
A New Architecture for Concurrent Lazy Cyclic
Reference Counting on Multi-Processor Systems

Andrei de Araújo Formiga
(Universidade Federal de Pernambuco, Brazil

andrei.formiga@gmail.com)

Rafael Dueire Lins
(Universidade Federal de Pernambuco, Brazil

rdl@ufpe.br)

Abstract: Multi-processor systems have become the standard in current computer
architectures. Software developers have the possibility to take advantage of the additional
computing power available to concurrent programs. This paper presents a way to automatically
use additional processors, by performing memory management concurrently. A new
architecture with little explicit synchronization for concurrent lazy cyclic reference counting is
described. This architecture was implemented and preliminary performance tests point at
significant efficiency improvements over the sequential counterpart.

Keywords: memory management, garbage collection, reference counting, concurrent garbage
collection
Categories: D.1.3, D.3.4

1 Introduction

Automatic memory management (often called garbage collection) has become
widespread in current programming systems as witnessed by the wide adoption of
garbage-collected execution environments such as Sun Java and Microsoft .NET
platform. Automatic memory management programming systems improve
programmer productivity and the reliability of resulting programs by relieving
programmers from the burdensome and error prone task of having to manage memory
manually [Jones and Lins, 1996].

Most current systems, implemented on sequential architectures, use a sequential
garbage collector, where memory management tasks alternate with tasks related to the
user process; these two tasks are never executed concurrently. However, current
trends in processor design and marketing indicate that single-chip multiprocessors are
becoming of widespread use in recent computer systems. Such change in computer
architecture opens the possibility of taking advantage of the extra computing power
available. Executing memory management tasks concurrently with the user processes,
programs can automatically take advantage of the available processors on a computer,
with no changes required to the user programs.

Reference counting, first developed by G.E. Collins [Collins, 1960], is one of the
main methods for automatic memory management. This paper proposes a new
architecture for a concurrent reference counting memory management system, based

Journal of Universal Computer Science, vol. 13, no. 6 (2007), 817-829
submitted: 19/1/07, accepted: 22/3/07, appeared: 28/6/07 © J.UCS

on a similar proposal by Lins [Lins, 2005]. The motivation for a new architecture was
the need to minimize explicit synchronization between the collector and the rest of the
program, particularly to avoid the use of locks; Lins’ original proposal was the basis
of the garbage collector of several commercial machines, but their code was never
freely available. The architecture proposed herein was implemented in a real
programming system, and preliminary performance tests show promising gains in
overall performance of programs.

This paper is organized as follows: Section 2 briefly presents the reference
counting algorithm in its simplest form and some milestones in its development,
leading to previous architectures for parallel and concurrent reference counting, some
of which were used as the basis for the one presented here; Section 3 details the new
architecture for concurrent reference counting on multiprocessors that minimizes
explicit synchronization, and emphasizes its differences in relation to its predecessors;
the architecture in Section 3 is limited to one collector and one user process, thus
Section 4 suggests ways in which the proposed architecture may be extended to work
with multiple user processes, and multiple collector processes; finally, Section 5
presents the current implementation of the proposed architecture and the results of
some initial performance measurements.

2 Reference Counting

The reference counting method consists of associating with each object in the heap a
counter that stores the number of references to it. An object is active when it is
currently in use and somehow accessible by the user program, which is indicated by it
being transitively connected by references to one of the roots of the computation. The
user process alters the connectivity of the objects both increasing and decreasing their
reference count. Whenever the counter of an object reaches zero, it means that it is no
longer active thus it is garbage and may be reclaimed to be later reused. It is usual to
consider the heap as organized in a directed graph, where objects are the nodes and
references are the edges. After Dijkstra [Dijkstra et al., 1976] it is common to call
mutator the part of the program that is concerned with the user process and collector
the garbage collection system.

