
A Visual Language for Animated Simulation

Vladimir O. Di Iorio
(Universidade Federal de Viçosa, Brazil

vladimir@dpi.ufv.br)

Débora P. Coura
(Centro Universitário do Leste de Minas Gerais, Brazil

dcoura@terra.com.br)

Leonardo V. S. Reis
(Universidade Federal de Viçosa, Brazil

leo@dpi.ufv.br)

Marcelo Oikawa
(Universidade Federal de Viçosa, Brazil

moikawa@dpi.ufv.br)

Carlos R. M. Junior
(Universidade Federal de Viçosa, Brazil

crmarques@dpi.ufv.br)

Abstract This paper presents a visual language for producing animated simulations.
The language is implemented on a tool called Tabajara Animator , using principles of
Programming By Demonstration (PBD), which is a technique for teaching the com-
puter new behaviour by demonstrating actions on concrete examples. The language
is based on a formal model for concurrent update of agents, which represent the ani-
mated characters. The visual rules follow the “before-after” style, adopted by the most
important similar tools. New features discussed by this work may produce a signifi-
cant reduction on the number of required rules for producing animated simulations.
This paper shows how these new features are implemented on a visual user-friendly
interface, and how they are translated into structures of the formal model adopted.

Key Words: visual programming, programming by demonstration

Category: D.1.7

1 Introduction

Programming by Demonstration (PBD) is a technique for teaching the computer
new behaviour by demonstrating actions on concrete examples [Lieberman 2001].
This technique has been used with success in several areas, for example, the
construction of Web pages [Sugiura 2001], programming on Geographical In-
formation Systems (GIS) [Traynor and Williams 2001], minimizing typing in

Journal of Universal Computer Science, vol. 13, no. 6 (2007), 767-785
submitted: 19/1/07, accepted: 22/3/07, appeared: 28/6/07 © J.UCS



small handheld devices [Masui 1998]. Tools for producing animated simulations
represent an area with the first commercial systems that applied PBD suc-
cessfully. Examples are Stagecast Creator [Smith et al. 2000] and Agentsheets
[Repenning and Sumner 1995].

In [Coura et al. 2006], the authors propose three enhancements for PBD-
based animated simulations systems. The most important enhancement is first-
person perspective for visual rules. Stagecast Creator and Agentsheets use third-
person perspective, leading to programs with several very similar visual rules,
whose only difference is the orientation of the characters. The other new features
are negative conditions and the use of inheritance. Using a significant example,
it is shown that the enhancements may produce an important reduction on the
number of visual rules required for a simulation. But important issues concerning
the implementation of the enhancements are not solved.

This paper is an extension of the work published in [Coura et al. 2006], pre-
senting the visual language of a system called Tabajara Animator . This system
proposes visual solutions for the implementation of negative conditions and in-
heritance, and solves problems with the automatic generation of graphical rep-
resentation of characters, associated with first-person perspective. The visual
language is based on a formal model called ASM-OBJ, inspired by the Gure-
vich’s Abstract State Machines (ASM) [Börger and Stärk 2003]. This paper also
shows how visual programs containing the new features may be translated into
programs of this model.

In Section 2, the most important tools for producing animation with PBD
are presented. It is shown how the enhancements proposed in [Coura et al. 2006]
may reduce the number of visual rules required, in situations commonly used.
Section 3 introduces ASM-OBJ, a formal model for the definition of concurrent
update of agents. In order to help explaining the semantics of the new visual
language features, their translation into structures of the ASM-OBJ model is dis-
cussed, in the following sections. Section 4 presents an overview of the Tabajara
Animator system. Sections 5, 6 and 7 analyzes the implementation of negative
conditions, inheritance and first-person perspective for rules, respectively. In
Section 8, the final conclusions are presented and future works are discussed.

