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Abstract: After an introduction on the history of polycyclic aromatic compounds,
recent advances in the theory of benzenoids are briefly reviewed. Then using systems
with 4, 5, or 6 benzenoid rings for illustration, the partition of the P π-electrons among
the rings of the benzenoid is presented, followed by a different way of examining the
distribution of these π-electrons which is called the signature of the benzenoid, con-
sisting in six integers from s6 to s1. The P π-electrons are divided between the two
sums s6 + s5 + s2 + s1 and s4 + s3 characterizing thereby the closeness of benzenoids
to all-resonant structures according to Clars theory.
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1 Introduction: Aromatic compounds, benzenoids, and
perfect matchings (Kekulé structures)

In order to understand better the importance of this topic for chemistry, a his-
torical preamble is needed. In the second half of the 19th century chemistry
blossomed from an empirical-technological trade to a real science. A brief time
before the end of the 18th century, in England, Dalton advanced his atomic the-
ory, Priestley discovered oxygen, Davy discovered how to isolate alkaline metals
by electrolysis of their molten chlorides, and Faraday formulated the laws of elec-
trochemistry; and in France, Lavoisier introduced scientific terms and notation
for chemical elements, substances, and reactions. By showing that the phlogis-
ton theory had no scientific basis, Lavoisier removed one of the dogmas inherited
from the dark ages of alchemy, but with his execution by guillotine during the
French Revolution, France lost much of its impact in chemistry. Contributions
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from Sweden (with Berzelius and Scheele) were important, but the greatest ad-
vances were made by German chemists. We will start by mentioning Whler, who
was responsible for removing another dogma about the vital force, which was
believed to be the only way for making organic substances, and Liebig, who put
forward the method for determining by chemical analysis the constitutional for-
mulas of organic compounds, and who discovered that fertilizers could improve
substantially the yield of agricultural crops. Later, at the beginning of the 20th
century it was again thanks to discoveries by German chemists (Ostwald, Haber,
and Bosch) that nitrogen fertilizers could be made from air and water.

It was around 1850 that most organic compounds were shown to react pre-
dictably according to the ratio between the numbers of hydrogen and carbon
atoms, which could attain a maximum value for a certain composition. For
acyclic hydrocarbons, such a maximum value corresponded to formula CnH2n+2

and these saturated alkanes could react only by substituting some of the hydro-
gens by other atoms such as halogens or oxygen. At lower C/H ratios, analogous
acyclic hydrocarbons behaved differently, namely by adding hydrogens (or halo-
gens) to attain the maximum ratio, and were termed unsaturated. Chemists
were puzzled, however, by a group of substances that behaved puzzlingly: al-
though they were hydrogen-poor, they did not react by addition but rather by
substitution. In the absence of a class name based on chemical structure, at that
time chemists designated them by the term aromatic because most of the known
representatives at that time (e. g. benzene C6H6 –discovered by Faraday around
1820–, toluene, or benzaldehyde) had distinct aromas. Nowadays this term aro-
matic compounds continues to be used but it denotes just those compounds
containing a certain type of chemical bonding without any connection to smell.

Kekulé was responsible for solving around 1860 this problem. He had already
proved that carbon atoms are tetravalent, and he argued that unsaturated or-
ganic compounds possessed double or triple carbon-carbon bonds that could
become saturated by adding two or four hydrogen atoms, respectively. However,
when alternating single and double bonds (called conjugated double bonds) oc-
curred in a cyclic compound, the effect was a special type of bonding (present
in benzene, the prototype of aromatic compounds), resulting in the tendency to
react readily by substitution rather than by addition, which occurred only under
harsh conditions. In 1860, Kekulé organized in Karlsruhe the first international
chemical congress, where Cannizzaros lecture about Avogadros previously ad-
vocated and forgotten ideas helped to elucidate the difference between atoms
and molecules as the smallest particles of matter. As a consequence, the atomic
weights of elements could be put on a true basis, and this helped Mendeleev
to elaborate his Periodic System of elements. During the two decades preceding
the 2nd World War a convergent evolution of quantum theories in physics and
chemistry put Kekulés ides on firm scientific ground, thanks to Linus Pauling in
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USA, Robert Robinson in England, and Erich Hckel in Germany. The delocal-
ized sextet of π-electrons in the two possible Kekulé structures of benzene (1)
are said to be resonant and contribute equally to describing the true distribu-
tion of these electrons in the molecule. Now chemists were on the right track to
understand molecular structure, to predict all possible isomers (substances with
a given molecular formula but with different structures and properties, origi-
nating in various ways of connecting atoms). In turn, this allowed chemists to
develop new medicines, dyestuffs, fertilizers, detergents, plastics, textile fibers,
elastomers, construction materials, etc.