A distinctive advantage of reference counting over other methods of garbage
collection is that its operations are interleaved with mutator activity, resulting in a
technique that is naturally incremental. Other techniques, like mark-scan [McCarthy,
1960] and copying collection [Fenichel and Yochelson, 1969], require that the
mutator stops for some time while the collector performs its work; this leads to pauses
in interactive systems, which may be a nuisance. However, standard reference
counting has a serious drawback: it can not reclaim cyclic data structures, as noticed
by J.H.McBeth in 1963 [McBeth, 1963]. Thereafter, many solutions to this problem
were proposed, but either they were not general-use, or were actually a proposal to
use two memory management systems, one of them solely to reclaim cycles. The first
general solution to the problem of reference counting cyclic structures was published
in 1990 by Martinez, Wachenchauzer and Lins [Martinez et al., 1990]; the idea is to
identify points in the graph where cycles can be formed, and perform from there a
local mark-scan to detect potential space-leaks, garbage cycles. In subsequent papers,
Lins extended this solution in many ways, for instance by making the local cycle

818 Formiga A.A., Lins R.D.: A New Architecture ...

analysis lazy [Lins, 1992a] and by identifying critical points in the graph that could
speed up the analysis [Lins, 2002].

To keep track of the state of local analysis in a local mark-scan, objects have to
maintain not only a reference count, but also a color. The current color of a cell
indicates its state regarding the local mark-scan.

Lins also developed a series of parallel reference counting algorithms targeted at
multi-threaded or multi-processor systems [Lins, 1991; Lins, 1992b; Lins, 2005], but
none of them were implemented in real multi-processor architectures. However, they
were the basis for the two IBM Java machines implemented at IBM-T.J.Watson
[Bacon et al., 2001] and IBM-Haifa [Levanoni and Petrank, 2006]. The architecture
presented in this paper is based on the latest version of Lins’ algorithm for parallel
multi-processed lazy cyclic reference counting [Lins, 2005], detailed in the next
section. This new architecture was implemented, with promising performance results,
as detailed in Section 5 of this paper.

3 The Proposed Architecture

The new architecture proposed in this paper, in its basic version, is designed to use
two processors executing concurrently: the mutator and the collector. Figure 1 shows
a schematic view of this architecture. The two processes share access to three queues:
a list of free objects, an increment queue and a decrement queue. The mutator alters
graph connectivity getting memory from the free-list whenever a new object is
created. When new references are made, the mutator inserts increment requests onto
the increment queue; likewise, when references are destroyed, the mutator inserts
decrement requests onto the decrement queue. The collector manages memory,
removing and processing requests for increment and decrement from the appropriate
queues and detecting when objects become garbage; when this happens, memory
reclaimed from garbage objects is added to the free list. A detailed presentation of
how the algorithm works is presented in the next subsections. For a matter of
simplicity of the management of the free-list, it is considered that objects are fixed-
size cells.

3.1 Mutator Operations

From the point of view of garbage collection, the mutator can only create new objects
(getting cells from the free-list), create new references to objects, or destroy existing
references to objects. Besides standalone operations for creation and destruction of
references, it’s often useful to have a single update operation that combines the
deletion of a reference to an object and the creation of a reference to another object –
e.g., when a pointer that references an object is changed to point to another one – a
reference to the former object is destroyed, while the latter has a new reference to it.
So, in this model the mutator performs three operations:

• New – to allocate new cells, getting them from the free list

• Del(S) – used when a reference to cell S is destroyed; generates a
decrement request

819Formiga A.A., Lins R.D.: A New Architecture ...

• Update(R, S) – used to update a reference from object R to object S

Figure 1: Basic architecture for concurrent reference counting with one mutator and
one collector

The mutator never changes directly the reference count of a cell, nor its color. All
memory management is done by the collector. This has implications for the necessary
synchronization of mutator and collector, as will be seen later.

The algorithm for operation New is presented below. The mutator simply checks
the existence of cells in the free list and gets one if available; otherwise it remains
busy waiting for new cells. This is reasonable, because in this case the mutator can
not continue its computation, and must wait for the collector to make cells available.

New() =
 if not empty(free-list) then
 newcell := get_from_free_list()
 else
 newcell := New()
 return newcell

820 Formiga A.A., Lins R.D.: A New Architecture ...

The operation Del is even simpler than in standard reference counting: the
mutator only inserts a new decrement request into the decrement queue. The collector
takes care of the remaining graph adjustment.

