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Abstract: We consider the extension of fair event system specifications by concepts of
access control (prohibitions, user rights, and obligations). We give proof rules for veri-
fying that an access control policy is correctly implemented in a system, and consider
preservation of access control by refinement of event systems. Prohibitions and obliga-
tions are expressed as properties of traces and are preserved by standard refinement
notions of event systems. Preservation of user rights is not guaranteed by construction;
we propose to combine implementation-level user rights and obligations to implement
high-level user rights.
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1 Introduction

Information systems process ever more sensitive data. They should therefore
not only be correct with respect to their functional specification, but most also
ensure properties related to information security. For example, data should be
accessed only by (or on behalf of) users to the extent that they are authorized to
do so, legal or procedural obligations must be enforced, and user rights should
be respected by the system implementation.

In this paper, we propose to associate descriptions of access control poli-
cies with the specification of event systems. We give proof rules that allow us
to verify that an event system correctly implements access control annotations,
and we study to what extent such properties can be preserved when systems
are refined in a framework of stepwise system development. One should note,
however, that access control policies are only a part of the requirements needed
for describing and assessing the security of information infrastructure. In partic-
ular, access control specifications do not constrain the use of data obtained by
an authorized user. Hence, they cannot guarantee properties about information
flow [McLean 1992], such as confidentiality of information.

Several formalisms for describing access control policies have been proposed
in the literature. Among the more advanced ones are RBAC (Role-Based Ac-

Journal of Universal Computer Science, vol. 13, no. 8 (2007), 1073-1093
submitted: 22/2/07, accepted: 23/4/07, appeared: 28/8/07 © J.UCS



cess Control [Sandhu et al. 1996]) and OrBAC (Organization-Based Access Con-
trol [Abou et al. 2003]). These are declarative languages that focus on the static
structure of information systems and their operations. They identify the ac-
tors (abstractly represented as roles), the entities of information (abstracted as
views) stored or processed by the system, and the activities by which information
is accesed. Central to an access control policy is the description of constraints
that state when activities are permitted or forbidden. Certain formalisms also
encompass more advanced security properties such as rights or obligations. Or-
BAC makes a step toward specifying access control policies that may depend
on run-time information by associating rights with contexts. For example, an
employee’s permissions could be different during working hours and off-hours.
However, the effect of the activities on the system state is not described by the
access-control specification, and verifying that a system implements an access-
control policy is out of the scope of these formalisms.

We propose here to relate the specification of access control policies to for-
mal models of dynamic system behavior, and we give proof rules by which one
can demonstrate that a system implements an access control policy. We de-
scribe information systems within the well-known paradigm of event systems in
the style of [Abrial 1996, Abrial 2003, Back and von Wright 1998]. Correctness
properties of event systems can be specified as formulas of temporal logic, and
there are well-established verification rules to derive properties of event systems.
We are thus led to interpret access control primitives as properties of runs of
event systems. Prohibitions are easily expressed as constraints on the enabling
condition of events. Dually, the right of an actor to perform a certain activity
can be expressed as an elementary branching-time property. The formal repre-
sentation of obligations is less obvious; we propose to interpret them as liveness
properties, expressible in (linear-time) temporal logic.

Beyond describing a system at a single level of abstraction, it is interesting
to develop systems in a refinement-based approach. We consider in what sense
access control annotations can be preserved when a system is refined. Because
prohibitions and obligations are interpreted as safety and liveness properties of
runs, it is not hard to see that they are indeed preserved by standard refinement
conditions. However, refinement does not generally preserve branching prop-
erties, and preservation of user rights requires extra conditions. Their precise
formulation is non-trivial when the “grain of atomicity” of a system description
may change during refinement. We propose a condition that relies on a combi-
nation of a user right to initiate a sequence of activities (at the implementation
level), and an obligation on the system to ensure that this sequence terminates,
simulating the high-level activitiy. We illustrate our approach with a running
example of a simple loan management system on which different access control
requirements are imposed.
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Related work. The existing literature on formalisms for the specification of access
control considers mainly static methods of analysis. [Bertino et al. 2003] and
[Cuppens et al. 2005], among others, analyze security policies for inconsistencies,
and [Benferhat et al. 2003] consider techniques to resolve such inconsistencies
based on stratification of rules.

Closer to our concerns are [Guelev et al. 2004, Zhang et al. 2005] who de-
scribe the use of model checking for verifying access-control policies. However,
we work in a deductive framework, and we are mainly interested in verifying
refinement relationships. [Koch et al. 2005] suggest a UML notation for specify-
ing access control, together with a semantics based on graph transformation and
corresponding analysis techniques. More distantly related is the work around
UMLSec [Jürjens 2004], which is mainly concerned with secrecy properties.

2 Event Systems With Fairness Constraints

We describe systems as (possibly infinite-state) transition systems. More pre-
cisely, the system state is an assignment of values to a finite set of state variables,
and the evolution of the system is specified by a finite set of events, in a style
similar to many conventional formalisms for system specification [Abrial 1996,
Back and von Wright 1998, Manna and Pnueli 1992]. Fairness conditions spec-
ify which events are assumed to occur eventually, and system properties can
be expressed in linear-time temporal logic. We assume an underlying first-order
interpretation whose universe is denumerably infinite. For our examples, we em-
ploy a language that contains a simple theory of (finite or denumerable) sets; in
particular, functions are considered as sets of pairs x �→ y, and ∅ represents the
function with empty domain. This section briefly introduces the systems that
we consider and their properties, and presents rules for system verification.