2 Tools for Animated Simulation using PBD

Some of the most successful tools for animated simulation using programming
by demonstration BD are Stagecast Creator [Smith 2000, Smith et al. 2000] and
Agentsheets [Repenning and Sumner 1995]. They have similar features, but the
visual rules in Stagecast Creator are called visual before-after rules, while in
Agentsheets, they are called graphical rewriting rules.

The Kidsim project [Smith et al. 1994], later called Cocoa, was finally des-
ignated Stagecast Creator . It has been used mostly in children education. As

768 Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



Figure 1: Visual before-after rules in Stagecast Creator.

the original name implies, it was intended to allow kids to construct their own
simulations, reducing the programming task to something that anyone could
handle.

Figure 1 shows four Stagecast Creator rules, taken from a version of the classic
Pacman game [DeMaria and Wilson 2003]. The main character, the Pacman, is
controlled by the user, using the keyboard. It moves in a labyrinth, together
with ghosts. The rules on Figure 1 define the movement for the Pacman, when
there is an empty space in front of it, in four different directions. The visual
representation of the rules are separated in two parts, by a horizontal arrow.
The left part, designated before clause, represents a possible situation occurred
during a simulation. For example, the first rule represents a situation when the
character is looking at a position on a cell over it, and this cell is empty. The
right part of the rule, designated after clause, represents an action that must be
executed when the condition of the before clause is satisfied. In order to define
the after clause of the first rule, the user demonstrates his intention by moving
the character up.

The Agentsheets environment aims to achieve a wide range of users, from
children to professionals. The system includes a compiler which translates the
visual rules to Java code, producing more efficient simulations than the ones
built using Stagecast Creator.

Figure 2 shows a visual rule of Agentsheets with the same semantics as the
first rule of Figure 1. In Agentsheets, to indicate that a character must move
when an empty space is found, the user must define a position update on a
graphical rewiriting rule. The condition to be satisfied defines that the character
must have the given graphical representation, and the cell over it must be empty.
The action executed when this condition is satisfied is a movement to a cell over
the current position. Similarly to Stagecast Creator, additional rules must be
built to define movements to other directions.

769Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



Figure 2: Graphical rewriting rule in Agentsheets.

Figure 3: Rules for the movement of ghost characters in Stagecast Creator.

The Tabajara Animator project was created in order to implement the new
features proposed in [Coura et al. 2006], for visual rules using PDB: first-person
perspective, negative conditions and inheritance. The authors demonstrate that,
with these innovations, the numbers of rules required for animated simulations
can be significantly reduced.

In the examples of figures 1 and 2, as the character may be pointing to four
different directions and the rules are written in third-person perspective, it is
necessary to write four different rules to produce the desired behaviour. First-
person perspective for rules is one of the new ideas implemented in Tabajara
Animator. With first-person perspective, this behaviour can be defined by a
single rule. Section 7 shows details of this important enhancement, and how it
is implemented in Tabajara Animator.

In Stagecast Creator, the rules of Figure 3 may define the movement over
empty spaces for a character representing a ghost, on the Pacman game. These
rules are almost identical to the ones of Figure 1, the only difference is the
character involved. This situation is a good opportunity to explore inheritance.
The desired behaviour may be defined on a class named Moveable. Classes Pac-
man and Ghost may be subclasses of Moveable, inheriting all the rules of the
superclass. Section 6 discusses the problems involved in the implementation of

770 Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



Figure 4: Movement of Pacman over vitamins, in Stagecast Creator.

inheritance.
Figure 4 shows the rules defining the movement over cells containing a “vi-

tamin”, for a character representing a Pacman. These rules are almost identical
to the ones of Figure 1. The two sets of rules could be replaced by a rule with
negative condition. The new rule could have the following semantics: the ghost
must move to a cell in front of it, if this cell does not contain a wall of the
labyrinth. Section 5 discusses the implementation of negative conditions.