Del(S) =

 add_decrement(S)

Finally, Update must replace a reference by another, thus it must call Del to

notify the destruction of a reference, and insert a reference onto the increment queue.

Update(R, S) =
 Del(*R)
 add_increment(S)
 *R := S

It is easy to see in the operations above that the mutator only removes cells from

the free list (actually organized as a queue) and inserts elements onto the increment
and decrement queues. This results in simpler management of the three queues,
shared by two concurrent processes.

3.2 Collector Operations

The memory management responsibilities, for a reference counting system, are to
keep track of reference counts and detect when objects become garbage. It is also
necessary to manage the cycle analysis, performed by the local mark-scan procedures.
In the proposed architecture, the collector must process increment and decrement
requests placed on the corresponding queues; adjust reference counts accordingly;
detect any cells that have become garbage and insert them onto the free list; and
besides that to keep track of possible cyclic structures that may have become garbage.
This outline of how the collector works is reflected in its main operation,
Process_queues, detailed below.

The analysis of cyclic structures requires that cells must have one of three
possible colors: green, red and black. Green cells are active cells that are not
scheduled for a local mark-scan. Red cells are currently under a local mark-scan.
Finally, black cells are marked and scheduled for a local mark-scan at some point in
the future. Only shared cells may be part of a cycle, and such a cycle becomes
garbage when a shared cell has its reference count decremented. This means that
when a cell has its reference counted decremented to a value greater than zero, it must
be marked for future analysis. Cells that were marked for a local mark-scan are kept
in a data structure called the status analyzer. It is a collection of cells that were
marked black and must be analyzed later on. The original algorithm by Martinez,
Wachenchauzer and Lins [Martinez et al., 1990] was eager: whenever a shared cell
had its counter decremented, it was immediately analyzed with a local mark-scan.
Experience has proved that doing the analysis lazily, as proposed by Lins [Lins,
1992a], yields far better performance.

When a cell in the status analyzer is selected, a local mark-scan takes place: the
cell and its sub-graph is painted red and their reference counters are decremented,
eliminating references that are internal to this sub-graph. If there remain cells with

821Formiga A.A., Lins R.D.: A New Architecture ...

reference counter greater than zero at the end of this red-marking phase, it means that
there are external references to the sub-graph, thus it is necessary to paint cells green
and restore their counters. If no red cell in the sub-graph has a counter greater than
zero, the whole sub-graph is a garbage cycle and must be collected so that the cells
can be returned to the free list. The status analyzer is also used to keep objects that are
critical points in the object graph, points that when analyzed will allow the algorithm
to decide in less steps whether a sub-graph is cyclic garbage or not. This is a very
brief description of the cyclic reference counting algorithms developed by Lins. For
further details one may refer to [Lins, 2002].

The main operation in execution by the collector is Process_queues, whose
basic function is to process requests for increment and decrement of reference counts,
getting them from the appropriate queues. Adjustment of reference counter in objects
will then trigger most other actions of the collector, like freeing the memory occupied
by garbage objects and marking objects for cycle analysis. The only operation that
will not be triggered by adjusts in reference counters is scanning the status analyzer to
detect cycles, so this is included in Process_queues: it first processes the
increment queue, taking increment requests from it and performing them (cells are
assumed to have a reference counter field rc and a color field color); then it
processes the decrement queue, calling operation Rec_del to destroy a reference;
finally, after processing both queues, the status analyzer is processed by a call to
scan_status_analyzer. Operation Rec_del must be used to delete a
reference because if the cell has its counter hit zero, all its outgoing references must
be deleted recursively. The operation Process_queues is defined by the following
pseudo-code listing:

Process_queues() =
 while not empty(inc-queue)
 S := get_increment()
 S.rc := S.rc + 1
 S.color := green
 if not empty(dec-queue) then
 S := get_decrement()
 Rec_del(S)
 else
 scan_status_analyzer()
 Process_queues()