Benzenoid hydrocarbons (benzenoids, for short) have fused (condensed) six-
membered rings when two rings share one CC bond. The simplest pair of isomeric
benzenoids share the molecular formula C14H10 involving three condensed rings
and are called anthracene (2) with linearly-used rings, and phenanthrene with
angularly-fused rings or kinked fusion (3).

Figure 1: Benzene (1), anthracene (2), and phenanthrene (3)

An intermezzo about organic chemical formulas: hydrogen atoms are usu-
ally omitted for simplicity, as they are easy to place such that carbon atoms
are always tetravalent (or in graph-theoretical terms, whenever a graph vertex
symbolizing a carbon atom has vertex degrees lower than four). A line (graph
edge) symbolizes a pair of shared electrons between two atoms. Kekulés pair
of benzene formulas indicate that there are two possibilities for this sharing so
that the three double bonds (six π-electrons) are delocalized over the whole
ring, making this π-electron sextet reluctant to addition and prone to substitu-
tion reactions that conserve this sextet. Non-aromatic substances have double
bonds that are shorter (1.33 Å) than single bonds (1.54 Å), but benzene has six
equally long bonds (1.40 Å). This electronic delocalization stabilizes aromatic
substances, making them resistant to heat or oxidizers that destroy non-aromatic
substances.

From the approximately 30 million known substances recorded till now in the
Chemical Abstracts databank, about half have aromatic rings (although hydro-
carbons are only a minority among them). All constituents of genes (DNA, RNA)
contain heterocyclic aromatic systems, and some of the amino acids essential to
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proteins and life have aromatic rings. The most stable plastics are those with
aromatic systems. To understand the chemistry of organic compounds, chemists
consider them as being derived from the simplest organic substances, namely
hydrocarbons (composed only of C and H atoms); hydrogens may be substi-
tuted by other atoms or groups, and carbon atoms may be replaced by other
atoms (named heteroatoms) such as nitrogen. The importance of polycyclic aro-
matic hydrocarbons is also connected with the fact that some benzenoids such as
benzopyrene (present in tobacco smoke and in exhaust gases) are carcinogenic.

A carbon atom in a polycyclic aromatic hydrocarbon may be connected to
two carbon atoms and a hydrogen atom, or to three carbon atoms. A C–H group
must be a part of a single ring, but a carbon atom with no attached hydrogen may
belong either to two rings (called cata-condensed or cata-fused rings) or to three
rings (called peri-condensed or peri-fused rings). Benzene (1), anthracene (2),
phenanthrene (3) and triphenylene (4) are all examples of catafusenes, whereas
pyrene (5) or perylene (6) exemplify perifusenes.

Figure 2: Triphenylene (4), pyrene (5), and perylene (6)

Another way of viewing cata/peri-condensation of benzenoids involves the
inner dual of graphs formed by vertices at the centers of hexagons and by edges
connecting vertices corresponding to rings sharing a CC bond: catafusenes have
acyclic inner duals (dualists) whereas perifusenes have dualists with triangles.

Chemists had found that phenanthrene (3) was more stable than its isomer
anthracene (2). Pauling correlated this difference with the fact that there exist
five Kekulé structures (also called resonance structures) of phenanthrene, while
there are only four for anthracene. In graph theory, Kekulé structures are equiv-
alent to perfect matchings or to 1-factors of the corresponding graphs. From the
ratio between the number of Kekulé structures in which a particular CC bond
was double and the total number of all Kekulé structures, Pauling derived the
bond order that correlated well with experimentally determined bond lengths in
benzenoids.

For more than 45 years, the present authors have been interested in chemi-
cal applications of graph theory and in aromaticity. The first author had pub-
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lished in 1959 an article in Romanian language involving both these topics
[Balaban 1959]. On the advice of his childhood friend, Silviu Teleman, he con-
tacted Frank Harary, with whom he later collaborated in ten joint publications.
Among mathematicians from Romania, he collaborated with Professors Solomon
Marcus and Ioan Tomescu. Joint publications with the latter mathematician
[Balaban and Tomescu 1983]-[Balaban and Tomescu 1989] involved problems as-
sociated with polycyclic benzenoids, in particular the definition of isoarith-
mic cata-condensed benzenoids [Balaban and Tomescu 1983]: they are not only
isokekulan (same number K of resonance structures) but, because their 3-digit
codes (see further) differ only in the permutation of digits 1 and 2, they have
exactly the same electronic properties, in particular there is a one-to-one corre-
spondence between each of their rings.

