribute and method facts

compiler is a ROOL program that is enriched with tokens that are recognized
by the rewriting system Maude [Clavel et al. 2005]. This is a consequence of a
decision of using Prolog as a means to verify conditions stated by programming
laws, whereas Maude would be used for the implementation of the transforma-
tions described by the programming laws.

The compilation process is constituted by two phases. As already said, the
compiler receives as input a ROOL program enriched with tokens that can be
read by the Maude rewriting system. In the first phase, the compiler reads such
an input program and generates an abstract syntactic tree. In the second phase,
the compiler scans the syntactic tree and generates Prolog clauses that represent
the program syntactic tree.

For every syntactic element of the language we define a fact in Prolog. For
instance, we describe facts for classes and the main command (Fig. 2). Although
we do not have packages in ROOL, we decided to represent such a concept in pro-
gram fact bases. We consider that a program is written inside a single package
that is introduced in the fact package whose first element is the package identi-
fier; the second element is a class identifier. We consider the main command as
a particular case: the fact package also lists the identifier of the main command
(main). Classes are introduced in the fact class whose first element is a class
identifier and the second is a class name. Attributes and methods of a class have
specific facts that take into account the identifier of the class in which they are
declared.

For attribute declaration, the fact attribute introduces an identifier for an
attribute, the identifier of the class in which the attribute is declared, and the
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assign(CmdId, ParentId, MethodId)
assignExp(CmdId, LeftExpld, ExpId)

Figure 4: Assignment facts

class CLID ’Account extends CLID ’object {
pri ’balance: Int;
meth MtID ’getBalance "~ = res ’r: int .# ’r := self.’balance; # end
meth MtID ’setBalance ~ = val ’s: int .# self.’balance := ’s; # end
new -~ = self.’balance := 0;
1.
main <
var ’acct : Account .#
’acct := new ’Account();
’acct.’setBalance(10);
# end >

Figure 5: Input example program

attribute name. The type and visibility of an attribute are introduced by the
fact attributeType. As already discussed, methods in ROOL are declared as
parameterised commands. We separate facts about parameter declarations from
facts about the method body itself, the method statement (command). Method
parameters are described by distinguishing them according to the parameter
passing mechanism. The declaration of a result parameter is introduced by the
fact methodRes; we use methodVal for a value parameter. To introduce the pa-
rameter identifier, we use fact varDec for variable declaration (see Appendix A).
The method body is introduced by the fact methodStat (for method command).
The first element of this fact is the identifier of the method, and a list of identi-
fiers of commands that appear in the method body.

As an example of facts about a command, we present facts related to assign-
ment (Fig. 4). The fact assign introduces an assignment identifier, the parent
command in which the assignment appears (a guarded command, for instance),
and the identifier of the method in which the assignment is introduced. The
assignment itself is constituted by a left-expression (the assignment target), and
the expression that is assigned to the left-expression, the right-hand side of the
assignment. More examples of fact can be found in Appendix A.

In Fig. 5, we present the program that appears in Fig. 1 in the syntax that is
also read by the Maude rewriting system. After compiling the program presented
in Fig. 5, we obtain program facts as those presented in Fig. 6. Here we present
just a subset of the facts for the program presented in Fig. 6.
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package (1000, 1001).

class (1001, "’Account").

extends (1001, 0000). //Object 0000
attribute (1002, 1001, "’balance").
attributeType (1002, "int", "pri").

method (1003, 1001, "’getBalance").

methodRes (1003, 1004). varDec (1004, 1003, 1003, "’r").
methodStat (1003, 1005). VarDecType (1004, "int").
assign(1005, 1003, 1003). exp (1006, 1005, 1003, "’r", null).
assignExp(1005, 1006, 1007). exp (1007, 1005, 1003, "self", 1008).

exp(1008, 1007, 1003, ’balance, null).
package (1000, 1020).

main(1020, "Main"). mainCommand (1020, 1021).
varDec (1020, 1001, null, "’acct"). assign(1021, 1020, null).
varDecType (1020, "’Acoount"). assignExp (1021, 1022, 1023).

exp(1022, 1021, null, "’acct", null).
new (1023, 1021, null).
newExp (1023, 1024, 1021). exp(1024, 1023, null, "’Account", null).