The recursive reference deletion operation, Rec_del, is defined so that it first

checks to see if the removed reference is the last one to the object; in this case, it must
be deleted and its outgoing references removed recursively; the field children in a
cell is supposed to be a collection of all its outgoing references. If the cell has a
reference count with value greater than one, it is either a potential candidate to have
an external reference transitively connecting it to root or being a knot-tying point to a
cycle, and thus it must be painted black and added to the status analyzer; a later scan
of the status analyser will reveal which one is the case. Thus, the complete definition
of this function is:

822 Formiga A.A., Lins R.D.: A New Architecture ...

Rec_del(S) =
 if S.rc == 1 then
 S.color := green
 for T in S.children do
 Rec_del(T)
 add_to_free_list(S)
 else
 S.rc := S.rc - 1
 if S.color != black then
 S.color := black
 add_to_status_analyzer(S)

The remaining operations of the collector are all related to the analysis and
detection of cyclic garbage. scan_status_analyzer will be called whenever
there are no increment or decrement requests to be processed (in the worst case, it will
be called because of memory exhaustion – the mutator will be blocked if it can not
allocate a new object). Its definition is presented below. When a cell S is in the status
analyzer, it may be either black or red. If it is black, a local mark-scan is scheduled to
be performed in the sub-graph below S. Operation mark_red is called to start the
local analysis. If the cell is red, it means it was identified in mark_red as a critical
point that may be connected to external references; its counter is checked, and if it is
greater than zero the sub-graph below it is active, so it is necessary to undo the effects
of operation mark_red by calling scan_green. The function calls itself
recursively, looking for further items to process; if there are none left, the remaining
cells still colored red are garbage in cyclic structures, so collect is called to
recycle them.

scan_status_analyser () =
 S := select_from(status_analyser)
 if S == nil then return
 if S.color == black then
 mark_red(S)
 if S.color == red && S.rc > 0 then
 scan_green(S)
 scan_status_analyser ()
 if S.color == red then
 collect(S)

mark_red performs the red-marking phase of the local mark-scan. It tests if the

cell is red, coloring it red if not; then the reference counter of all its children (objects
referenced by it) is decremented, canceling references that may be internal to a cycle.
mark_red is called recursively through the whole sub-graph of S. If a cell is already
painted red – which means it already had its reference counter decremented – and still
has a counter with value greater than zero, it is a critical point in the graph that may
be connected to external references. Adding it to the status analyzer will speed up the
process of deciding if a sub-graph is a garbage cycle or not [Lins, 2002]. This

823Formiga A.A., Lins R.D.: A New Architecture ...

accounts for red-colored cells found in the status analyzer, as seen previously while
describing scan_status_analyzer.

mark_red(S) =
 if S.color != red then
 S.color := red
 for T in S.children do
 T.rc := T.rc - 1
 for T in S.children do
 if T.color != red then
 mark_red(T)
 if T.rc > 0 && T not in status-analyzer then
 add_to_status_analyser(T)

If a sub-graph is found to have external references, it is necessary to restore

counters decremented by mark_red; This is the task of scan_green. It paints a
cell green and increments the counter of its children.

scan_green(S) =
 S.color := green
 for T in S.children do
 T.rc := T.rc + 1
 if T.color != green then
 scan_green(T)

The only remaining operation to be described is collect, whose

responsibility is to free the memory associated with each garbage object detected in a
sub-graph. Its definition is shown below. Cells returned to the free list are painted
green and assigned a reference counter with value 1, to simplify cell initialization
when they need to be later reallocated.

collect(S) =
 for T in S.children do
 Delete(T)
 if T.color == red then
 collect(T)
 S.rc := 1
 S.color := green
 add_to_free_list(S)

3.3 Synchronization

Now that the operations of both processes were described, it is now considered how
they can work concurrently in a safe and efficient manner. These operations were
adapted from the sequential version of the cyclic reference counting algorithm [Lins,
2002], and the whole architecture presented here was based on that of Lins [Lins,
2005]. Lins’ architecture used only two shared queues between collector and mutator,