2 Hidden treasures in Kekulé structures

There is something in common between the Kekulé valence structures and the
molecular graphs. At first sight both appear simple and straightforward, if not
simplistic, representations of molecules, but in fact both have hidden subtitles
that unsuspected onlookers remain mostly unaware of, despite repeated warn-
ing to the contrary. About 30 years ago Prelog has written the following mostly
overlooked message, just a few months before getting 1975 Nobel Prize in Chem-
istry, in the Foreword to the book on applications of graph theory to chemistry
(edited by one of the present authors), [Balaban 1976]: Pictorial representa-
tions of graphs are so easily intelligible that chemists are often satisfied with
inspecting and discussing them without paying too much attention to their alge-
braic aspects, but it is evident that some familiarity with the theory of graphs is
necessary for deeper understanding of their properties. More recently the other
author of this article has written a sizable review on aromaticity in polycyclic
conjugated hydrocarbons [Sylvester 1878] which summarizes the fruits of ex-
ploring the combinatorial and the topological properties of the Kekulé valence
structures, thus emphasizing the point of view of the Discrete Mathematics to-
wards Chemistry, which relates more closely to the valence bond (VB) approach
of Quantum Chemistry, rather than to the customary molecular orbital (MO)
Quantum Chemistry. The main message of that review was that Kekulé valence
structures deserve, even today, much more attention that most chemists have
been granting them in the past.

Over 100 years ago, James Joseph Sylvester [Sylvester 1878] the first pro-
fessor of Mathematics at the Johns Hopkins University and the founder of the
American Journal of Mathematics, was fascinated by combinatorial and topolog-
ical properties of Kekulé valence structures, [Kekulé 1865],[Kekulé 1866], which
according to him thus opened a novel area of applied mathematics, known as
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Graph Theory, [Harary 1969]-[Honsberger 1979]. In fact the term graph, for the
particular mathematical objects that today form the Graph Theory, has been
proposed by Sylvester, and it follows from his interest in Kekuléan diagrams,
which represented a chemical graphical notation, from which term graph was
adopted. Chemists had immediately recognized the merits of Kekulé s structural
formula for benzene (extended by Erlenmeyer [Erlenmeyer and Liebigs 1866] to
systems of fused benzene rings, and by Bamberger in [Bamberger 1758] and
[Bamberger 1893] to aromatic heterocycles) and had acknowledged their appre-
ciation of the significance of this accomplishment by inaugurating its celebration
on the occasion of the 25th anniversary of Kekulés paper on the structure of ben-
zene – an event that is not often seen in science, see [Kekulé’25-Conference] and
[Borman 1993].

Kekulé structures have played a dominant role in theoretical organic chem-
istry for over a century and the formed the basis of the early quantum chemical
calculations on benzenoid hydrocarbons, initiated by Pauling and Wheland in
particular, [Pauling 1939]-[Pauling and Wheland 1933]. The Pauling bond or-
ders [Pauling et al. 1935],[Sedlar et al. 2006] (simply constructed as the ratio
between the count for any CC bond – how many times it appears as C=C
in the set of K Kekulé valence structures for a benzenoid hydrocarbon – and
K) illustrate one of the hidden treasures of Kekulé valence structures. However,
despite the considerable attention that Kekulé valence structures received over
this long history, few people suspected that there may be additional treasures
hidden in Kekulé valence structures that had to be yet discovered. And indeed, it
took well over 100 years for new additional interesting and intriguing properties
of Kekulé valence structures to surface, [Balaban 1980]-[Klein and Randić 1987]
We have summarized in Table 1 several of these relatively recent (in view of the
long history of Kekulé valence structures) hidden treasures of Kekulé valence
structures. One of the latest of these is the π-electron ring partitions – quanti-
ties that bear some conceptual similarity to the celebrated Pauling bond orders,
[Randić 2004a],[Randić 2004b].

3 The π-electron ring partition for rings of benzenoids

The π-electron ring partition assigns to each ring of benzenoid hydrocarbons a
portion of all π-electrons of the molecule, such that when the total π-content
of all rings is counted, one obtains the number N of the π-electrons of the
system. Each C=C bond carries two π-electrons which are assigned to a ring
if this C=C bond is not shared with adjacent rings, otherwise it contributes
a single π-electron to the ring. For each ring, contributions arising from all
individual Kekulé valence structures (resonance structures) are added and the
total is divided by the number K of Kekulé valence structures in order to obtain
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No. Treasure Relates to Reference
1 Pauling bond or-

ders
Bond order-Bond
length relationship

Pauling [Pauling 1939]

2 Clar valence struc-
ture

Aromatic π-sextet; 6n

π-electrons rule
Clar [Clar 1972]

3 Conjugated circuits 4n + 2 and 2n rules for
aromaticity;Resonance
energy expressions

Randić
[Randić 1976]
-[Randić 2004b]

4 Innate degree of
freedom

For solving the inverse
Clar structures prob-
lem

Randić, Klein
[Randić and Klein 1985],
[Klein and Randić 1987]