3 The ASM-OBJ Formal Model

Abstract State Machines (ASM), formerly known as Evolving Algebras, are a
formal model where the state of a system is represented by functions, and tran-
sitions are based on function update. A complete definition of this model can be
found in [Börger and Stärk 2003]. ASM-OBJ is an extension of the ASM model
which includes elements from object-oriented languages. Object-oriented exten-
sions for ASM have been proposed in works like [Janneck and Kutter 1998] and
[Zamulin 1998]. ASM-OBJ has been created especially for serving as basis for
the Tabajara Animator visual language, and shares little similarities with these
previous works.

This section presents an informal definition of the main elements of the model.
The semantics is given by associations with pure ASM. The complete definition
of ASM-OBJ can be found in [Coura 2006].

The syntax of ASM-OBJ is defined using a XML schema [van der Vlist 2002],
so ASM-OBJ programs are well-formed XML documents. A reason for choosing
XML instead of conventional syntax is that the visual language is intended to be
shared by different applications. The code is automatically generated by visual
tools, so it is not necessary to actually write programs using XML syntax, what
would be an important drawback. In this section, parts of the ASM-OBJ model

771Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



Figure 5: ASM-OBJ environment definition.

definition are presented using a visual representation for XML schemas, and the
semantics is explained using pure ASM. The visual representation used is the one
proposed by the Oxygen system [Wheller 2002], with icons like to represent
a complex type, to represent composition and to represent a choice.

Figure 5 shows the definition of an environment in ASM-OBJ, composed by
a set of class definitions and an initial state. The definition of a class includes
its name, the name of its parent on the hierarchy, a set of attributes and a rule.
The initial state is defined by a rule. The semantics is explained in terms of the
ASM model, as follows. Each ASM-OBJ class with name C is equivalent to an
ASM universe with the same name, i.e., an unary relation identified by the set
of elements e such that C(e) = true.

The definition of class attributes in ASM-OBJ, not shown in Figure 5, in-
cludes the name of the attribute and its type, which can be scalar types such
as Integer , Real and String . Each type may be interpreted as another ASM
universe. An attribute named A, inside a class named C, is interpreted as an
ASM unary function A : C → T , where T is the interpretation of the attribute
type. An agent of a class named C acts like an object of OO languages, and is
interpreted as an element of an ASM universe C.

772 Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



Figure 6: Some ASM-OBJ rules.

ASM-OBJ defines several types of rules, very similar to ASM rules. Figure 6
shows part of the definition of some of these rules. The semantics of the execution
of an ASM-OBJ rule is equivalent to firing an ASM rule.

The execution of an ASM-OBJ update rule produces an update pair (location,
value), just like in ASM, calculated using the LeftSide and RightSide components
of the rule. A location defines an unique “address” which is associated to a value.
In ASM, it is defined by a function and arguments. In ASM-OBJ, it is defined
by an agent and an attribute of the agent´s class.

The result of executing a block is the union of the execution of each of its
subrules. The result of executing a conditional rule is the execution of the then
clause, when the conditional expression is satisfied; otherwise, it is the execution
of the optional else clause.

In a choose rule with variable v of class C, an agent a of the class C is
nondeterministically chosen and the result is the execution of the defined subrule,
with the value of v set to a. In a create rule with variable v of class C, a new
agent a of the class C is created and the result is the execution of its subrule,
with the value of v set to a.

Inside the rule associated to a class, the reserved name this is an unbound

773Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



variable. The complete rule of a class named C is the union of the rule associ-
ated to this class with the rules associated to all its superclasses, following the
hierarchy defined by the environment. The execution of an agent a of a class C

is the execution of the complete rule associated to the class C, with the value of
the variable this set to a.

The execution of an environment starts with the execution of its initial state
rule. This rule is usually a block containing create rules, which will build an
initial set of live agents. Then, each step of the execution consists of selecting
a subset of agents from the live agents set, executing the selected agents and
finally building a new state. A new state is built applying the produced update
pairs to the current state. As in pure ASM, applying an update pair (l, k) to a
state produces a new state where the value associated to location l is replaced
by k.

