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1 Introduction

It is a common observation in teaching mathematics that the act of providing
with examples of mathematical objects satisfying some definition helps to under-
stand that definition. The mental universe of a mathematician is full of examples
of objects illustrating some theoretical results and of counter-examples refuting
false assertions. When a mathematics student defines a commutative field K,
a vector space V on K of dimension n, an inner product < ., . > of V and an
orthonormal basis B of V , he often has in mind the Euclidean plane provided
with its standard basis. In the same way, when a pupil thinks of an unspeci-
fied triangle, he has in mind the particular triangle the teacher has drawn on
the blackboard. These examples associated with an abstract definition help to
understand some abstract and sometimes complex notions. They motivate their
introduction and answers the question “What is it used for?”. This observa-
tion has some counterpart in the philosophy of mathematics, for instance Henri
Poincaré suggested in [Poincaré 1913] that any definition should be immediately
followed by an example. Despite this state of facts usual formal systems used in
the foundations of Mathematics like Hilbert-style systems and systems based on
the sequent calculus or on natural deduction systems systematically neglect this
dictum of Poincaré.

The present article is an elementary attempt to introduce formal systems
fulfilling the Poincarean point of view by including a constraint that we call the
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pedagogical constraint. We start with natural deduction systems as introduced
by Gentzen [Gentzen 1935] and Prawitz [Prawitz 1965] manipulating judgements
like Γ � F where Γ is a finite set {A1, · · · , An} of formulae and F a formula, with
the intuitive meaning that F holds if all formulae in Γ hold. In such systems,
there is usually no built-in mechanism for manipulating definitions. Instead, in
order to introduce an object x satisfying some definitions, we assume in the
context Γ some formulae in which the variable x occurs. It is observed that the
main rule in such a system creating the context Γ is the hypothesis rule:

Γ, F � F

which can be rewritten:
F ∈ Γ

Γ � F

Note that in this rule the only requirement on Γ is that it is a set of formulae,
possibly non-motivated or even contradictory. The pedagogical constraint will
thus be the following: we require that some instance σ(Γ ) of Γ is provable, i.e.
that � σ(A1) · · · � σ(An) can be derived for some σ denoting a substitution
replacing any variable of Γ by some example. Thus the hypothesis rule becomes
the pedagogical hypothesis rule:

F ∈ Γ � σ(Γ )
Γ � F

Of course the pedagogical constraint has some important consequences on rea-
soning: for instance reasoning by contradiction is not possible either, since to
prove F by assuming ¬F and deriving a contradiction, one must first assume
¬F which is not possible pedagogically since one has no example σ such that
� σ(¬F ). In this way we see that pedagogical natural deduction systems are nat-
urally intuitionistic systems. Still more radically, we see that proving a negative
statement like ¬F that is F → ⊥ is not possible since we have to assume F and
derive ⊥, but precisely we cannot assume F since we cannot have any example σ

such that � σ(F ). So reasoning pedagogically is not only intuitionistic, but posi-
tive, i.e. exempt of any form of negation. Pedagogical natural deduction systems
as introduced in this paper have rather basic syntax: we simply replace the rule
(Hyp) by the rule (P-Hyp), without altering the other rules. Such a change can
be made in any natural deduction system, leading to an immediate and natural
family of negationless formal systems based on a very simple and meaningful
constraint.

In the present paper, we study the propositional calculi, since they are the
simplest non-trivial natural deduction systems. The main result states the equiv-
alence between the usual minimal propositional calculus on →, ∧ and ∨, and
his pedagogical version, i.e. in this elementary case, the pedagogical constraint
does not weaken the system. Moreover, the pedagogical constraint on classical
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and intuitionistic calculi makes the specific rules on negation useless, i.e. the
absurdity symbol appears as a constant symbol without any specific property.