2.1 Event Systems and Their Runs

Syntax of event system specifications. The specification of an event system ap-
pears in Fig. 1; it will serve as a running example1. The clause constants lists
the constant parameters of a system specification, including unspecified sets
whose elements appear as values of system variables. The clause assumption
introduces a predicate that constraints the constant system parameters.

A system state is represented by state variables, introduced by the keyword
variables; the clause invariant specifies a predicate Inv that the variables must
satisfy at any time during system execution. Also, the clause initial defines a
state predicate that constrains the initial states of the system.
1 We adopt the convention [Lamport 1994b] of writing multi-line conjunctions and

disjunctions as “lists” bulleted with ∧ and ∨, relying on indentation to save paren-
theses.
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system Bank
constants Client, Loan, maxDebt
assumption Client �= ∅ ∧ Loan �= ∅ ∧ maxDebt ∈ [Client → Q]

variables clt, loans, due, rate, maxExtra, extra
invariant ∧ loans ⊆ Loan

∧ clt ∈ [loans → Client] ∧ due ∈ [loans → Q] ∧ rate ∈ [loans → Q]
∧ maxExtra ∈ [loans → Q] ∧ extra ∈ [loans → Q]
∧ ∀c ∈ Client :

( ∑{due(ll) : ll ∈ loans ∧ clt(ll) = c}) ≤ maxDebt(c)
initial loans = ∅ ∧ clt = ∅ ∧ due = ∅ ∧ rate = ∅ ∧ maxExtra = ∅ ∧ extra = ∅
event newLoan(c, l, amt, dur, mx) =
∧ c ∈ Client ∧ l ∈ Loan \ loans ∧ amt ∈ Q ∧ dur ∈ N

∧ amt +
( ∑{due(ll) : ll ∈ loans ∧ clt(ll) = c}) ≤ maxDebt(c)

∧ loans′ = loans ∪ {l} ∧ clt′ = clt ∪ {l �→ c}
∧ due′ = due ∪ {l �→ sum} ∧ rate′ = rate ∪ {l �→ sum/dur}
∧ maxExtra′ = maxExtra ∪ {l �→ mx} ∧ extra′ = extra ∪ {l �→ 0}

fairness false

event makePayment(l) =
∧ l ∈ loans
∧ due′ = due ⊕ {l �→ due(l) − rate(l)}
∧ unchanged loans, clt, rate, maxExtra, extra

fairness l ∈ loans ∧ due(l) > 0

event extraPayment(l, amt) =
∧ l ∈ loans ∧ amt ∈ Q

∧ due′ = due ⊕ {l �→ due(l) − amt} ∧ extra′ = extra ⊕ {l �→ extra(l) + amt}
∧ unchanged loans, clt, rate, maxExtra

fairness false
end system

Figure 1: Sample system specification.

The system transitions are described by events; we define an event e with
parameters x in the form

event e(x) Δ= BAe(x)

where BAe(x) is the before-after predicate for the event e. Syntactically, BAe(x)
is a first-order formula built from the constants declared for the system specifi-
cation, the event’s parameters x, as well as primed and unprimed occurrences of
the system variables. Following common usage, an unprimed occurrence v of a
variable denotes the value of that variable at the state before the transition, and
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a primed occurrence v′ denotes the value at the state after the transition. More
generally, for an expression t containing no primed variables, we write t′ for the
expression obtained by replacing every unprimed occurrence v of a variable in t by
a primed occurrence v′. For expressions t1, . . . , tn we write unchanged t1, . . . , tn
to abbreviate the formula t′1 = t1 ∧ . . . ∧ t′n = tn.

For an event e(x) with before-after predicate BAe(x), we define its feasibility
condition

fis e(x) Δ= ∃var′ : BAe(x) (1)

by existentially quantifying over the primed occurrences of all state variables.
Semantically, the predicate fis e(x) characterizes those states in which the event
e(x) can occur. For example,

fis newLoan(c, l, amt, dur, mx) ≡
∧ c ∈ Client ∧ l ∈ Loan \ loans ∧ amt ∈ Q ∧ dur ∈ N

∧ amt +
( ∑{due(ll) : ll ∈ loans ∧ clt(ll) = c}) ≤ maxDebt(c)

holds by laws of first-order logic: beyond type correctness, the feasibility con-
dition asserts that l should be a fresh identifier for the new loan, and that the
client should not become over-indebted by taking up the loan.

Fairness assumptions are associated with events by annotating the definition
of an event e(x) with a clause of the form

fairness faire(x)

where faire(x) is a predicate built from the constants and (unprimed) system
variables, and the event parameters. The fairness assumption rules out runs
of the system where faire(x) remains true forever without e(x) ever occurring.
The standard condition of “weak fairness” or “justice” used in [Lamport 1994a,
Manna and Pnueli 1992] is obtained when faire(x) is the feasibility condition
fis e(x). Weaker fairness hypotheses can be specified if faire(x) is stronger than
the feasibility condition. As an extreme case, no fairness is required of event
e(x) when faire(x) is chosen as false. The framework can easily be extended
to allow for strong fairness, although the language for stating properties and
the associated verification rules (see Sect. 2.2) should then be extended to full
temporal logic.