Figure 6: Program facts for the example program of Fig. 5

superClass(ClassID, Ancestor) :-
extends(ClassID, Ancestor).

superClass(ClassID, Ancestor) :-
extends(ClassID,Y),
superClass(Y,Ancestor) .

Figure 7: Clause for checking superclass relation

4 Verifying Side-Conditions of Programming Laws

In this section, we present how we have implemented the verification of condi-
tions for application of programming laws. Here we deal just with the activity
of verifying conditions for the application of programming laws, not with the
program transformation that is a consequence of a law application. We encoded
in a Prolog program the conditions that appear in the object-oriented program-
ming laws presented in [Borba et al. 2004, Cornélio 2004]. Our implementation
can be seen as constituted by layers. The bottom layer is constituted by the
facts that represent the abstract syntax tree of a program; the second layer is
composed by clauses that express conditions associated to programming laws.
The third layer is constituted by conjunction of clauses expressing the conditions
of programming laws.

Some clauses appear in the implementation of conditions of distinct laws. For
instance, the clause superClass (Fig. 7) checks whether a class whose identifier
is classId has class Ancestor as superclass. Notice that this clause is based
on the fact extends of program factbases. We use clause attributeNameClass
(Fig. 8) to check whether an attribute name appears in a given class. In this
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attributeNameClass (AttributeName,ClassName) : -
returnAttributeID(AttributeName, Attributeld),
returnClassID(ClassName,ClassId),
atributeIDClass (Attributeld, ClassId).

returnAttributeID(AttributeName, AttributeId):-
attribute(Attributeld, _, AttributeName, _, _).

Figure 8: Checking attribute name in class and attribute identifier retrieval

verifyClassIsSuperclass(ClassName) : -
returnClassID(ClassName, ClassID) ,
package (PackageId,ClassID),
subClass(ClassID, Descendant),
package (PackageId,Descendant) .

Figure 9: Verifying whether a class has subclasses

clause, we use clause returnAttributelID, besides other clauses, that returns
the attribute identifier. We consider clause returnAttributelD as basic.

Here we describe how we verify the conditions associated to the laws we pre-
sented in Section 2. Let us consider the conditions of Law 1 (class elimination),
for its application from left to right. To eliminate a class, it cannot be re-
ferred to in the entire program. In other words, such a class cannot be type
of attributes (verifyClassAttType), variables (verifyClassVariableType),
and parameters (verifyClassParamType). Also, this class is not superclass of
any class (verifyClassIsSuperclass), it is not used in type casts and tests
(verifyClassIsCast and verifyClassTypeTest), and does not appear in new
expressions (verifyClassInNewExp). The negation of these clauses define clause
verifyClassEliminationLR (see (1)).

verifyClassEliminationLR(ClassName,PackageId) :-
verifyClass(ClassName,ProgramID),
not (verifyClassAttType(ClassName)),
not (verifyClassParamType (ClassName)),
not (verifyClassVariableType(ClassName)), (1)
not (verifyClassIsSuperclass(ClassName)),
not (verifyClassIsCast(ClassName)),
not (verifyClassTypeTest (ClassName)),
not (verifyClassInNewExp(ClassName)) .

Clause verifyClassIsSuperclass (Fig. 9) verifies whether a class identified by
its class name is superclass of any class in a program. For this, it is necessary to
retrieve the class identifier from the class name. We use the identifier to check if
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any other class in a program is a subclass of a class with such an identifier. On
the other hand, to introduce a class in a program we have to check that the name
of the class we are introducing is not already in the program—we negate clause
verifyClass that checks if a class is already in a program. Moreover, we check
if the superclass of the class we introduce is already in the program or is object
(clause verifySuperclasAlreadyDeclared). We have also to guarantee that
attributes of the new class are not present in the superclass by negating clause
verifyAttSuperlasses. We have to be more careful with methods. If the new
class we are introducing declares a method with a name that is already a name
of a method of any superclass of the class being introduced, we require that this
method has the same parameters, since in ROOL overloading is not allowed. These
conditions are conjoined in the clause verifyClassEliminationRL (see (2)).

verifyClassEliminationRL(ClassName,PackageId):-
not (verifyClass(ClassName,PackageId)),
verifySuperclasAlreadyDeclared(ClassName),
not (verifyAttSuperlasses(ClassName)), (2)
((verifyMethNameInSuperclasses(ClassName),
verifyMethParamSuperclasses(ClassName));
(not (verifyMethNameInSuperclasses(ClassName))) .