2 Related work

G.F.C. Griss gave in [Griss 1946], [Griss 1950], [Griss 1951a] and [Griss 1951b]
an informal development of some part of negationless mathematics. Attempts to
formalise these ideas have been made by Vredenduin [Vredenduin 1953], Gilmore
[Gilmore 1953], Valpola [Valpola 1955], Nelson [Nelson 1966], [Nelson 1973] and
Krivtsov [Krivtsov 2000a], [Krivtsov 2000b]. In [Mezhlumbekova 1975], Mezh-
lumbekova presents a translation of Heyting arithmetic into a weak system of
negationless arithmetic. Quantifier-free formulas are rewritten in the form t = 0
where t is a term in the language of primitive recursive functionals of finite type.
These attempts mostly deal with first-order logic and its extensions. They in-
troduce quite sophisticated formal systems, with technicalities such as quantified
operators in [Nelson 1966], or Krivtsov’s pairs of derivations in [Krivtsov 2000a].
These authors point out the complexity of such technicalities, which creates se-
rious difficulties in the study of these systems with usual proof-theoretical meth-
ods. Our proposal avoids all such technicalities and gives a simple account of the
related ideas.

3 The usual minimal propositional calculus (MPC)

We start with a brief description of the usual intuitionistic minimal calculus on
implication, conjunction and disjunction:

Definition 1. Formulae are defined inductively as follows:

– the constant � (the true formula) is a formula

– propositional variables p, q, r, . . . are formulae

– if A and B are formulae then A → B is a formula

– if A and B are formulae then A ∧ B is a formula

– if A and B are formulae then A ∨ B is a formula

Remark. observe that we do not include negation nor absurdity in the language
of formulae. However, we include the constant � in the calculus so we have
a notion of closed formulae: a formula is closed when it does not contain any
propositional variable.
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Substitution of formulae B1, . . . , Bn for variables p1, . . . , pn in a formula A

can be defined as usual by induction on A. Such a substitution will be often
written σ and its effect on a formula A will be written σ(A).

The syntax of minimal calculus is given in natural deduction by the following
rules. In these rules Γ is a finite set of formulae, and a judgement Γ �m A means
that formula A holds under hypotheses Γ . Note that Γ, A1, . . . , An is a synonym
for Γ ∪ {A1, . . . , An}:

Γ �m � (Ax)

Γ, F �m F
(Hyp)

Γ, A �m B

Γ �m A → B
(→i)

Γ �m A → B Γ �m A

Γ �m B
(→e)

Γ �m A Γ �m B

Γ �m A ∧ B
(∧i)

Γ �m A ∧ B

Γ �m A
(∧el)

Γ �m A ∧ B

Γ �m B
(∧er)

Γ �m A

Γ �m A ∨ B
(∨il)

Γ �m B

Γ �m A ∨ B
(∨ir)

Γ �m A ∨ B Γ, A �m C Γ, B �m C

Γ �m C
(∨e)

4 The naive pedagogical propositional calculus (N-MPC)

Now we define the simplest version of the pedagogical propositional calculus
simply by replacing the (Hyp) rule of the usual system (see the previous section)
by the pedagogical (P-Hyp) rule (Γ �n F will stand for the provability of F

under the hypotheses Γ in the naive pedagogical propositional calculus):

F ∈ Γ �n σ(Γ )
Γ �n F

(P-Hyp)

In this rule, σ is any substitution, which is called a motivation. If Γ stands
for A1, . . . , An then �n σ(Γ ) is �n σ(A1), . . . ,�n σ(An).

The axiom rule does not fulfil the pedagogical dictum because the context Γ

is not motivated. As � is true even without context, we replace the (Ax) rule of
MPC by the naive pedagogical axiom rule (N-Ax):

�n � (N-Ax)
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Example 1. We shall pedagogically prove that (a → b → c) → (a ∧ b → c):

1) �n � by (N-Ax)

2) � �n � by (P-Hyp) and 1)

3) � �n � → � by (→i) and 2)

4) �n � → � → � by (→i) and 3)

5) �n � ∧� by (∧i) and 1)

6) a → b → c, a ∧ b �n a ∧ b by (P-Hyp) and 4) 5)