Well-formedness of specifications. We require certain healthiness conditions of a
specification of an event system. First, the invariant asserted of a system should
be implied by the initial condition and preserved by all (instances of) events to
ensure that the invariant is indeed inductive. Formally, the following implications
should follow from the system assumptions Hyp:

Hyp |= Init ⇒ Inv (2)

Hyp |= Inv ∧ BAe(x) ⇒ Inv′ for all events e, (3)
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where Init denotes the predicate specifying the initial condition, Inv is the invari-
ant predicate, and BAe(x) is the before-after predicate of event e(x).

Second, the fairness condition associated with any event should imply that
the event is actually feasible, for all states that satisfy the system invariant.

Hyp |= Inv ⇒ (faire(x) ⇒ fis e(x)) (4)

We have seen above that it can be reasonable to choose a fairness predicate that
is strictly stronger than the feasibility predicate of an event. If faire(x) could be
true of some state where e(x) is infeasible, it would be unreasonable to require
e(x) to occur eventually. Technically, such a specification would not be machine
closed [Abadi and Lamport 1991].

It is easy to prove that these proof obligations are satisfied for the example
system specification of Fig. 1.

Runs of event systems. A run of an event system is an ω-sequence

σ = s0
e0(d0)−−−−→ s1

e1(d1)−−−−→ s2 . . .

of states si (i.e., valuations of system variables) and event instances ei(di) where
ei is either an event declared for the event system or the special stuttering event τ

such that the following conditions are satisfied:

– the initial condition holds of the initial state s0,

– for each transition si
τ−→ si+1, the states si and si+1 agree on the values of all

system variables; such transitions are called stuttering steps,

– for each transition si
ei(di)−−−→ si+1 with ei(di) different from τ , the states si and

si+1 satisfy the before-after predicate BAei(di),

– σ satisfies all fairness conditions: for each event e and all parameters d, there
are infinitely many positions i ∈ N such that either the fairness predicate

faire(d) is false at state si, or the transition si
e(d)−−→ si+1 occurs in σ.

For a well-formed specification, the proof obligations (2) and (3), and the
requirement that the system invariant be a predicate formed from constants and
system variables, ensure that the invariant is true at every state of a run.

2.2 Properties of Event Systems

We use a fragment of linear-time temporal logic to state and reason about prop-
erties of event systems. Specifically, we consider safety properties stable P and
inv P where P is a state predicate, and liveness properties F � G (“F leads to
G”) where F and G are first-order combinations of state predicates and event
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P ∧ BAe(x) ⇒ P′ for all events e(x)
(stable)

stable P

Init ⇒ P stable P
(induct)

inv P

inv P P ⇒ Q
(inv-weaken)

inv Q

P ⇒ faire(t)
P ∧ BAa(x) ∧ ¬BAe(t) ⇒ P′ ∨ Q′ for all events a(x)

(fair)
P� Q ∨ (P ∧ e(t))

∀x ∈ S : F(x)� G ∨ (∃y ∈ S : y ≺ x ∧ F(y)) (S,≺) well-founded
(wfo)

(∃x ∈ S : F(x))� G

P ∧ BAe(t) ⇒ Q′
(effect)

P ∧ e(t)� Q

inv I I ∧ F � G
(inv-leadsto)

F � G ∧ I

F ⇒ G
(refl)

F � G

F � G G� H
(trans)

F � H

F � H G� H
(disj)

F ∨ G� H

F(x)� G(x)
(exists)

(∃x : F(x))� (∃x : G(x))

Figure 2: Verification rules for fair event systems.

formulas e(x). Given an ω-sequence σ = s0
e0(d0)−−−−→ s1

e1(d1)−−−−→ s2 . . ., these formulas
are interpreted as follows:

σ |= stable P iff for all n ∈ N, if sn |= P then sm |= P for all m ≥ n
σ |= inv P iff sn |= P for all n ∈ N

σ |= F � G iff for all n ∈ N, if σ|n |= F then σ|m |= G for some m ≥ n

For the last clause, the notation σ|n |= F means that formula F holds at position n
of the sequence σ: a state predicate P should hold at state sn, an event formula
e(x) holds at position n if the transition en(d) is caused by the event e and the
parameters x evaluate to d in the current first-order interpretation. Elementary
temporal formulas can be combined using standard propositional connectives
and first-order quantifiers.

For an event-system specification Sys and a property ϕ, we write Sys |= ϕ if
σ |= ϕ holds for every run σ of Sys, that is, if all runs of Sys satisfy ϕ.

Proof rules for deriving properties of fair event systems are shown in Fig. 2.
They are similar to rules in formalisms such as Unity [Chandy and Misra 1988],
TLA [Lamport 1994a] or linear-time temporal logic [Manna and Pnueli 1992].
In these rules, Init denotes the initial condition of the system specification, and
BAe(t) and faire(t) denote the before-after predicate and the fairness assumption
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associated with the event e(t). The variable x that appears in the rules (sta-
ble) and (fair) is assumed to be different from the free variables of P, Q, and
BAe(t). Each rule should be read as asserting that the system satisfies the for-
mula that appears as the consequent of the rule if it satisfies all the hypotheses.
Assumptions on the constant parameters of a specification can be used in order
to establish non-temporal hypotheses of these rules.