5 The count of all
conjugated circuits

Single Kekulé struc-
ture has information
on all Kekulé struc-
tures

Gutman, Randić
[Gutman and Randić 1979],
cite42

6 Numerical Kekulé
valence structures

π-Electron ring parti-
tion

Randić, Balaban
[Randić and Balaban 2004a]
-[Gutman et al. 2005]

7 Numerical ben-
zenoid formula,
ring signature

Partitioning of the π-
electron ring

Randić, Balaban
[Randić and Balaban a],
[Randić and Balaban b]

The hidden “treasures” of Kekulé valence structures of conjugated systems

Table 1: The treasures of Kekulé valence structures

the π-electron ring π-electron partition for this ring. Thus one can associate
with each polycyclic conjugated hydrocarbon a single numerical Kekulé valence
structure, which may replace the set of K geometrical Kekulé valence structures.

In a series of papers, [Randić and Balaban 2004a]-[Gutman et al. 2005], the
present authors and collaborators have examined many benzenoid and non-
benzenoid conjugated hydrocarbons and reported on a number of regularities
for the π-electron ring contents. For example, the rings associated with Clars
aromatic π-electron sextets show larger π-ring partitions, the rings involving mi-
grating sextets have intermediate π-ring partitions, and the so-called empty rings
of Clar have the smallest values of the π-ring content. In passing, one should men-
tion that Gutman showed how in some benzenoids from the perylene family, the
empty rings have a substantial π-electron contribution, [Gutman et al. 2004a].
Similarly, the terminal rings in cata-condensed benzenoids have larger π-electron
ring partitions.

In this article we look into structural explanations for these earlier observed
regularities. Our tool for exploring the structural origin of π-ring partitions is
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to count the distribution of the ring partitions themselves! Specifically, we count
how many of the seven possible types of benzene rings contribute to each par-
ticular ring partition. As different benzenoid ring types we consider benzenoid
rings contributing with different numbers of π-electrons to the ring, which can
vary from six (for terminal rings of cata-condensed benzenoids) to zero (for a
central branching ring, such as the central ring of triphenylene, 4). As is not un-
common in theoretical studies, although we set a well defined goal as the object
of our explorations, we obtain as a bonus an unexpected result: a unique char-
acterization of a benzenoid molecule as a whole solely based on partitioning of
π-electrons to its rings. This is an interesting result which deserves attention and
which by its elegance (or beauty) may qualify to be added as entry 7 to Table 1
as an additional and the latest treasure hidden in Kekulé valence structures for
so many years.

4 Partitions of π-electrons in benzenoids

Whereas all cata-condensed benzenoids (catafusenes) with the same number h

of hexagonal rings are isomeric, this is not the case for perifusenes, whose molec-
ular formulas depend also on the number a of internal carbon atoms. Cata-
fusenes have a = 0. Their notation 3-digit notation consists in 0 (for linear
condensation as in 1) and 1 or 2 or kinked condensation (as in 2), provided
that the resulting number from sequential listing of these digits is the small-
est possible, [Balaban and Harary 1968]-[Balaban et al. 1986]. A non-branched
catafusene whose notation has no zero is a fibonacene, [Balaban 1989]. For ben-
zenoids that are stable molecules, a must be an even number, otherwise there
can be no Kekuléan resonance structure, and the corresponding benzenoid is an
unstable free radical. A benzenoid with h hexagonal rings has molecular formula
C4h+2−aH2h+4−a. Since each carbon atom contributes with one non-hybridized
π-electron to the total number of delocalized electrons of the benzenoid, we de-
note this number by P . With the above convention for the partition of electrons
among benzenoid rings, it is easy to convert geometrical structures of benzenoid
rings (individual resonance formulas or Kekulé valence structures) into numeri-
cal ones. For the two catafusenes 2 and 3, both of which have 14 π-electrons, the
result is presented in Fig. 1. One can see that in both cases the marginal rings
are ricer in π-electrons than the middle ring, but for phenanthrene this unequal
distribution is more pronounced than in anthracene. Eric Clar proposed a theory
illustrating with sextet of π-electron circles an uneven π-electron distribution,
and the corresponding Clar structures are presented as the right-most formulas
of Fig. 3. The arrow illustrates Clars migrating π-electron sextet. The unique
double bond of phenanthrene in the Clar formula is indeed shorter than all other
bonds, which is also in agreement with the Pauling bond order.
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The π-electron partition between rings resulting from the four resonance
structures of anthracene (upper row) and the five resonance structures of

phenanthrene (lower row).