7) a → b → c, a ∧ b �n a by (∧el) and 6)

8) a → b → c, a ∧ b �n a → b → c by (P-Hyp) and 4) 5)

9) a → b → c, a ∧ b �n b → c by (→e) and 7) 8)

10) a → b → c, a ∧ b �n b by (∧er) and 6)

11) a → b → c, a ∧ b �n c by (→e) and 9) 10)

12) a → b → c �n a ∧ b → c by (→i) and 11)

13) �n (a → b → c) → (a ∧ b → c) by (→i) and 12)

Considering the (P-Hyp) rule, one can require motivations to be closed. So
two possibilities are now to be faced:

– either it is required that all formulae σ(Γ ) in the rule (P-Hyp) are closed

– or no special condition bearing on σ is required

We shall prove immediately that the first possibility does not weaken the system
(i.e. the same judgements are provable). Indeed, if a formula is motivable by an
unspecified motivation, then it is motivable with a closed motivation. Moreover,
we shall prove that all formulae are motivable by a closed motivation.

Lemma2. For all formulae F , the judgement �n F� is derivable, where F� is
the formula obtained by replacing each propositional variable of F by �.

Proof. By induction on F :

– F is atomic: F� = � so �n F� is derivable by (N-Ax).

– F = A → B: F� = A� → B� so we have to derive �n A� → B�:

1) �n A� by induction hypothesis
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2) �n B� by induction hypothesis

3) B�, A� �n B� by (P-Hyp) and 1) 2)

4) B� �n A� → B� by (→i) and 3)

5) �n B� → (A� → B�) by (→i) and 4)

6) �n A� → B� by (→e) and 5) 2)

– F = A ∧ B: F� = A� ∧ B� so we have to derive �n A� ∧ B�:

1) �n A� by induction hypothesis

2) �n B� by induction hypothesis

3) �n A� ∧ B� by (∧i) and 1) 2)

– F = A ∨ B: F� = A� ∨ B� so we have to derive �n A� ∨ B�:

1) �n A� by induction hypothesis

2) �n A� ∨ B� by (∨il) and 1)

�

For all formulae F , the formula F� is closed, so all formulae F are motivable
by the previous lemma, i.e. there is always a substitution σ such that �n σ(F ).

5 Power and limitation of the pedagogical propositional
calculus

The following lemma states that N-MPC is a subsystem of MPC.

Lemma3. For all derivable judgements Γ �n F , the judgement Γ �m F is
derivable.

Proof. Immediate by induction on Γ �n F . �

Theorems on formulae (i.e. derivable judgements without hypotheses) re-
mains the same in MPC and N-MPC, as we see in the following result. For
all sets of formulae Γ = {G1, · · · , Gn}, we shall write Γ → F for the formula
G1 → · · · → Gn → F . As usual, Γ, F denotes the set Γ ∪ {F}.

Lemma4. For all derivable judgements Γ �m F , the judgement �n Γ → F is
derivable.

Proof. By induction on the derivation of Γ �m F . We only consider the rules
(Ax), (Hyp), (∨il) and (∨e). The others cases are rather similar:

1401Colson L., Michel D.: Pedagogical Natural Deduction Systems ...



–
Γ �m � (Ax): we have to derive �n Γ → �

1) �n Γ� by lemma 2

2) �n � by (N-Ax)

3) �, Γ �n � by (P-Hyp) and 1) 2)

4) �n � → Γ → � by (→i) and 3)

5) �n Γ → � by (→e) and 2) 4)

–
Γ, F �m F

(Hyp): we have to derive �n (Γ, F ) → F

1) �n Γ� by lemma 2

2) �n F� by lemma 2

3) Γ, F �n F by (P-Hyp) and 1) 2)

4) �n (Γ, F ) → F by (→i) and 3)

– F = A ∨ B and
Γ �m A

Γ �m A ∨ B
(∨il): we have to derive �n Γ → F .