ASM-OBJ defines a rich set of standard functions which can be used in
expressions. Another set of functions, called external functions, may be extended
by users. External functions are used, primarily, for the communication with the
external environment. Two calls to an external function, in different steps of an
execution, may return different values, even when given the same arguments.

4 Overview of Tabajara Animator

Tabajara Animator is a system for the creation of animated simulations using
programming by demonstration techniques. It is similar to Stagecast Creator and
Agentsheets, but with the additional features proposed in [Coura et al. 2006].

To build visual programs, the system offers an Hierarchy Editor , which al-
lows the definition of hierarchy relations, and a Behaviour Editor , which allows
the definition of visual rules for each class. To present simulations, the system
offers several different animated simulation windows. Simulations windows are
discussed in Section 7.2.

Figure 7 shows a snapshot of the Hierarchy Editor window of Tabajara An-
imator. The user may create new classes anywhere in the hierarchy, defining
a standard visual representation. In this example, Brick , Moveable and its two
subclasses Ghost and Pacman are user-defined classes. The root of the hierarchy
is the predefined class VisibleClass, representing any object with visual represen-
tation in an animated simulation. Figure 8 shows part of the ClassDefinitionSet
element of an ASM-OBJ environment, representing these hierarchical relations.

Figure 9 shows the Behaviour Editor window, which can be activated from the
Hierarchy Editor. After selecting a class and activating the Behaviour Editor, the
user can create, delete or modify rules for this class. The visual rules have a strong
correspondence with the structure of an ASM-OBJ program. Visual conditional
rules are formed by a “before” clause, which represents the visual condition to

774 Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



Figure 7: Hierarchy editor of Tabajara Animator.

...

<ClassDefinition>

<Name>Moveable</Name>

<Parent>VisibleClass</Parent>

...

</ClassDefinition>

<ClassDefinition>

<Name>Pacman</Name>

<Parent>Moveable</Parent>

...

</ClassDefinition>

...

Figure 8: Representation of Figure 7 in ASM-OBJ.

be evaluated, an “after” clause, which represents the rule to be executed if the
condition is satisfied, and an optional “else” clause, which represents the rule
to be executed if the condition is not satisfied. An “after” clause is usually a
visual update rule. An “else” clause may be a visual update or another visual
conditional rule.

Figure 10 shows a visual conditional rule for the Pacman class. “Before”
and “after” clauses are separated by horizontal (green) arrows. “Else” clauses

775Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



Figure 9: Behaviour Editor Window.

Figure 10: A complex visual conditional rule.

776 Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



appear behind vertical (red) arrows. Conditions, inside “before” clauses, are vi-
sual predicates connected by an implicit logic operator and . For example, the
first condition shown in Figure 10 is satisfied if there is no character above the
Pacman, and the up arrow keyboard is pressed. Visual update rules may de-
fine modifications on the visual attributes of characters: their position, rotation
and visual representation. In Figure 10, the user demonstrated the intended
behaviour by defining visual update rules with a rotation applied to the graph-
ical representation of the character. So, during a simulation, if the condition is
satisfied, the character will be rotated as defined by the update rule.

Tabajara Animator offers a user-friendly interface to define visual condi-
tional and update rules. The rectangular area with dashed sides, used in visual
conditions, can be placed anywhere inside the window. If it is left empty, then
the condition will be satisfied, during simulation time, only when there is no
character inside the defined area. If characters are dragged into the rectangu-
lar area, then the condition is satisfied, during simulation time, when objects
of the chosen classes are found inside the defined limits. Characters selected in
“before” clauses appear automatically in “after” clauses, with the same position
and rotation, unless the negation operator is applied to the visual condition (see
Section 5). Moving and rotating these characters in “after” clauses, an user de-
fines a visual update that will be executed on simulation time, when the visual
condition is satisfied. Deleting characters or inserting new characters in “after”
clauses, an user defines destruction and creation of characters, in simulation
time.