The rule (fair) is the basic rule for inferring liveness properties: it can be
used to prove that any state satisfying a predicate P will be followed by a state
satisfying Q, or a transition due to event e(t). It has two hypotheses: one states
that P should imply the fairness condition associated with event e(t). The other
hypothesis requires that whenever P holds, all possible successor states of all
system transitions other than e(t) must satisfy P or Q. In order to see that the
rule is sound, assume that P is true at some point, but that Q never becomes true.
Unless e(t) occurs, the second hypothesis ensures that P remains true. By the first
hypothesis, all these states also satisfy the fairness condition for e(t). The fairness
assumption adopted in the definition of runs (Sect. 2.1) implies that e(t) must
therefore eventually occur. Moreover, from the above we know that P must still
be true at the (earliest) occurrence of e(t), hence the consequent of the rule holds
true. In practical applications, Q will often be false, and the rule is used to prove
that the event e(t) eventually occurs. It can be combined with rule (effect) in
order to infer that a state satisfying some predicate P will eventually be followed
by a state satisfying some target predicate. The rule (wfo) is useful for combining
liveness properties by induction over a well-founded ordering (S,�). The rule
(inv-leadsto) combines invariants and liveness properties. The remaining rules
formalize Boolean and first-order reasoning with leads-to formulas.

3 Specifying Access Control

Event system specifications describe the functional behavior of systems. We now
enrich system specifications by annotations that describe under which condi-
tions events may or should occur. Typically, an access control policy specifies
the actors (roles), objects (views), and operations (activities) of an information
system, and then define which actors are allowed (or forbidden) to perform which
operations on which objects. The OrBAC formalism [Abou et al. 2003] refines
this idea by identifying the “organization” that enforces access control, and also
by allowing the policy to refer to the “context” (an abstract view of the system
state) in which an activity is performed. Roles, views, and activities can be orga-
nized in hierarchies, along which access rules are inherited [Cuppens et al. 2004].

The main advantage of formalisms such as OrBAC is that they provide a
declarative language to specify access control, independently of a system imple-
mentation. The notion of context can be used to refer to the state of the system
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environment, such as the current time, but also to system-dependent informa-
tion such as server load. It is conceptually obvious how an OrBAC model can
be represented in an event system specification: the static structure of roles and
views is translated into constant parameters, activities correspond to events, and
context is represented by state predicates. We will not give a complete account
of such a translation here, but will now propose an annotation of event system
descriptions in order to describe access control policies. We consider the con-
cepts of prohibitions, user rights, and obligations for specifying access control.
Annotations of event system specifications with access control primitives can be
used for different purposes. First, one may verify that the policy is implemented
by a system specification or that it is preserved during system development.
Second, one may wish to develop a monitor that enforces a policy over a fixed,
underlying system. We focus on the first aspect in this paper.

3.1 Prohibitions

Fundamentally, access control policies specify constraints about when an activity
is permitted, and when it is forbidden. It is conventional to state these constraints
in the form of permissions : for example, if physicians are permitted to access
a patient’s files, all other roles are implicitly forbidden to do so. We will state
such constraints in the form of prohibitions in order to make it more obvious
that they restrict the occurrence of events, and in order to avoid confusion with
the concept of user rights discussed in Sect. 3.2.

We propose to represent prohibitions by annotating event definitions with
predicates. For the banking example, let us assume that there exists a risk func-
tion risk(c, amt) that for a client c and an amount amt returns a risk assessment
in {low, medium, high}. One might then specify

event newLoan(c, l, amt, dur, mx)
prohibition risk(c, amt) = high

to indicate that a new loan for a client must not be approved if the risk is
considered high.

An event system implements the prohibition annotations if an event may
occur only if it is not forbidden. Formally, we associate the following proof obli-
gation with annotated event systems:

Hyp |= Inv ∧ fis e(x) ⇒ ¬prohe(x) (5)

where prohe(x) is the prohibition predicate associated with event e, and, as before,
Inv and Hyp denote the system invariant and the constant assumptions. If this
condition can be proved of a system specification, the system guarantees that
the event e(x) never occurs in a run when it is forbidden by the security policy.
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The event system of Fig. 1 does not implement the prohibition above because
it does not evaluate the risk associated with a loan. Strengthening the definition
of event newLoan by either of the formulas

risk(c, amt) = low or risk(c, amt) ∈ {low, medium}
will ensure that the system implements the prohibition expressed by the security
policy. In general, the most permissive implementation is obtained by conjoining
the predicate ¬prohe(x) to the before-after predicate of the event definition. Al-
ternatively, the prohibition can be ensured by a run-time separate monitor that
allows events to be activated only if the prohibitions are respected.

Observe, however, that strengthening the definition of an event by a predi-
cate, such as ¬prohe(x), may invalidate the healthiness condition (4) that states
that the fairness predicate of an event should imply its feasibility. We therefore
add the following proof obligation to the well-formedness conditions of an event
system with prohibitions:

Hyp |= Inv ∧ faire(x) ⇒ ¬prohe(x). (6)

This condition is trivially satisfied for the event newLoan of our running example,
because no fairness is required of that event.

3.2 User rights

Prohibitions restrict when an event may occur. Dually, it may be interesting for
a security policy to assert conditions under which the system must not disable
an event. For example, we may wish to state explicitly that a client has the right
to make extra payments within the agreed-upon limits:

event extraPayment(l, amt)
right l ∈ loans ∧ amt ∈ Q ∧ amt + extra(l) ≤ maxExtra(l).