1) �n Γ� by lemma 2

2) �n Γ� → A� by lemma 2

3) Γ, Γ → A �n Γ by (P-Hyp) and 1) 2)

4) Γ, Γ → A �n Γ → A by (P-Hyp) and 1) 2)

5) Γ, Γ → A �n A by (→e) and 4) 3)

6) Γ, Γ → A �n A ∨ B by (∨il) and 5)

7) �n (Γ → A) → (Γ → (A ∨ B)) by (→i) and 6)

8) �n Γ → A by induction hypothesis

9) �n Γ → (A ∨ B) by (→e) and 7) 8)

–
Γ �m A ∨ B Γ, A �m F Γ, B �m F

Γ �m F
(∨e): we have to derive �n Γ → F

1) �n Γ� by lemma 2

2) �n Γ� → (A ∨ B)� by lemma 2

3) �n (Γ�, A�) → F� by lemma 2
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4) �n (Γ�, B�) → F� by lemma 2

5) Γ, Γ → (A ∨ B), (Γ, A) → F, (Γ, B) → F �n Γ by (P-Hyp) and 1) 2)
3) 4)

6) Γ, Γ → (A ∨B), (Γ, A) → F, (Γ, B) → F �n Γ → (A ∨B) by (P-Hyp)
and 1) 2) 3) 4)

7) Γ, Γ → (A ∨ B), (Γ, A) → F, (Γ, B) → F �n A ∨ B by (→e) and 6) 5)

8) �n A� by lemma 2

9) Γ, Γ → (A ∨ B), (Γ, A) → F, (Γ, B) → F, A �n (Γ, A) by (P-Hyp) and
1) 2) 3) 4) 8)

10) Γ, Γ → (A∨B), (Γ, A) → F, (Γ, B) → F, A �n (Γ, A) → F by (P-Hyp)
and 1) 2) 3) 4) 8)

11) Γ, Γ → (A ∨ B), (Γ, A) → F, (Γ, B) → F, A �n F by (→e) and 10) 9)

12) Γ, Γ → (A ∨ B), (Γ, A) → F, (Γ, B) → F, B �n F with reasoning
similar to 11)

13) Γ, Γ → (A ∨B), (Γ, A) → F, (Γ, B) → F �n F by (∨e) and 7) 11) 12)

14) �n (Γ → (A ∨ B)) → ((Γ, A) → F ) → ((Γ, B) → F ) → (Γ → F ) by
(→i) and 13)

15) �n Γ → (A ∨ B) by induction hypothesis

16) �n (Γ, A) → F by induction hypothesis

17) �n (Γ, B) → F by induction hypothesis

18) �n Γ → F by (→e) and 14) 15) 16) 17)

�

Proposition5. For all formulae F , the judgement �n F is derivable if and only
if the judgement �m F is derivable.

Proof. Immediate by lemmas 4 and 3. �

However, the equivalence between MPC and N-MPC on judgements is not
preserved. More precisely, we shall prove that the judgement � → � �n � is
not derivable in N-MPC.

Definition 6. We shall define two sets of formulae Nt and Nf. For all formulae
F , the properties F ∈ Nt and F ∈ Nf are mutually defined by induction on F :
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– � 
∈ Nt and � ∈ Nf

– p 
∈ Nt and p ∈ Nf, when p is a propositional variable

– A → B ∈ Nt if and only if A ∈ Nf or B ∈ Nt, and A → B ∈ Nf if and only
if A ∈ Nt and B ∈ Nf

– A ∧ B ∈ Nt if and only if A ∈ Nt and B ∈ Nt, and A ∧ B ∈ Nf if and only
if A ∈ Nf or B ∈ Nf

– A ∨ B ∈ Nt if and only if A ∈ Nt or B ∈ Nt, and A ∨ B ∈ Nf if and only if
A ∈ Nf and B ∈ Nf

Lemma7. For all formulae F , we have F ∈ Nf if and only if F 
∈ Nt.

Proof. By induction on F :

– F = �: we have � ∈ Nf and � 
∈ Nt

– F = p: we have p ∈ Nf and p 
∈ Nt

– F = A → B: we prove the two direction of the equivalence separately.