Figure 3: The π-electron partition between rings

No. h K Ring Partition R6 R5 R4 R3 R2 R1 R0

2 3 4 AA 4.75 1 1 2 0 0 0 0
4 B 4.50 0 2 2 0 0 0 0

12 2 4 6 0 0 0 0

3 3 5 AA 5.20 2 2 1 0 0 0 0
5 B 3.60 1 0 1 2 1 0 0

15 5 4 3 2 1 0 0

For anthracene (2) and phenanthrene (3), the first two lines contain pij values,
and the third line (boldface) provides h, K and Ri values.

Table 2: pij , h, K, Ri values for anthracene and phenanthrene

In Table 2 we present in a different form the information conveyed by Fig. 3.
The number of Kekulé structures is denoted by K, and the rings are designed by
capital letters starting with A for the marginal rings. Entries pij in columns 6
through 12 (where j corresponds to the row number for each type of ring) indicate
for each ring how many times this ring is assigned 6 through 0 π-electrons in all
K resonance structures. Then relationships (1) – (4) hold for partitions Pj and
other numbers from Table 2.

Pj =
∑

i ipij/K (1)
∑

j Pj = P = 4h + 2 − a (2)
∑

j pij = Ri (3)
∑

i Ri = hK (4)

The sequence of Ri numbers, which are indicated in boldface characters on
the last row for each benzenoid, can be converted into another sequence that we
call the ri sequence, by division with the K value. Then the ri sequence serves
for obtaining finally the si sequence or the signature of the benzenoid, according
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No. h K R6 R5 R4 R3 R2 R1 R0 r6 r5 r4 r3 r2 r1 r0 s6 s5 s4 s3 s2 s1

2 3 4 2 4 6 0 0 0 0 0.5 1.0 1.5 0.0 0.0 0.0 0.0 3.0 5.0 6.0 0.0 0.0 0.0
3 3 5 5 4 3 2 1 0 0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 6.0 4.0 2.4 1.2 0.4 0.0

The Ri, ri, and si sequences for anthracene (2) and phenanthrene (3).

Table 3: Ri, ri, si sequences for anthracene and phenanthrene

to relationships (5) – (8).

ri = Ri/K (5)
∑

i ri = h (6)
si = iri (7)
∑

i si = P (8)

Thus, we obtain the total number P of π-electrons from entries pij of Table
2 in two different ways: from the row sums providing the partition, and from the
column sums providing the signature. Table 3 summarizes for 2 and 3 the above
relationships.

For exemplifying better the partitions of π-electrons we shall use catafusenes
and perifusenes with four to six benzenoid rings, and when several isoarithmic
systems exist, we shall discuss only one of them. In the following section, after
the model of anthracene and phenanthrene, the structures of catafusenes will
be described by means of their dualists, whereas perifusenes will be shown with
their rings.

In Fig. 4 one can see on the left-hand side the dualists of all five possible
tetracatafusenes. There are two isoarithmic tetracatafusenes with K = 8 reso-
nance structures, having notation [12] and [11], respectively; from them, only one
denoted as 9, will be included in the following discussion because their electronic
properties are identical (no other isoarithmic benzenoids will be shown hence-
forth). On the right-hand side are presented dualists of pentacatafusenes, with
rings denoted by capital letters starting from one endpoint (vertex with degree
1); non-branched catafusenes 10 – 15 are on top and two branched catafusenes
(16, 17) follow. Fig. 5 contains on the left-hand side non-branched hexacata-
fusenes and branched isomers on the right-hand side. The Ri sequences for all
catafusenes and their partitions are presented in Table 4. The ordering of ben-
zenoids follows increasing K values, and in Tables 4 and 5 the notation with
boldface numbers is not always in agreement with this ordering because we sep-
arate in figures and tables the branched from the non-branched catafusenes, and
perifusenes with two internal vertices from those with four internal vertices.

Structures of perifusenes with h = 5 and 6 benzenoid rings are shown in Fig.
6. Table 5 contains partitions Pi and Ri sequences for non-isoarithmic perifusenes
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Dualists of tetracatafusenes (left-hand part) and pentacatafusenes (right-hand
part, with non-branched systems above the dotted line and branched isomers

below it).

Figure 4: Dualists of tetracatafusenes and pentacatafusenes

with h = 4, 5, and 6 benzenoid rings.
For catafusenes with 4, 5, and 6 benzenoid rings, in Table 6 we repeat in

columns 4 – 10 the Ri sequence (its row sum is hK), then the ri sequence
(its row sum is h), and in columns 18 – 23 the si sequence (its row sum is P ,
the number of π-electrons and carbon atoms). The next column labeled z + 1
indicates one plus the number of zeros in the 3-digit notation (it was found that
this is a simple parameter correlating with many properties of catafusenes). The
last three columns indicate pairwise sums among terms in the si sequence, whose
importance will be discussed in the next section. A similar presentation follows
in Table 7 for perifusenes with 4, 5, and 6 benzenoid rings, with the difference
that instead of the column with z+1 values one has a column with the number P

of π-electrons (kekuléan tetraperifusenes and pentaperifusenes can have only two
internal vertices, but hexaperifusenes can have either 2 or 4 internal vertices).
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Dualists of non-branched (left-hand part) and branched (right-hand part) of
hexacatafusenes.