An event system implements a user right if the event is feasible whenever the
predicate specifying the right holds:

Hyp |= Inv ∧ righte(x) ⇒ fis e(x) (7)

Even if access control is implemented by a separate monitor, user rights
should be verified over the underlying event system itself because the monitor
only restricts the activation of events in system executions. Additionally, one
should ensure that the monitor does not restrict an event from occurring when
the user right holds true.

Obviously, prohibitions and user rights associated with an event should be
mutually exclusive: a security policy is inconsistent if it grants a right to per-
form an activity when that activity is forbidden. Indeed, the conditions (5) and
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(7) show that the user right and the prohibition predicate for an event e are
never both true of any state that satisfies the system invariant. Prohibitions
and rights need not be exhaustive: a security policy may choose to leave it un-
specified in certain situations whether an activity may be performed or not. In
particular, it is not unreasonable for a user right to be strictly stronger than the
feasibility of the event. For example, a bank could accept payments beyond the
pre-determined bound at its discretion.

User rights can be understood as specifying basic branching-time properties
of a system: whenever the predicate righte(t) is true, the system has a possible
continuation that begins with the event instance e(t). This observation will be-
come important in the context of refining event systems while preserving access
control annotations, which we discuss in Sect. 4.2.

3.3 Obligations

Some languages for stating access control policies, such as OrBAC, also include
primitives for specifying obligations. Intuitively, whereas a user right states when
a certain activity may occur, an obligation asserts that the activity should occur.
Because OrBAC does not consider a model of system execution, it does not
formally specify how an obligation should be interpreted. Traditionally, concepts
of permissions, rights, and obligations have been the domain of deontic logic
[Hilpinen 1981, Meyer and Wieringa 1993]. To our knowledge, the interpretation
of formulas of deontic logic over models of information systems such as event
systems has not been studied, and we will continue to base our semantics on the
familiar framework of event systems and their runs.

As for prohibitions and rights, we express obligations by predicates that
annotate events. In our running example, we might want to assert that a user
has an obligation to pay the rates for a loan, and therefore write

event makePayment(l)
obligation l ∈ loans ∧ due(l) > 0.

What does it formally mean for an event system to implement an obligation?
A possible interpretation would be that whenever an obligation arises to perform
event e(t), that event should occur immediately, before the execution of any
other event. However, this interpretation can easily lead to contradictions. For
example, a user of a computer system may have an obligation to regularly change
his password, but he can do so only when logged in. The obligation to change the
password should not preclude the user from logging in, although it is conceivable
that one could then prevent the user from doing anything but changing his
password.

One could try to introduce a taxonomy of obligations, classifying them by
their nature (legal, moral, technical, organizational etc.) or by their urgency. As
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a first approximation, we believe that obligations can usefully be understood as
liveness properties, and can be formalized in temporal logic. The two following
interpretations appear plausible:

strict obligation: oble(x) � e(x) (8)

weak obligation: oble(x) � ¬oble(x) ∨ e(x). (9)

The strict interpretation of obligations requires that the event occurs eventu-
ally whenever the obligation arises. Under the weak interpretation, the obligation
ceases as soon as the predicate oble(x) becomes false, which needs not be due
to an occurrence of the event e(x). In our example, the weak interpretation ap-
pears more reasonable: for example, the obligation to pay a rate on a loan ceases
when the loan is repaid via an extra payment. As an aside, we observe that the
weak interpretation of an obligation coincides with the interpretation of a weak
fairness requirement, with oble(x) as the fairness predicate.

For either of the two interpretations above, the proof rules of Fig. 2 can be
used to verify that a fair event system implements its obligations. The temporal
interpretation of obligations may also be of interest when one is interested in
deriving a security monitor that enforces obligations for a given system, at least
for controllable events [Arnold et al. 2003], but we do not pursue this idea any
further here.

In some applications, the interpretation of obligations as liveness properties
may be too abstract, and it would be more natural to indicate real-time deadlines
for obligations (“the payment should be received before the end of the current
month”). We do not extend our method here to handle real-time requirements,
but encoding real-time systems in event-based formalisms does not pose any
conceptual problems [Abadi and Lamport 1994].

4 Refinement of System Specifications

In a refinement-based approach to system development, an initial high-level sys-
tem specification is successively enriched by introducing implementation detail
and new properties. The key requirement for a reasonable notion of refinement
is that properties that have been established for an abstract model are preserved
for refined models and do not have to be reproved. Formal verification accom-
panies the entire development process, and errors are discovered early, when it
is relatively easy to correct them. Non-atomic refinements allow a developer to
implement an event of a high-level model by a sequence of low-level transitions;
they are the key to obtaining interesting differences in abstraction between the
various models of a system, and must be supported by any practically useful
method.
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In this section, we define a refinement notion for fair event systems along
standard lines, based on the preservation of traces. In this way, properties ex-
pressed in the temporal logic of Sect. 2.2 are preserved by refinement. We then
study how refinement interacts with the annotations considered in Sect. 3 that
represent access control primitives.

4.1 Refinement of fair event systems

Refinement notions for event systems that preserve safety properties are well
known, and extensions for liveness and fairness properties have also been con-
sidered [Abrial and Mussat 1998, Back and Xu 1998, Barradas and Bert 2002,
Darlot et al. 2003]. In the following, we make use of the language of temporal
logic of Sect. 2.2 to state verification conditions that ensure that liveness prop-
erties are preserved. The use of temporal logic allows us to formulate our proof
obligations at a higher level of abstraction than in traditional formulations.