824 Formiga A.A., Lins R.D.: A New Architecture ...

the free list and a decrement queue (called a delete queue in the original paper). The
result is that both collector and mutator read and update reference counts in cells, so
this configures a potential interference between them [Andrews, 1999]. Lins dealt
with this by assigning priorities to the processors, so that one would always be
allowed to access reference counter fields before the other in a situation of contention.
This would be a good solution, if current hardware provided a way to ensure the
priorities. However, this is not the case in current shared-memory multi-processor
architectures, so implementing Lins’ architecture in current hardware would create the
necessity of explicit synchronization between collector and mutator when reading or
updating reference counts in cells, and as these are frequent operations, the overhead
involved with synchronization would compromise performance. The architecture
presented here solves this by using a technique of disjoint variables [Andrews, 1999],
where only the collector reads and updates the values of reference counts in cells, and
only the mutator changes the value of references in the memory graph. This works by
having two queues, one for requests for increment and another for requests of
decrements, shared between the two processes. The resulting architecture has little
need for explicit synchronization. None is needed for reads and updates of reference
counts or reads or updates of pointers.

A remaining concern regarding synchronization is about the three shared queues.
Although it is not described here, there are known ways to implement concurrent
queues with little need for explicit synchronization, especially for the case of a single
reader and single writer [Valois, 1994]. The chosen implementation of concurrent
queues will dictate how operations like add_increment, add_decrement,
get_from_free_list and their counterparts will be ultimately implemented.

Figure 2: Architecture for concurrent reference counting with more than one mutator
process

825Formiga A.A., Lins R.D.: A New Architecture ...

4 Multiple Mutators and Collectors

In Section 3 the basic architecture for concurrent reference counting was presented,
considering a designation of one process as the mutator and one as the collector. In
many programs, it may be desirable to have more than one mutator or thread
executing concurrently, thus the architecture is now generalized. Figure 2 shows a
schematic version of this multi-mutator architecture.

The main difference in relation to the single mutator version is that now all
mutators must share access to one end of the three queues. To accomplish this,
mutator processes no longer access the queues directly, but through shared registers,
called top-free-list, bot-dec-queue and bot-inc-queue. Access to
these registers must be synchronized to avoid interference; this can be done by using
compare-and-swap type operations, present in hardware in most current processors.
Implementation of lock-free queues with many readers (for the free list) or many
writers (for the request queues) is still possible [Valois, 1994]. Otherwise, the
algorithms work just like the single mutator case. In particular, the collector does not
need any changes to accommodate this architecture.

Another direction of extension to the architecture presented in Section 3 is to
allow for many collector processes to work cooperatively in a parallel garbage
collection architecture. This could be combined with the suggestions for multiple
mutators to obtain a multi-mutator, multi-collector architecture. The issues involved
in such architecture, however, are more complicated and include greater problems of
interference and load-balancing between collectors, and between them and the
mutators. This possibility is not considered further in this paper. Previous work by
Lins [Lins, 2005] presents such architecture in greater detail.

The multimedia retrieval is completely separated from the multimedia database,
according to the objective of modularity. In our prototype a Web interface is used to
specify queries and to display the search results. The Web server forwards the queries
of each user to a broker module. This broker communicates with the multimedia
database, groups received search results, and caches binary data. The usage of broker
architecture makes it possible to integrate other (e.g. text) databases or search engines
by simply adding the brokers of these data sources to the Web server. Vice versa also
other search engines can have access to the multimedia database by using the broker
from this system.

5 Implementation and Results

The architecture of Section 3 was implemented as the garbage collection sub-system
for a programming language. A compiler for a lazy, purely functional programming
language (similar to a subset of Haskell) was written to generate benchmarks for the
implemented garbage collection system. The compiler uses well-known techniques
for implementation of functional programming languages [Peyton-Jones, 1987] and
generates code for an execution environment similar to the G-machine; this runtime
environment includes an implementation of the garbage collector described in Section
3.

826 Formiga A.A., Lins R.D.: A New Architecture ...

This implementation was used in experiments to assess the performance of the
new architecture with relation to the sequential version of the same algorithm. Table 1
shows the results for execution of six test programs compiled to work with a
sequential reference counting algorithm. All tests were executed in a single 1.6GHz
Athlon MP computer with 2 processors and 512Mb of RAM, with a free list of 5000
cells and a status analyzer structure that could hold a hundred items.