Figure 5: Dualists of non-branched and branched hexacatafusenes

5 A new metric for benzenoids based on sums from their
signature

An interesting observation is that for isomeric haxacatafusenes or hexaperi-
fusenes there is a good correlation between the sums s6 + s5 and s4 + s3 as
seen in Figures 7 and 8. The non-branched catafusenes are grouped at the top
left half of the straight line, while the branched isomers are on the lower right
of that line. A perfectly linear correlation with slope –1 exists between the sums
S1 = s6 + s5 + s2 + s1 and S2 = s4 + s3, based on their si sequence. Among
other possible divisions of P into two unequal parts, this seems to be the best
one. This means that the P (= S1 + S2) π-electrons are divided between these
two sums, with the S1-rich and S2-poor benzenoids having many Clar sextets,
whereas systems with few Clar sextets have low S1 values and high S2 values.
Systems with many Clar sextets have a high branching degree (which increases
the numbers composing S1 and decreases the numbers composing S2). Systems
with few Clar sextets (such as acenes or perifusenes with long acenic tails ar-
ranged in just a few horizontal layers of rings) have high S2 values and low S1
values.
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Structures of non-isoarithmic pentaperifusenes (top row) and hexaperifusenes
with two internal vertices (2nd and 3rd rows) or four internal carbon atoms

(bottom row).

Figure 6: Structures of non-isoarithmic pentaperifusenes and hexaperifusenes

There is a very approximate linear correlation between S1 and the number K

of Kekulé structures. Whereas K values have a fairly high degeneracy, the sums
S1 and S2 have a very low degeneracy. Ordering of benzenoids by K values is
imprecise, but now we have a new metric involving a much better sorting criterion
based on these sums. Of course, there is no disagreement between sorting by S1
and S2. This ordering provides a reliable classification of isomeric benzenoids,
with very low degeneracy, allowing a closer insight into their complexity.

1526 Balaban A.T., Randic M.: Perfect Matchings in Polyhexes ...



Figure 7: Plot of s4+s3 versus s6+s5 for hexacatafusenes

Figure 8: Plot of perifusenes with 4 rings (unique point), 5 rings (three
points), 6 rings with four internal carbons (two points) and 6 rings with two

internal carbons (right-most line)
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in rings of polycyclic conjugated hydrocarbons. Part 3. Perifusenes”; New J. Chem.
28 (2004), 800-806.
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[Randić 1977b] Randić, M.: “A graph theoretical approach to conjugation and reso-
nance energies of hydrocarbons”; Tetrahedron, 33 (1977), 1905-1920.
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electrons in rings of polycyclic conjugated hydrocarbons. Part 4. Benzenoids with
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Kekulé structure”; J. Math. Chem. 36 (2004), 271-279.

[Wheland 1955] Wheland, G. W.: “Resonance in Organic Chemistry”; Wiley, New
York, 1955.

[Wilson 1972] Wilson, R. J.: “Introduction to Graph Theory”; Oliver and Boyd, Ed-
inburgh, 1972;