Refined models describe the system at a finer level of granularity and typically
introduce new events that have no observable effect at the previous levels of
abstraction. Formally, we assume (without loss of generality) that the refinement
is described with the help of a tuple varref of variables disjoint from the variables
varabs used in the original model. The two state spaces are related by a gluing
invariant J, a state predicate built from the variables varabs and varref , and the
constant parameters of both models. We may assume that J implies both the
abstract-level and the concrete-level invariants Invabs and Invref . An event ea(x) of
the abstract model may be refined by any number of low-level events er1(x, y1),
. . . , ern(x, yn); for technical simplicity, we assume that all parameters of ea are
also parameters of eri. Additionally, new events en(z) may be introduced in the
refined model that do not have any counterpart in the abstract specification; in
particular, non-atomic event refinements rely on such auxiliary low-level events.

An event system Ref is a refinement of an event system Abs with respect
to the gluing invariant J if Ref is itself well-formed according to the conditions
(2), (3), and (4), and if moreover all the following conditions hold (in the fol-
lowing, Hyp denotes the conjunction of the abstract- and concrete-level constant
assumptions).

– For every initial state of the refinement there exists a corresponding initial
state of the abstract specification:

Hyp |= Initref ⇒ ∃varabs : Initabs ∧ J (10)

– Events of the refinement can be mapped to events or to stuttering transitions
of the abstract specification. There are two cases:
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• If event er(x, y) refines an abstract event ea(x) then its effect is similar
to that of ea:

Hyp |= J ∧ BAer(x, y) ⇒ ∃var′abs : BAea(x) ∧ J′ (11)

• If event en(z) is a new event then its effect is invisible at the abstract
level2:

Hyp |= J ∧ BAen(z) ⇒ ∃var′abs : var′abs = varabs ∧ J′ (12)

– The refinement preserves the fairness constraints of the abstract level. For-
mally, assume that the abstract event ea(x) is refined by low-level events
er1(x, y1), . . . , ern(x, yn):

Ref |= J ∧ fairea(x)
� ∨ (∃y1 : er1(x, y1)) ∨ . . . ∨ (∃yn : ern(x, yn))

∨ ¬∃varabs : J ∧ fairea(x)

(13)

Condition (13) requires that any state in a run of the refinement that cor-
responds to a state satisfying the abstract fairness condition of event ea(x)
is followed either by the occurrence of one of the actions refining ea(x), or
by a state that no longer satisfies the abstract fairness condition. The proof
obligation is conveniently expressed as a “leads-to” property that should be
proved of the refined system, using the proof system of Fig. 2. This proof
can make use of fairness conditions of Ref , as well as induction over well-
founded orderings. In this way, a developer has more freedom in justify-
ing a refinement than with the more traditional verification conditions of
[Abrial and Mussat 1998, Back and Xu 1998] that are expressed in terms of
variant functions.

Using a simulation argument that critically relies on the possibility of stut-
tering in the definition of runs of event systems, one obtains the following cor-
rectness theorem: every run of the refined event system Ref corresponds to a run
of the abstract event system Abs, modulo the gluing invariant.

Theorem 1. Assume that Ref is a refinement of Abs with respect to the gluing
invariant J and that σ = s0

er0−−→ s1
er1−−→ . . . is a run of Ref . Then there is a run

τ = t0
ea0−−→ t1

ea1−−→ . . . of Abs such that J holds at the joint valuations obtained
from si and ti, for all i ∈ N, and such that eai refines eri whenever eri refines an
event of the abstract system, and is τ otherwise.
2 As suggested in [Abrial et al. 2005], this requirement could be weakened by requiring

that event en(z) merely preserves the high-level invariant.
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Proof. We first construct an intermediate sequence ρ = t0
E0−→ t1

E1−→ t2 . . . of
states ti and sets of instances of abstract events Ei; intuitively, any event instance
in Ei can explain the transition from ti to ti+1. The sequence ρ and the set Ei are
inductively constructed as follows:

– Because s0 satisfies the initial condition Initref , condition (10) ensures that
there exists some state t0 that satisfies the initial condition Initabs and such
that (s0, t0) jointly satisfy the gluing invariant J.

– For a transition si
eri(d)−−−→ si+1 of σ, we inductively assume that ti has already

been defined such that (si, ti) jointly satisfy J. For the construction of Ei

and ti+1, there are two possible cases:

• If the transition is due to the stuttering event τ or to an event instance
en(z) that does not have a counterpart in Abs, we let ti+1 = ti. This choice
ensures that (si+1, ti+1) jointly satisfy J: in the case of a τ transition this
follows because the states agree on all variables in varabs ∪ varref , which
are the only free variables of J, in the case of a new event en(d) it is
ensured by condition (12). We let Ei = {τ}.

• Otherwise, the transition is due to an event instance er(x, y) that refines
some abstract event ea(x), and ti+1 may be chosen according to the
condition (11). In this case, we define

Ei = {ea(d) : (ti, ti+1) |= BAea(d)}

as the set of instances of abstract events that could possibly explain the
transition from ti to ti+1, this set is non-empty by condition (11).