Benchmark alloc scan_sa mark_red scan_green collect time(s)
acker 253175 4013 40574 40127 447 0,0351
conctwice 42834 521 5468 5406 62 0,005
fiblista 14837640 27892 857421 836317 21104 3,0812
recfat 335959 4985 49872 49338 534 0,0872
somamap 94309 1356 10521 10409 112 0,0473
somatorio 35298 499 4987 4933 54 0,0274

Table 1: Results for the execution of six test programs
with sequential reference couting

The tests where selected for being highly recursive programs, and in some cases
for using many list objects. Recursion was implemented by knot tying the Y-
combinator, yielding cycles in the graph-reduction machine [Turner 79] which is part
of the execution environment. Programs with many recursive calls generate many
cycles, exercising the cycle analysis capabilities of the algorithm. The last column on
Table 1 reports overall execution (CPU) times, in seconds. The other columns list the
number of calls to operations related to memory management: the alloc column
contains the number of allocated cells during the execution of the program; scan_sa
is the number of calls to scan_status_analyzer; mark_red, scan_green and
collect each record the number of times the respective operations were called.

The results on Table 1 make sense only when compared with those of Table 2,
which shows results for the same tests, but executed in a system with the concurrent
reference counter algorithm of Section 3. The meaning of the columns is the same.

Benchmark alloc scan_sa mark_red scan_green collect time(s)
acker 253175 9304 57966 57434 532 0,025
conctwice 42834 897 7210 7127 83 0,0038
fiblista 14837640 35112 956874 935527 21347 2,732
recfat 335959 11421 112663 112075 588 0,0702
somamap 94309 1647 11896 11773 123 0,0298
somatorio 35298 532 6052 5980 72 0,0208

Table 2: Results for the execution of six test programs
with concurrent reference counting

The two tables show that the number of calls for memory management functions

is greater in the concurrent architecture. This happens because the collector calls
scan_status_anlyzer every time the increment and decrement queues are both

827Formiga A.A., Lins R.D.: A New Architecture ...

empty, while the sequential version only examines the status analyzer whenever there
are no free cells [Lins, 2002]. However, overall execution times where, on average,
about 20% smaller for the concurrent reference counting system, in relation to the
sequential version. Albeit these performance results are preliminary – for example,
the total execution time of the benchmark programs above is still too small – they
indicate that the concurrent architecture of Section 3 represents a performance gain to
programs that use it, without any need to alter the source code of user programs;
besides, such a garbage collector uses better the available hardware in multi-processor
systems, even when the executing programs are not concurrent themselves.

6 Conclusions and lines for further works

This paper presented a new architecture for concurrent lazy cyclic reference counting
on multi-processor systems, targeted for implementation on current commercial
hardware and with less need for explicit synchronization than its predecessors. This
architecture was implemented in a 1.6GHz Athlon MP computer with 2 processors
and 512Mb of RAM. A lazy functional compiler was developed, together with the
garbage collection subsystem, and its performance was tested against the sequential
version of the same algorithm. Six benchmarks were used to test the performance of
the architecture proposed. A rise in throughput of about 20% was observed between
the sequential and the concurrent version for the programs tested.

The implementation of the language and the garbage collector serves as a test bed
for further and more complex benchmarks as well as allowing for the possibility of
testing different garbage collection strategies. Considering that the architecture
proposed in this paper was based on a previous proposal by Lins [Lins, 2005], a
comparison between both versions would be interesting to verify the real gains
achieved after minimizing the amount of required synchronization. However, Lins’
architecture was never implemented; this is planned for future works. Another
direction for further investigation is the use of more computer intensive benchmark
programs – preferably real-world programs – that could provide more realistic figures
on how the proposed algorithms would behave in production situations. In a recent
paper Lins and Carvalho Jr. [Lins and Carvalho, 2007] introduce the notion of
“permanent” or “tenured” objects to cyclic reference counting, making the local
mark-scan more efficient. The extension of the architecture presented herein to
encompass such objects is on progress.