• if A → B ∈ Nf: we have A ∈ Nt and B ∈ Nf, so by induction hypothesis
we have A 
∈ Nf and B 
∈ Nt, thus A → B 
∈ Nt

• if A → B 
∈ Nt: we have A 
∈ Nf and B 
∈ Nt, so by induction hypothesis
we have A ∈ Nt and B ∈ Nf, thus A → B ∈ Nf

– F = A ∧ B: we prove the two direction of the equivalence separately.

• if A ∧ B ∈ Nf: we have A ∈ Nf or B ∈ Nf, so by induction hypothesis
we have A 
∈ Nt or B 
∈ Nt, thus A ∧ B 
∈ Nt in both cases

• if A ∧ B 
∈ Nt: we have A 
∈ Nt or B 
∈ Nt, so by induction hypothesis
we have A ∈ Nf or B ∈ Nf, thus A ∧ B ∈ Nf

– F = A ∨ B: we prove the two direction of the equivalence separately.

• if A ∨ B ∈ Nf: we have A ∈ Nf and B ∈ Nf, so by induction hypothesis
we have A 
∈ Nt and B 
∈ Nt, thus A ∨ B 
∈ Nt

• if A∨B 
∈ Nt: we have A 
∈ Nt and B 
∈ Nt, so by induction hypothesis
we have A ∈ Nf and B ∈ Nf, thus A ∨ B ∈ Nf

�

Lemma8. For all derivable judgements Γ �n F , if F ∈ Nf and Γ 
= ∅ then
there is a formula in Γ ∩ Nf.
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Proof. By induction on the derivation of Γ �n F :

– �n � (N-Ax): Γ = ∅, contradicting the hypothesis

–
F ∈ Γ �n σ(Γ )

Γ �n F
(P-Hyp): F ∈ Γ and F ∈ Nf by hypothesis

–
Γ, A �n B

Γ �n A → B
(→i): by definition of Nf we have A ∈ Nt and B ∈ Nf. By

induction hypothesis there are two cases: A ∈ Nf or there is a formula
B′ ∈ Γ ∩ Nf.

• if A ∈ Nf: by the lemma 7 we have A 
∈ Nt, but A ∈ Nt, which contradict
the hypothesis

• if B′ ∈ Γ ∩ S: B′ is appropriate

–
Γ �n A → B Γ �n A

Γ �n B
(→e): there are two cases: A ∈ Nf or A 
∈ Nf.

• if A ∈ Nf: by induction hypothesis on Γ �n A there is a formula in
Γ ∩ Nf

• if A 
∈ Nf: B ∈ Nf and A ∈ Nt by the lemma 7, so A → B ∈ Nf. By
induction hypothesis on Γ �n A → B, there is a formula in Γ ∩ Nf

–
Γ �n A Γ �n B

Γ �n A ∧ B
(∧i): A ∧ B ∈ Nf, so A ∈ Nf or B ∈ Nf:

• if A ∈ Nf: by induction hypothesis on Γ �n A there is a formula in
Γ ∩ Nf

• if B ∈ Nf: similar to the precedent case

–
Γ �n A ∧ B

Γ �n A
(∧el): A ∈ Nf so A∧B ∈ Nf and by induction hypothesis there

is a formula in Γ ∩ Nf

–
Γ �n A

Γ �n A ∨ B
(∨il): A∨B ∈ Nf so A ∈ Nf and by induction hypothesis there

is a formula in Γ ∩ Nf

–
Γ �n A ∨ B Γ, A �n C Γ, B �n C

Γ �n C
(∨e): by induction hypothesis on

Γ, A �n C, either A ∈ Nf or there is a formula B′ ∈ Γ ∩ Nf:

• if A ∈ Nf: by induction hypothesis on Γ, B �n C, either B ∈ Nf or there
is a formula B′′ ∈ Γ ∩ Nf:
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∗ if B ∈ Nf: A ∨ B ∈ Nf and by induction hypothesis on Γ �n A ∨ B

there is a formula in Γ ∩ Nf

∗ if B′′ ∈ Γ ∩Nf: B′′ is appropriate

• if B′ ∈ Γ ∩ Nf: B′ is appropriate

�

Proposition9. The judgement � → � �n � is not derivable.