An ASM-OBJ interpreter is integrated to the Tabajara Animator interface.
Before carrying on simulations, the system translates the visual rules into ASM-
OBJ code. The translation of visual elements discussed in this section is very
obvious. Visual conditional rules are translated to ASM-OBJ conditional rules,
with visual “before” clauses associated to conditional expressions, “after” clauses
associated to then clauses and visual “else” clauses associated to ASM-OBJ else
clauses. Complex visual conditions, with more than one predicate, are imple-
mented using a call to an ASM-OBJ standard boolean function and . Visual
update rules are translated to ASM-OBJ update rules, with class attributes
representing position, rotation and other visual attributes.

5 Negative Conditions

The structure of a visual conditional rule is itself a way to define negative con-
ditions. Any rule inside an “else” clause will be executed only if the condition is
not satisfied.

But the system offers also a visual negation operator which can be associated
to any predicate. It indicates that a condition is true only if the predicate is

777Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



Figure 11: A rule with negative condition.

not satisfied. The negation operation, together with the implicit and operator
described in Section 4, allows the definition of complex conditions. In systems
like Stagecast Creator and Agentsheets, users are restricted to a more limited
set of possible conditions.

Figure 11 shows an example of a rule with negative condition, for the Pacman
class. A symbol appears before every positive condition. If the user wants a
negative condition, this symbol must be replaced by a symbol . The interface
allows the user to change from positive to negative conditions, and vice-versa,
with a click of the mouse. Using also the concept of first-person perspective, the
semantics of the rule shown is: if the character is looking at a cell which does
not contain a brick, then the character is moved to this cell. The visual negation
operator is straightforward translated to ASM-OBJ by using a call to a standard
boolean function not .

6 Inheritance

In [Repenning and Perrone 2000], the authors present some reasons not to use
inheritance in systems for the creation of animated simulations with visual lan-
guages. They argue that abstractions like inheritance are nontrivial for end users
to understand, and are hard to represent visually. They present a different ap-
proach for generalization, called programming by analogous examples.

Examples presented in [Coura et al. 2006] show that inheritance may indeed
reduce the number of required rules in some simulations. The authors agree that
it may be an abstract concept not very easy to understand by end users, but
they argue that a system may offer inheritance as an additional feature, reserved
for more advanced users.

This work shows how Tabajara Animator solves the problem of representing
inheritance relations and inherited rules on subclasses. As in many other systems,
hierarchical relations are visually represented by a tree diagram, as shown in
Figure 7. The class associated with a tree node is the superclass of the classes
associated with the siblings of this node. For example, Pacman is a subclass of
Moveable. Figure 12 shows two instances of the Behaviour Editor window. The
window associated to the Moveable class shows a rule with negative condition.
The window associated with the Pacman class shows the inherited rule, changing

778 Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



Figure 12: Representing inherited rules in subclasses.

the graphical representation of the character. With this solution, it is easy to
understand the behaviour of a class, even when it has inherited rules. But the
system allows the edition of rules only on the classes where they are originally
defined. On subclasses, inherited rules are “read-only”.

7 First-Person Perspective

Rules in Stagecast Creator and Agentsheets use third-person perspective. As
the examples of Section 2 show, this strategy may lead to visual programs with
several similar rules, where the only difference is the orientation of the characters.
In order to implement first-person perspective for rules, it is not necessary to
add new features to the interface. However, a lot of additional work must be
done by the system, as discussed below.

The rule represented in Figure 11, when using first-person perspective, may
be equivalent to several third-person perspective rules. The results produced in

779Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



(a) Verify Brick on a cell. (b) Move the character.