1530 Balaban A.T., Randic M.: Perfect Matchings in Polyhexes ...



Appendix: Tables

No. h K Ring Partition R6 R5 R4 R3 R2 R1 R0

7 4 5 AA 4.600 1 1 3 0 0 0 0
BB 4.400 0 2 3 0 0 0 0

20 2 6 12 0 0 0 0

8 4 7 AA 4.857 2 2 3 0 0 0 0
B 4.571 0 4 3 0 0 0 0
C 3.286 1 0 1 3 2 0 0
D 5.286 3 3 1 0 0 0 0

28 6 9 8 3 2 0 0

9 4 8 AA 5.125 3 3 2 0 0 0 0
BB 3.875 2 0 2 3 1 0 0

32 10 6 8 6 2 0 0

4 4 9 AAA 5.333 4 4 1 0 0 0 0
B 2.000 1 0 0 1 3 3 1

36 13 12 3 1 3 3 1

10 5 6 AA 4.500 1 1 4 0 0 0 0
BB 4.333 0 2 4 0 0 0 0
C 5.167 0 3 4 0 0 0 0

30 2 8 20 0 0 0 0

11 5 9 A 4.667 2 2 5 0 0 0 0
B 4.444 0 4 5 0 0 0 0
C 4.444 0 4 5 0 0 0 0
D 3.111 1 0 1 4 3 0 0
E 5.333 4 4 1 0 0 0 0

45 7 14 17 4 3 0 0

12 5 10 AA 4.000 3 3 4 0 0 0 0
BB 4.600 0 6 4 0 0 0 0
C 3.000 1 0 1 4 4 0 0

50 7 18 17 4 4 0 0

13 5 11 A 4.818 3 3 5 0 0 0 0
B 12.500 0 6 5 0 0 0 0
C 3.545 2 0 2 5 2 0 0
D 4.000 3 0 3 4 1 0 0
E 5.091 4 4 3 0 0 0 0

55 12 13 18 9 3 0 0

14 5 12 AA 5.250 5 5 2 0 0 0 0
BB 3.417 2 0 2 5 3 0 0
C 4.667 0 8 4 0 0 0 0

60 14 18 12 10 6 0 0

15 5 13 AA 5.154 5 5 3 0 0 0 0
BB 3.769 3 0 3 5 2 0 0
C 4.154 4 0 4 4 1 0 0

65 20 10 16 14 5 0 0

Table 4: Partitions and Ri sequences for catafusenes with h = 4,5,6 rings
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No. h K Ring Partition R6 R5 R4 R3 R2 R1 R0

16 5 13 A 4.923 4 4 5 0 0 0 0
B 4.615 0 8 5 0 0 0 0
C 1.692 1 0 0 1 4 5 2
DD 5.385 6 6 1 0 0 0 0

65 17 24 12 1 4 5 2

17 5 14 A 5.071 5 5 4 0 0 0 0
B 4.071 4 0 4 5 1 0 0
C 2.286 2 0 0 2 5 4 1
D 5.286 6 6 2 0 0 0 0
E 5.286 6 6 2 0 0 0 0

70 23 17 12 7 6 4 1

18 6 7 AA 4.429 1 1 5 0 0 0 0
BB 4.286 0 2 5 0 0 0 0
CC 4.286 0 2 5 0 0 0 0

42 2 10 30 0 0 0 0

19 6 11 A 4.545 2 2 7 0 0 0 0
B 4.364 0 4 7 0 0 0 0
C 4.364 0 4 7 0 0 0 0
D 4.364 0 4 7 0 0 0 0
E 3.000 1 0 1 5 4 0 0
F 5.364 5 5 1 0 0 0 0

66 8 19 30 5 4 0 0

20 6 13 A 4.692 3 3 7 0 0 0 0
B 4.462 0 6 7 0 0 0 0
C 4.462 0 6 7 0 0 0 0
D 2.846 1 0 1 5 6 0 0
E 4.615 0 8 5 0 0 0 0
F 4.923 4 4 5 0 0 0 0

78 8 27 32 5 6 0 0

21 6 14 A 4.643 3 3 8 0 0 0 0
B 4.429 0 6 8 0 0 0 0
C 4.429 0 6 8 0 0 0 0
D 3.357 2 0 2 7 3 0 0
E 4.071 4 0 4 5 1 0 0
F 5.071 5 5 4 0 0 0 0

84 14 20 34 12 4 0 0

22 6 15 AA 4.800 4 4 7 0 0 0 0
BB 4.533 0 8 7 0 0 0 0
CC 3.667 3 0 3 7 2 0 0

90 14 24 34 14 4 0 0

23 6 16 AA 5.313 7 7 2 0 0 0 0
BB 3.188 2 0 2 7 5 0 0
CC 4.500 0 8 8 0 0 0 0

96 18 30 24 14 10 0 0

Table 4: Partitions and Ri ... (cont.)
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No. h K Ring Partition R6 R5 R4 R3 R2 R1 R0

24 6 17 A 4.882 5 5 7 0 0 0 0
B 4.588 0 10 7 0 0 0 0
C 3.118 2 0 2 7 6 0 0
D 4.706 0 12 5 0 0 0 0
E 3.471 3 0 3 7 4 0 0
F 5.235 7 7 3 0 0 0 0

102 17 34 27 14 10 0 0

28 6 17 A 4.706 4 4 9 0 0 0 0
B 4.471 0 8 9 0 0 0 0
C 4.471 0 8 9 0 0 0 0
D 1.529 1 0 0 1 5 7 3
E 5.412 8 8 1 0 0 0 0
F 5.412 8 8 1 0 0 0 0

102 21 36 29 1 5 7 3

25 6 18 A 4.833 5 5 8 0 0 0 0
B 4.556 0 10 8 0 0 0 0
C 3.444 3 0 3 8 4 0 0
D 4.278 6 0 6 5 1 0 0
E 3.722 4 0 4 7 3 0 0
F 5.167 7 7 4 0 0 0 0

108 25 22 33 20 8 0 0

26 6 19 A 5.105 7 7 5 0 0 0 0
B 3.947 5 0 5 7 2 0 0
C 3.684 4 0 4 8 3 0 0
D 4.632 0 12 7 0 0 0 0
E 3.368 3 0 3 8 5 0 0
F 5.263 8 8 3 0 0 0 0