Finally, the abstract run τ is obtained by choosing event instances eai ∈ Ei

such that all fairness conditions are satisfied: for any instance ea(d) of an event ea
of Abs such that there exists some m ∈ N such that tn |= fairea(d) for all n ≥ m, the
abstract event ea(d) occurs infinitely often among the eai. This choice is possible
since condition (13) ensures that concrete event instances er(d′) that refine ea(d)
occur infinitely often in σ, hence by condition (11) and the definition of Ei, the
abstract event ea(d) occurs infinitely often in Ei. Because overall there are only
denumerably many instances of abstract events (using the assumption that the
first-order universe is denumerably infinite), a standard combinatorial argument
shows that ea(d) can be chosen infinitely often. ��

As a consequence, temporal logic properties can be transferred from an ab-
stract event system Abs to its refinement Ref modulo the gluing invariant J.
Formally, this is asserted by the following corollary.
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Corollary 2. Assume that Ref is a refinement of Abs with respect to the gluing
invariant J and that σ = s0s1 . . . is a run of Ref . If Abs |= ϕ then Ref |= ϕ where
ϕ is obtained from ϕ by replacing every positive occurrence of a non-temporal
formula A by ∃varabs : J ∧ A and every negative occurrence by ∀varabs : J ⇒ A.

4.2 Refinement preserving access control

Let us now consider how refinement interacts with access control specifications.
Assume that the event system Ref is a refinement of Abs with respect to the glu-
ing invariant J. Also, assume that Abs was known to implement the prohibitions,
obligations, and user rights associated with an abstract event ea(x).

Prohibitions are represented by state predicates, and the condition (5) en-
sures that ¬prohea(x) holds whenever event ea(x) occurs in a run of Abs. Any
concrete-level event er(x, y) refining ea(x) has to satisfy condition (11). Using
the definition of feasibility (1) and first-order logic, it follows that ¬prohea(x)
holds whenever event er(x) occurs in a run of Ref . In other words, prohibitions
are preserved modulo the gluing invariant J, and this is the preservation result
that we may expect. The precise meaning of the translated property depends on
the gluing invariant, but typical choices of J will imply that the abstract-level
prohibitions are indeed preserved in the refined system.

Similarly, obligations have been interpreted as liveness properties, repre-
sented by the temporal logic formulas (8) or (9). Corollary 2 implies that a
similar “leads to” formula is true of the refined model, again modulo translation
along the gluing invariant. Therefore, obligations are preserved in the same sense
as permissions and prohibitions.

These preservation results are not really surprising: we have interpreted pro-
hibitions and obligations as safety or liveness properties of runs, and refinement
of event systems is defined in such a way that properties of runs are preserved.
However, we have also considered user rights, which were interpreted as branch-
ing properties in Sect. 3.2, and refinement of event systems does not necessarily
preserve branching behavior.

For a concrete example, Fig. 3 proposes a refinement of the event extraPayment
of our running example. Instead of an atomic event modeling an extra payment,
the refinement introduces a protocol: the client has to apply for making an extra
payment (event demandPayment), and this application can be approved or re-
jected by the bank, depending on the situation of the loan3. This refinement is ac-
ceptable according to the conditions (11) and (12) because approvePayment refines
the abstract event extraPayment whereas the events askPayment and rejectPayment
do not modify the abstract variables. However, the refinement does not imme-
3 The new variable extraDmd is a multiset containing demands for extra payments; we

use the symbols �, �, and � to denote multiset union, membership, and inclusion.
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event demandPayment(l, amt) =
∧ l ∈ loans ∧ amt ∈ Q

∧ extraDmd′ = extraDmd � {l �→ amt}
∧ unchanged loans, clt, due, rate, maxExtra, extra

right l ∈ loans ∧ amt ∈ Q

event approvePayment(l, amt) =
∧ (l �→ amt) � extraDmd ∧ amt + extra(l) ≤ maxExtra(l)
∧ due′ = due ⊕ {l �→ due(l) − amt} ∧ extra′ = extra ⊕ {l �→ extra(l) + amt}
∧ extraDmd′ = extraDmd \ {l �→ amt}
∧ unchanged loans, clt, rate, maxExtra

fairness (l �→ amt) � extraDmd ∧ amt + extra(l) ≤ maxExtra(l)

event rejectPayment(l, amt) =
∧ (l �→ amt) � extraDmd ∧ amt + extra(l) > maxExtra(l)
∧ extraDmd′ = extraDmd \ {l �→ amt}
∧ unchanged due, extra, loans, clt, rate, maxExtra

fairness (l �→ amt) � extraDmd ∧ amt + extra(l) > maxExtra(l)

Figure 3: Refining event extraPayment.

diately preserve the user right

event extraPayment(l, amt)
right l ∈ loans ∧ amt ∈ Q ∧ amt + extra(l) ≤ maxExtra(l).

considered in Sect. 3.2: the precondition (l �→ amt) � askExtra of the concrete-
level event is not implied by the predicate describing the user right. Preservation
of user rights therefore requires some additional consideration.