Figure 13: Calculations needed to implement first-person perspective.

simulation time depend on the character current rotation. For example, suppose
that the character is rotated 45 degrees counterclockwise. The real position of the
rectangular area with dashed sides, where a Brick character may be positioned,
must be calculated as shown in Figure 13(a). The update defined by the rule of
Figure 11 represents only a horizontal movement. But in simulation time, this
movement may have horizontal and vertical components, which must also be
automatically calculated, as shown in Figure 13(b). All these calculations are
carried out by ASM-OBJ code properly generated.

7.1 Code generated for managing first-person perspective features

Tabajara Animator defines VisibleClass as the superclass of any visible charac-
ter. The attributes of VisibleClass define the current graphical representation,
the current rotation and the horizontal and vertical components of the current
position.

A visual conditional rule including a rectangular area with dashed sides is
translated into an ASM-OBJ choose rule. The translation of the visual condition
defined in Figure 11 is the ASM-OBJ choose rule shown in Figure 14. This rule
defines a variable named x , whose type is the class named Brick . Its execution
forces the system to find an agent of the Brick class, satisfying conditions defined
in the subrule. The subrule of the choose rule, in this case, is a conditional rule.
The condition to be evaluated is the result of the application of the standard
boolean function not to a call to an external function named RectangularArea.

The RectangularArea function has a boolean return type. Arguments passed
to this function, not shown in Figure 14, represent the base object, the position
of the rectangular area and a variable passed by reference, which may be instan-
tiated by the function. The base object, in this case, is the Pacman character.
The position of the rectangular area is defined by its top left and right down cor-
ners, relative to the position of the base object. These values are translated into

780 Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



<ChooseRule>

<VariableDefinition>

<VariableName>x</VariableName>

<TypeName>Brick</TypeName>

</VariableDefinition>

<ConditionalRule>

<ConditionalExpression>

<StandardFunctionCall>

<FuncName>not</FuncName>

<ArgumentList>

<ExternalFunctionCall>

<Name>RectangularArea</Name>

<ParameterMap>...<ParameterMap>

</ExternalFunctionCall>

</ArgumentList>

</StandardFunctionCall>

</ConditionalExpression>

<ThenClause> ... </ThenClause>

</ConditionalRule>

</ChooseRule>

Figure 14: Rule of Figure 11, translated into ASM-OBJ.

<StandardFunctionCall>

<FuncName>add</FuncName>

<ArgumentList>

<Location>

<VariableRef>this</VariableRef>

<AttribName>posX</AttribName>

</Location>

<StandardFunctionCall>

<FuncName>Xproj</FuncName>

<ArgumentList>

<IntegerConst>30</IntegerConst>

<IntegerConst>0</IntegerConst>

<Location>

<VariableRef>this</VariableRef>

<AttribName>rotation</AttribName>

</Location>

</ArgumentList>

</StandardFunctionCall>

</ArgumentList>

</StandardFunctionCall>

Figure 15: Piece of ASM-OBJ program representing horizontal position update.

781Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



real coordinates using the current position and the current rotation of the base
character, as shown in Figure 13(a). Finally, the last argument is the variable
x , bound by the choose rule. External functions receive an implicit argument
that allows them to access the whole environment, during a simulation. Using
this implicit argument and the arguments explained above, the RectangularArea
function scans the environment and verify whether there is a Brick character
inside the calculated area. If such a character is found, the value of variable x is
set to it, and the function returns true. Otherwise, the function returns false.

As shown in Figure 13(b), a position update requires the calculation of hori-
zontal and vertical displacements. To solve this, every position update is trans-
lated into two ASM-OBJ update rules, using predefined functions named projX
and projY . Figure 15 shows one of the update rules resulting from the translation
of the position update defined in Figure 11. To the value of the posX attribute
of the character, which represents the horizontal component of the current posi-
tion, the rule adds the result of a call to the projX function. The projX function
receives three parameters: a horizontal displacement, a vertical displacement and
a value associated with the rotation of the character. The result is the real dis-
placement on the horizontal axis. The code shown in Figure 15 supposes that the
graphical representation of the Pacman character is a square with side length of
30 pixels. So the call to the projX function calculates the horizontal result of
a horizontal movement of 30 pixels to the right, considering the current rotation
of the character. The second required update rule is not shown, but it is similar
to the code shown n Figure 15, replacing posX by posY and projX by projY .
In this case, the call to the projY function calculates the vertical result of a
horizontal movement of 30 pixels to the right, considering the current rotation
of the character.