Proof. We have � ∈ Nf, so by the lemma 8 we have � → � ∈ Nf. Since � ∈ Nf
we have � → � ∈ Nt, so � → � 
∈ Nf by the lemma 7, which is absurd. �

6 Beyond the limitation of N-MPC

Derivable judgements without hypotheses (i.e. theorems) are the same in N-
MPC and MPC. But when the context is not empty, we loose the equivalence
since � → � �n � is not derivable. Hence we are led to replace the rule (N-Ax)
by the following rule we call the pedagogical axiom rule (P-Ax):

�p σ(Γ )
Γ �p � (P-Ax)

We call P-MPC (i.e. Pedagogical Minimal Propositional Calculus) the new
pedagogical system we obtain and we write Γ �p F for the provability of F

under the hypotheses Γ in this system. The rule (P-Ax) is identical to the rule
(N-Ax) when the context Γ is empty. One may ask why we do not choose an
unconstrained rule, as a true formula remains intuitionistically true indepen-
dently of the context. But if we want to pedagogically access to a true formula
through a proof, the manipulated context must be motivable. Indeed, a context
is pedagogically acceptable only if it is motivable.

As in lemma 2, we immediately see that all formulae are motivable in P-MPC
by a closed motivation. Moreover, MPC and P-MPC are equivalent on judge-
ments:

Proposition10. For all sets of formulae Γ ∪ {F}, the judgement Γ �p F is
derivable if and only if the judgement Γ �m F is derivable.

Proof. We prove the two directions of the equivalence separately:

⇐) by induction on Γ �m F ; the rules (Ax) and (Hyp) are the only non-
immediate cases:

•
Γ �m � (Ax): we have �p Γ� by lemma 2, so we can derive Γ �p � by

the (P-Ax) rule
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•
Γ, F �m F

(Hyp): we have �p Γ� and �p F� by lemma 2, so we can

derive Γ, F �p F by the (P-Hyp) rule

⇒) immediate by induction on Γ �p F

�

7 What about negation?

Definition 11. ⊥-formulae are formulae with the additional constant ⊥ (the
absurd formula).

We call P-IPC the pedagogical version of the usual intuitionistic proposi-
tional calculus, i.e. the system P-MPC extended to ⊥-formulae and including
the intuitionistic absurdity rule (⊥i) (Γ �i F will stand for the provability of F

under hypotheses Γ in P-IPC):

Γ �i ⊥
Γ �i F

(⊥i)

Similarly, we call P-CPC the pedagogical version of the usual classical propo-
sitional calculus, i.e. the system P-MPC extended to ⊥-formulae and including
the classical absurdity rule (⊥c) (Γ �c F will stand for the provability of F

under hypotheses Γ in P-CPC):

Γ, F → ⊥ �c ⊥
Γ �c F

(⊥c)

We shall prove that the rules (⊥i) and (⊥i) are useless in such pedagogical
systems: they do not appear in any derivations.

Definition 12. The set B of ⊥-formulae is defined by induction on the ⊥-
formulae:

– ⊥ ∈ B
– � 
∈ B
– p 
∈ B when p is a propositional variable

– A → B ∈ B if and only if B ∈ B
– A ∧ B ∈ B if and only if A ∈ B or B ∈ B
– A ∨ B ∈ B if and only if A ∈ B and B ∈ B

1407Colson L., Michel D.: Pedagogical Natural Deduction Systems ...



Lemma13. For all ⊥-formulae B ∈ B and for all substitutions σ, we have
σ(B) ∈ B.