The source code for the benchmarks, compiler and garbage collector may be
found at: http://postele.homelinux.net/~andrei/faul.tar.gz.

References

[Andrews, 1999] Andrews, G. R.: “Foundations of Multithreaded, Parallel, and Distributed
Programming”, Addison-Wesley Professional (1999)

[Bacon et al., 2001] Bacon, D. F., Attanasio, C. R., Lee, H. B., Rajan, R. T., Smith, S.: “Java
without the Coffee Breaks: A Nonintrusive Multiprocessor Garbage Collector”; Proc. of the
SIGPLAN Conference on Programming Language Design and Implementation, ACM Press
(2001)

828 Formiga A.A., Lins R.D.: A New Architecture ...

[Collins, 1960] Collins, G. E.: “A method for overlapping and erasure of lists”; CACM
(Communications of the ACM), 3, 12 (1960), 655-657.

[Dijkstra et al., 1976] Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S., Steffens, E. F.
M.: “On-the-fly garbage collection: An exercise in cooperation”; Lecture Notes in Computer
Science, No. 46. Springer-Verlag (1976)

[Fenichel and Yochelson, 1969] Fenichel, R. and Yochelson, J.: “A Lisp garbage collector for
virtual memory computer systems”; CACM (Communications of the ACM), 12, 11 (1969),
611-612

[Jones and Lins, 1996] Jones, R. and Lins, R. D.: “Garbage Collection: Algorithms for
Automatic Dynamic Memory Management”, John Wiley & Sons ltd. (1996)

[Levanoni and Petrank, 2006] Levanoni, Y. and Petrank, E.: “An on-the-fly reference counting
garbage collector for Java”; ACM TOPLAS (Transactions on Programming Languages and
Systems), 28, 1 (2006), 1-69

[Lins, 1991] Lins, R. D.: “A shared memory architecture for parallel cyclic reference
counting”; Microprocessing and Microprogramming, 34, 31-35 (1991)

[Lins, 1992a] Lins, R. D.: “Cyclic reference counting with lazy mark-scan”; IPL (Information
Processing Letters), 44, 4 (1992), 215-220

[Lins, 1992b] Lins, R. D.: “A multi-processor shared memory architecture for parallel cyclic
reference counting”; Microprocessing and Microprogramming, 35, 563-568 (1992)

[Lins, 2002] Lins, R. D.: “An efficient algorithm for cyclic reference counting”; IPL
(Information Processing Letters), 83, 3 (2002), 145-150

[Lins, 2005] Lins, R. D.: “A new multi-processor architecture for parallel cyclic reference
counting”; SBAC-PAD ’05: Proceedings of the 17th International on Computer Architecture on
High Performance Computing, pp. 35-43, IEEE Press (2005)

[Lins and Carvalho, 2007] Lins, R. D. and Carvalho Jr, F. H. de: “Cyclic reference counting
with permanent objects”, in this volume

[Martinez et al., 1990] Martinez, A. D., Wachenchauzer, R., Lins, R. D.: “Cyclic reference
counting with local mark-scan”; IPL (Information Processing Letters), 34, 31-35 (1990)

[McBeth, 1963] McBeth, J. H.: “On the reference counter method”; CACM (Communications
of the ACM), 6, 9 (1963), 575

[McCarthy, 1960] McCarthy, J.: “Recursive functions of symbolic expressions and their
computation by machine”; CACM (Communications of the ACM), 3, 3 (1960), 184-195

[Peyton-Jones, 1987] Peyton-Jones, S. L.: “The Implementation of Functional Programming
Languages”, Prentice-Hall International (1987)

[Valois, 1994] Valois, J. D.: “Implementing lock-free queues”; Proc. of the Seventh
International Conference on Parallel and Distributed Computing Systems, pp. 64-69 (1994)

[Turner, 1979] Turner, D.A.: “A new implementation technique for applicative languages”;
Software Practice and Experience, 9, 31-49 (1979)

829Formiga A.A., Lins R.D.: A New Architecture ...