7.2 Problems in animated simulation windows

Rules in Tabajara Animator are defined using first-person perspective. But the
system provides variations of first-person and third-person perspective animated
simulation windows. On windows that present animated simulations with first-
person perspective, a character is chosen to be positioned in the center of the
window, and its graphical representation never changes. When this character suf-
fers rotation, the window presents an inverse rotation of all other characters. In
third-person perspective animated simulation windows, rotated graphical rep-
resentations are automatically generated for each character, according to its
rotation attribute.

A problem occurs in third-person simulation windows. Frequently, the graph-
ical representations automatically generated for characters are not satisfactory.
For example, suppose that the graphical representation of the Pacman, used on
the rule of Figure 11, is rotated 180 degrees clockwise (or counterclockwise).

782 Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



Figure 16: Defining graphical representation, depending on rotation.

The resulting picture would be an upside down character. In order to solve
this problem, Tabajara Animator offers a visual tool called Image Configurator
which allows users to define different graphical representations for characters,
depending on their rotation attribute. An example is shown in Figure 16, with
four different graphical representations defined for the Pacman character. Each
different image is associated with a range of values for the rotation attribute of
a Pacman character. During simulation time, the system verifies the rotation of
each agent of the Pacman class and shows the corresponding image.

The system translates the operations defined in an Image Configurator to
ASM-OBJ code. When using third-person perspective animated simulation win-
dows, an additional ASM-OBJ conditional rule is generated. This rule updates
the attribute defining the graphical representation of the character, according to
its rotation attribute.

8 Conclusions and Future Works

In [Coura et al. 2006], inheritance, negative conditions and first-person perspec-
tive for rules are enhancements proposed for PBD-based animated simulation
tools. An example of a simple application with common situations found in
animated simulations is defined. The application is implemented in Stagecast
Creator and Agentsheets, which are tools with third-person perspective rules,
without inheritance and with little support for negative conditions. The num-

783Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



ber of rules required for these implementations is compared to a tool with full
support for the proposed enhancements. The results show that an important
reduction on the number of rules may be achieved, using the enhancements.

The results presented in [Coura et al. 2006] are very significant, but they
depend on an a successful implementation of all the proposed features. The
main contribution of the work presented in this paper is the confirmation that
inheritance, negative conditions and first-person perspective for rules may be
successfully implemented. The paper shows details of the implementation, on a
system called Tabajara Animator , using the help of a formal model to explain
the semantics of the visual elements.

The implementation of the proposed features, in Tabajara Animator, may
be summarized as follows. The interface of the system introduces new visual
elements, not present in similar tools, in order to define negative conditions
and inheritance. A visual negation operator may be applied individually to any
predicate on a visual condition. It allows users to build more complex conditions
than the ones provided by similar tools. Inheritance relations are represented on
a tree diagram, and the problem of representing rules in subclasses is elegantly
solved. First-person perspective for rules requires no additional visual elements
on the interface of the system. The calculation of the real position of characters
during simulation is carried out by predefined ASM-OBJ functions. An user-
friendly visual tool allows the definition of different graphical representations for
characters, solving the problems with automatically generated representations,
in animated simulation windows.