Proof. By induction on B:

– B = �: impossible since � 
∈ B
– B = ⊥: σ(B) = ⊥, so σ(B) ∈ B
– B = p with p a propositional variable: impossible since p 
∈ B
– B = F → B′: we have σ(B) = σ(F ) → σ(B′). By induction hypothesis on

B′ we have σ(B′) ∈ B. So σ(B) ∈ B
– B = B1 ∧ B2: we have σ(B) = σ(B1) ∧ σ(B2). By definition of B we have

B1 ∈ B or B2 ∈ B:

• if B1 ∈ B: σ(B1) ∈ B by induction hypothesis on B1, so σ(B) ∈ B
• if B2 ∈ B: similar to the precedent case

– B = B1∨B2: we have σ(B) = σ(B1)∨σ(B2). By induction hypothesis on B1

we have σ(B1) ∈ B and by induction hypothesis on B2 we have σ(B2) ∈ B,
so σ(B) ∈ B

�

The following lemma holds for P-IPC, but it also holds for P-CPC:

Lemma14. For all derivable judgements Γ �i F on ⊥-formulae we have F 
∈ B.

Proof. By induction on Γ �i F :

–
�i σ(Γ )
Γ �i �

(P-Ax): � 
∈ B by definition of B

–
F ∈ Γ �i σ(Γ )

Γ �i F
(P-Hyp): σ(F ) 
∈ B by induction hypothesis, so F 
∈ B

according to the contrapositive of the lemma 13

–
Γ, A �i B

Γ �i A → B
(→i): B 
∈ B by induction hypothesis, so A → B 
∈ B

–
Γ �i A → B Γ �i A

Γ �i B
(→e): A → B 
∈ B by induction hypothesis, so B 
∈ B

–
Γ �i A Γ �i B

Γ �i A ∧ B
(∧i): A 
∈ B and B 
∈ B by induction hypothesis, so A∧B 
∈

B
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–
Γ �i A ∧ B

Γ �i A
(∧el): A ∧ B 
∈ B by induction hypothesis, so A 
∈ B

–
Γ �i A

Γ �i A ∨ B
(∨il): A 
∈ B by induction hypothesis, so A ∨ B 
∈ B

–
Γ �i A ∨ B Γ, A �i C Γ, B �i C

Γ �i C
(∨e): by induction hypothesis on Γ, A �

C we have C 
∈ B

–
Γ �i ⊥
Γ �i F

(⊥i): by induction hypothesis we have ⊥ 
∈ B which is absurd, so

F 
∈ B
�

Lemma15. For all derivable judgements Γ �c F on ⊥-formulae we have F 
∈
B.

Proof. By induction on Γ �c F . The proof is similar to that of the previous
lemma, so we only treat the case of the rule (⊥c):

–
Γ, F → ⊥ �c ⊥

Γ �c F
(⊥c): by induction hypothesis we have ⊥ 
∈ B which is

absurd, so F 
∈ B
�

Proposition16. In all derivations of judgements P-IPC and P-CPC, there is
no occurrence of the rule (⊥i) neither of the rule (⊥c).

Proof. In this proof, Γ � F will stand indifferently for Γ �i F and for Γ �c F .
The rule (⊥i) or the rule (⊥c) appears in the derivation of Γ � F if some
judgements of the form Γ � ⊥ appear in the derivation. This never happens
according to the propositions 14 and 15 because ⊥ ∈ B. �

Observe that the symbol ⊥ can appear in some derivable judgement like
� �∨⊥. But the symbol ⊥ do not have the same significance as in intuitionistic or
classical systems: without the absurdity rules, ⊥ is an harmless formal constant.

8 Conclusion

We have established that the minimal propositional logic is implicitly pedagog-
ical. Of course, the same question can be asked for stronger systems such as
first-order logic, second-order propositional calculus and real-size systems like
Peano arithmetics. Since pedagogical systems are intrinsically positive (i.e. ex-
empt of negation), one may expect important changes in the pedagogical ver-
sions of systems in which absurdity is definable (such as ∀α.α in the second-order
propositional calculus, or 0 = 1 in arithmetics).
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