A first idea would be to impose the condition

Hyp |= Invref ∧ rightea(x) ⇒ (∃y1 : fis er1(x, y1))∨ . . .∨ (∃yn : fis ern(x, yn)) (14)

where again er1(x, y1), . . . , ern(x, yn) are the concrete-level events corresponding
to the abstract event ea. This condition requires that whenever the abstract-level
right holds in a concrete run (modulo the gluing invariant), some event refining
the abstract event is executable. Obviously, this preserves user rights, but it
would rule out the refinement of Fig. 3. More generally, this condition appears
too strong in the context of a refinement notion that changes the granularity
of atomicity. Recall that a single abstract event ea can be implemented in the
refinement by a sequence of concrete events, all but the last of which are invisible
at the abstract level. As in the example of Fig. 3, a concrete event er refining the
abstract event ea is typically not immediately feasible whenever ea is, because it
needs to be prepared by auxiliary events that are unobservable at the abstract
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level. We therefore believe that a more useful condition for refining user rights is
to require a combination of concrete-level user rights that ensure that the branch
leading to er can be started and concrete-level obligations that ensure that er
will then eventually occur.

Formally, assume that the abstract system specification contains an event
ea(x) for which we wish to ensure a user right rightea(x). Also assume that ea(x)
is refined by the concrete-level events er1(x, y1), . . . , ern(x, yn). We then require
that the implementation Ref contains events ei1(x, z1), . . . , eim(x, zm) with user
rights specified by righteij(x, zj) such that

rightea(x) ⇒ (∃z1 : rightei1(x, z1)) ∨ . . . ∨ (∃zm : righteim(x, zm)) and (15)

eij(x, zj)� ¬rightea(x) ∨ (∃y1 : er1(x, y1)) ∨ . . . ∨ (∃yn : ern(x, yn)) (16)

Condition (16) applies for all j = 1, . . . , m; the disjunct ¬rightea(x) on the
right-hand side of (16) corresponds to a weak interpretation of obligations.

The above conditions, together with the interpretations of the user rights
for the refined specification, imply that whenever the translated abstract user
right holds at some point during a concrete-level run, the refinement ensures the
right to start a branch that will eventually lead to the occurrence of an event
er refining the original event ea, provided the abstract-level right persists. The
obligation to perform the event er ceases when the abstract right rightea(x) does
not persist—for example, this can arise due to the concurrent exercise of another
right.

Back to the example of Fig. 3, we claim that this refinement respects the
abstract-level user right because it satisfies the conditions (15) and (16). We
assume that the gluing invariant contains the conjunct

extraDmd � loans × Q

that asserts the “type correctness” of the new variable extraDmd. We choose
demandPayment for the auxiliary event ei, and condition (15) boils down to prov-
ing

l ∈ loans ∧ amt ∈ Q ∧ amt + extra(l) ≤ maxExtra(l) ⇒ l ∈ loans ∧ amt ∈ Q

which is trivial. On the other hand, condition (16) requires us to show

demandPayment(l, amt)�
∨ ¬(l ∈ loans ∧ amt ∈ Q ∧ amt + extra(l) ≤ maxExtra(l))
∨ approvePayment(l, amt)

and this property is ensured by the fairness condition for event approvePayment.
Whereas the abstract user right is preserved, the client cannot cheat on the bank
by demanding two extra payments that together would exceed the allowed limit:
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although a client may always ask for an extra payment (including in the time
between applying for a payment and the approval or rejection by the bank),
the bank’s obligation to approve extra payments ceases when the limit has been
reached, so it is free to reject a second application for extra payments. This
appears as a reasonable refinement of the abstract-level user right of Sect. 3.2.

5 Conclusion

Event systems are a convenient and widely accepted framework for modeling
information systems. In particular, properties of their runs can be derived using
well-known rules, and refinement concepts for event systems are well established.
In this paper, we have considered an extension of event systems by considering
access control primitives and have proposed to annotate events with predicates
to specify prohibitions, obligations, and user rights.

We have taken our inspiration from existing, declarative languages for de-
scribing access control, such as OrBAC, that identify the static structure of
an information system, including the roles, the views, and the activities, and
then spell out the conditions under which activities may, must, or must not be
performed. We go beyond OrBAC by interpreting these conditions over the spec-
ification of system behavior, and have identified proof rules for verifying that a
system implements a security policy. It appears obvious to interpret prohibitions
as safety properties that constrain the occurrences of events. We also propose
that obligations be interpreted as liveness properties, at least at an abstract level
of specifications, and we have used a simple temporal logic to state and prove
such properties of event systems. As a final category of access control primi-
tives, we have considered user rights, which can be interpreted as elementary
branching properties of systems.

Development methods based on stepwise refinement have traditionally been
associated with event systems. They allow a designer to develop a system as
the outcome of a sequence of models that progressively introduce details in the
system representation, and add correctness properties. The cornerstone of refine-
ment is the preservation of properties that have been established for abstract
models. Standard refinement concepts preserve traces of models, and this en-
sures that prohibitions and obligations are preserved across refinement. Branch-
ing properties, including user rights, are not guaranteed to be preserved, and
we have proposed additional conditions that rely on a combination of concrete-
level rights and obligations. Our condition is compositional in the sense that a
model can be further refined by implementing the lower-level rights in the same
manner; the obligations are guaranteed to be preserved by the ordinary notion
of system refinement.

More experience will be necessary to evaluate whether our notions are use-
ful and feasibility in practice. An interesting and complementary approach to
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verifying access control properties would be to synthesize security monitors that
enforce a security policy over a given underlying information system. The study
of refinement notions for more advanced concepts in information security, includ-
ing information flow and confidentiality, is a challenging topic for future work
that has already attracted some attention [Santen 2006, Hutter 2006].
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