The clause attE1limLR (see (3)) implements the condition to remove a private
attribute by using Law 2 (attribute elimination), from left to right. The condi-
tion requires that the attribute is not read or written inside a class, which is
expressed by clause priAttAccess.

attElimLR(AttributeName,ClassName) :-
not (priAttAccess(AttributeName, ClassName)).

3)

On the other hand, to introduce an attribute, we require that it is not already
present in a class—we negate attDecClass—nor it is declared in any super-
class or subclass—we negate attDecHierarchy. This is expressed by the clause
attElimRL (see (4)).

attElimRL (AttributeName,ClassName) :-
not (attDecClass(AttributeName, ClassName)), (4)
not (attDecHierarchy (AttributeName, ClassName)) .

The condition for applying Law 3 (method elimination), from left to right, is
expressed in condition methE1limLR (see (5)). We require there are no calls to the
method in the entire program. For this moment, we deal with the static type of
attributes, variables, and parameters to check the type of method call targets
to a method. We require that there are no calls on attributes whose type is the
class from which we eliminate the method or any of its superclasses. This is also
applied to variables and parameters. We have also to check object chains. For
instance, consider a method call like z.y.z.m(), in which m is the method we
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want to eliminate. A method call as the one given above does not necessarily
implies that we cannot eliminate method m, we have to check the declared type
of z. If it is the class from which we intend to eliminate m or any of its subclasses,
we cannot eliminate m, otherwise we can.

methElimLR (MethodName, ClassName) :-
not (methodCallOnAttribute (MethodName, ClassName)),
not (methodCallOnVar (MethodName, ClassName)), (5)
not (methodCallOnParam(MethodName, SubClassName)),
not (methodCallOnObjectChains (MethodName, ClassName)).

To introduce a method in a class, we require the method to be new in the
hierarchy, not declared in the class, nor in any superclass or subclass (see (6)).

methElimRL (MethodName, ClassName) :-
newMethodInHierarchy (MethodName, ClassName) .

(6)

These are examples of verification of conditions of some object-oriented pro-
gramming laws using logic programming. Besides these laws, we have imple-
mented verification of conditions of other 19 programming laws. We have 25
laws altogether.

5 Related Work

Opdyke [Opdyke 1992] formally describes conditions that must be satisfied to
apply a refactoring. Some “low-level”refactorings [Opdyke 1992, Chapter 5] pro-
posed by Opdyke are, in fact, programming laws of our language. This is the case
of the refactoring that deals with the introduction of attributes, for instance. In
fact, some conditions of programming laws are similar to conditions of Opdyke’s
“low-level” refactorings.

Roberts [Roberts 1999] goes a step further than Opdyke and describes both
preconditions and postcondition of refactorings, allowing support for refactor-
ing chains. The definition of postconditions allows the elimination of program
analysis that are required within a chain of refactorings. This comes from the
observation that refactorings are typically applied in sequences intended to set
up preconditions for later refactorings. Pre- and postconditions are all described
as first-order predicates; this allows the calculation of properties of sequences
of refactorings. We have not defined postconditions of programming laws; we
describe the transformations of such laws as meta-programs, not by means of
properties they have.

Kniesel [Kniesel 2005] enables conditional transformations to be specified
from a minimal set of built-in conditions and transformations. In our approach,
conditions of a refactoring, for instance, are defined with basis on object-oriented
programming law conditions. In this way, applications of programming laws
serve to derive more complex transformations (refactorings) that can be ap-
plied to programs. We have not defined a minimal set of conditions for law
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application, but defined layers that are composed by Prolog clauses. The bot-
tom layer is the program factbase itself. Upon the factabse, we define conditions
that may be common to different laws—Ilike condition verifyClass that can be
considered basic—or specific to a law. Notice that these conditions are clearly
stated by programming laws. Kniesel [Kniesel 2005, Kniesel and Koch 2004] de-
fines conditional transformation (CT) to be a program transformation guarded
by a precondition, such that the transformation is performed only if its precon-
dition is true. We can also view a programming law as a transformation with
condition that can be checked by the existence of elements in a program. The
JTransformer program transformation engine [Rho et al. 2003], which is used as
a backend for conditional transformations, has inspired us in the definition of
our logic factbase. The conditions we implemented, as already said, are based
on programming law conditions.