The visual language of Tabajara Animator may be extended in several ways.
An important extension may be the use of rule abstractions. The visual language
of Agentsheets, called Visual Agent Talk (VAT), offers such abstractions. A VAT
method is a set of rules, which can be referenced by the name, inside other visual
rules. An interesting work would be the implementation of a similar feature in
Tabajara Animator. Because of inheritance, it would be necessary to define the
behaviour in cases where a class has a method with the same name as a method
defined in its superclass. Another possible extension to the Tabajara Animator
visual language is the use of polymorphism. This feature has never been discussed
together with languages for visual animation.

Acknowledgements

This work is partially supported by FAPEMIG, Brazil.

784 Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 



References

[Börger and Stärk 2003] Börger, E. and Stärk, R. (2003). Abstract State Machines: A
Method for High-Level System Design and Analysis. Springer-Verlag.

[Coura et al. 2006] Coura, D., Di Iorio, V., Lima, A., Oliveira, A., and Andrade,
M. V. (2006). Animações Através de Programação por Demonstração. In Anais
do Simpósio de Fatores Humanos em Sistemas Computacionais (IHC 2006), pages
81–90, Natal, Brazil.

[Coura 2006] Coura, D. P. (2006). Produzindo Animação Através da Programação por
Demonstração. Master’s thesis, Universidade Federal de Viçosa, Viçosa, Brasil.

[DeMaria and Wilson 2003] DeMaria, R. and Wilson, J. L. (2003). High Score!: The
Illustrated History of Electronic Games. McGraw-Hill Osborne Media.

[Janneck and Kutter 1998] Janneck, J. and Kutter, P. (1998). Object-based Abstract
State Machines. TIK-Report 47, Swiss Federal Institute of Technology (ETH)
Zurich.

[Lieberman 2001] Lieberman, H., editor (2001). Your Wish is My Command: Pro-
gramming by Example. Morgan Kaufmann.

[Masui 1998] Masui, T. (1998). Integrating Pen Operations for Composition by Exam-
ple. In ACM Symposium on User Interface Software and Technology, pages 211–212.

[Repenning and Perrone 2000] Repenning, A. and Perrone, C. (2000). Programming
by example: programming by analogous examples. Commun. ACM, 43(3):90–97.

[Repenning and Sumner 1995] Repenning, A. and Sumner, T. (1995). Agentsheets:
A Medium for Creating Domain-Oriented Visual Languages. IEEE Computer,
28(3):17–25.

[Smith 2000] Smith, D. C. (2000). Building personal tools by programming. Commu-
nications of the ACM, 43(8):92–95.

[Smith et al. 1994] Smith, D. C., Cypher, A., and Spohrer, J. (1994). KidSim: Pro-
gramming Agents Without a Programming Language. Communications of the
ACM, 37(7):54–67.

[Smith et al. 2000] Smith, D. C., Cypher, A., and Tesler, L. (2000). Programming by
example: novice programming comes of age. Commun. ACM, 43(3):75–81.

[Sugiura 2001] Sugiura, A. (2001). Web Browsing by Demonstration. In Lieberman,
H., editor, Your Wish is My Command: Programming by Example, pages 61–86.
Morgan Kaufmann.

[Traynor and Williams 2001] Traynor, C. and Williams, M. G. (2001). End users and
GIS: a demonstration is worth a thousand words. In Your wish is my command:
programming by example, pages 115–134. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[van der Vlist 2002] van der Vlist, E. (2002). XML Schema - The W3C’s Object-
Oriented Descriptions for XML. O’Reilly.

[Wheller 2002] Wheller, S. (2002). <oXygen/> User Manual. SyncRO Soft Ltd. (re-
trieved 25 Jan, 2007, from http://www.oxygenxml.com/).

[Zamulin 1998] Zamulin, A. (1998). Object-oriented Abstract State Machines. In Pro-
ceedings of the 28th Annual Conference of the German Society of Computer Science.
Technical Report, Magdeburg University.

785Di Iorio V.O., Coura D.P., Reis L.V.S., Oikawa M., Junior C.R.M.: A Visual ... 