Li [Li 2006] has defined refactoring for Haskell programs along with a refac-
torer called HaRe. Some functional refactorings have object-oriented counter-
parts like renaming. However, there are refatorings that are specific to func-
tional programs like the one that deals with monadic computation of expressions.
The Haskell refactorer (HaRe) deals with structural, module, and data-oriented
refactorings. HaRe is based on Strafunski [Lamméll and Visser 2003] which is a
Haskell-centered software bundle for implementing language processing compo-
nents and can be instantiated to different programming languages. Since pro-
gramming languages of different paradigms have distinct program structures,
they have their own program collection of refactorings. In our case, conditions
and transformations are based on programming laws that were described and
proved against the semantics of an object-oriented language [Cornélio 2004].

Tools that implement refactorings, like Eclipse [ecl], usually have a larger set
of refactoring than ours, as we deal with a subset of sequential Java. Since our
object-oriented programming laws deal with a language with a copy semantics,
we can define refactorings that deal mainly with program structures, not involv-
ing sharing. On the other hand, we have identified some limitations of Eclipse
when dealing with casts and moving methods to a superclass [Cornélio 2004].
Also, differently from Eclipse, we intend to build a tool that allows program-
mers to define their own refactorings.

6 Conclusions

Changes in software are usually consequence of evolution or correction. However,
some changes are performed to improve program structure, leading to a program
that is easier to understand and to maintain. These changes modify the program
structure without affecting the software behaviour as perceived by users.

A disciplined way to change a program without affecting its behaviour is
to apply programming laws that guarantee correctness of program transfor-
mation by construction. This is based on proof of soundness of programming
laws; in our case of laws that deal with imperative and object-oriented con-
structs [Borba et al. 2004, Cornélio 2004]. To apply an object-oriented program-
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ming law, conditions have to be satisfied. In this work, we presented an appli-
cation of logic programming to check if the conditions of programming laws are
satisfied, allowing us to strictly apply a law. Refactoring developers can take
programming laws as a toolkit for the development of new refactorings. By us-
ing a tool that encodes programming laws, refactorings obtained are correct by
construction.

We took advantage of using a declarative language like Prolog that facilitates
the description of conditions. This can also be used to define preconditions for
the application of a sequence composition of programming laws. In fact, this goes
in the direction of the ConTraCT refactoring editor [Kniesel 2005]. It should also
be necessary to describe the transformation defined by programming laws in a
logic program. In fact, we have to deal with program transformations, we are
considering the use of Constraint Handling Rules [Frithwirth 1998] or Transac-
tion Logic [Bonner and Kifer 1994] in order to implement the transformations
expressed by programming laws as direct changes in program factbases.

We have already used rewriting systems for the mechanical proof of refac-
toring rules [Junior et al. 2005]. However, we have not verified conditions for
the application of programming laws. Our work here and the one presented
in [Junior et al. 2005] can be viewed as complementary. The conditions for a
transformation would be checked by the implementation in logic programming,
whereas the transformation would be realised by the rewriting system in which
programming laws are encoded.
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A Facts for Commands and Expressions

A.1 Variable Declaration

varDec(VarDecId, ParentId, MethodId, ’VariableName’)
varDecType (VarDecId, ’Type’)

avarDec (AVarDecId, ParentId, MethodId, ’VariableName’)
avarDecType (AVarDecId, ’Type’)

A.2 Parameterized Command and Method Call

pCommand (CmdId, ParentId, MethodId)

methodCall (MethodCallld, ParentId, MethodId)
methodCallMeth(MethodCallld, ExpId, MethodName)
methodCallExp (MethodCallld, ExpCalllId)
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A.3 Types Test and Cast

is(IsId, ParentId, MethodId)
isExp(IsId, ExpId, ’ClassName’)
cast(CastId, ParentId, MethodId)
castExp(CastId, ClassName, ExpId)