114 27 27 27 23 10 0 0

29 6 19 A 4.789 5 5 9 0 0 0 0
B 4.526 0 10 9 0 0 0 0
C 3.737 4 0 4 9 2 0 0
D 2.421 3 0 0 3 7 5 1
E 5.263 8 8 3 0 0 0 0
F 5.263 8 8 3 0 0 0 0

114 28 31 28 12 9 5 1

30 6 19 AA 4.947 6 6 7 0 0 0 0
BB 4.632 0 12 7 0 0 0 0
C 1.421 1 0 0 1 5 8 4
D 5.421 9 9 1 0 0 0 0

114 22 45 29 1 5 8 4

31 6 20 A 4.900 6 6 8 0 0 0 0
B 4.600 0 12 8 0 0 0 0
C 1.900 2 0 0 2 7 6 3
D 5.350 9 9 2 0 0 0 0
E 4.150 6 0 6 7 1 0 0
F 5.050 7 7 6 0 0 0 0

120 30 34 30 9 8 6 3

Table 4: Partitions and Ri ... (cont.)
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No. h K Ring Partition R6 R5 R4 R3 R2 R1 R0

27 6 21 AA 5.143 8 8 5 0 0 0 0
BB 3.810 5 0 5 8 3 0 0
CC 4.048 6 0 6 7 2 0 0

126 38 16 32 30 10 0 0

32 6 22 A 5.227 9 9 4 0 0 0 0
B 3.500 4 0 4 9 5 0 0
C 4.727 0 16 6 0 0 0 0
D 1.818 2 0 0 2 7 8 3
E 5.364 10 10 2 0 0 0 0
F 5.364 10 10 2 0 0 0 0

132 35 45 18 11 12 8 3

33 6 22 AA 5.091 8 8 6 0 0 0 0
BB 4.000 6 0 6 8 2 0 0
C 2.591 4 0 0 4 8 5 1
D 5.227 9 9 4 0 0 0 0

132 41 25 28 20 12 5 1

34 6 23 A 5.714 9 9 5 0 0 0 0
B 3.696 5 0 5 9 4 0 0
C 4.348 8 0 8 6 1 0 0
D 2.174 3 0 0 3 8 7 2
E 5.304 10 10 3 0 0 0 0
F 5.304 10 10 3 0 0 0 0

138 45 29 24 18 13 7 2

35 6 24 AAAA 5.250 10 10 4 0 0 0 0
BB 2.500 4 0 0 4 9 6 1

144 48 40 16 8 18 12 2

Table 4: Partitions and Ri ... (cont.)
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h No. K ring Pi; Kh R6 R5 R4 R3 R2 R1 R0

4 5 6 A(2) 4.667 0 4 2 0 0 0 0
B(2) 3.333 0 1 1 3 1 0 0

24 0 10 6 6 2 0 0

5 6 9 A(4) 4.667 0 6 3 0 0 0 0
B 1.333 0 0 0 0 4 4 1

45 0 24 12 0 4 4 1

5 36 9 A 5.000 3 3 3 0 0 0 0
B 3.667 0 2 3 3 1 0 0
C 3.11 0 1 1 5 2 0 0
D 4.667 0 6 3 0 0 0 0
E 3.56 0 2 2 4 1 0 0

45 3 14 12 12 4 0 0

5 37 11 A 5.36 5 5 1 0 0 0 0
B 1.82 0 1 0 1 4 4 1
C(2) 4.73 0 8 3 0 0 0 0
D 3.36 0 2 2 5 2 0 0

55 5 24 9 6 6 4 1

6 38 9 A(2) 2.667 0 6 3 0 0 0 0
B(2) 4.667 0 6 3 0 0 0 0
C(2) 4.667 0 0 0 6 3 0 0

54 0 24 12 12 6 0 0

6 39 10 A(2) 4.600 0 6 4 0 0 0 0
B(2) 3.300 0 0 4 5 1 0 0
C(2) 3.100 0 1 1 6 2 0 0

60 0 14 18 22 6 0 0

6 40 12 A 4.750 3 3 6 0 0 0 0
B 4.000 0 3 6 3 0 0 0
C 4.500 0 6 6 0 0 0 0
D 1.42 0 0 0 0 6 5 1
E 4.667 0 8 4 0 0 0 0
F 4.667 0 8 4 0 0 0 0

72 3 28 26 3 6 5 1

6 41 12 A 4.750 3 3 6 0 0 0 0
B 4.500 0 6 6 0 0 0 0
C 3.42 0 2 3 5 2 0 0
D 3.000 0 1 1 7 3 0 0
E 4.667 0 8 4 0 0 0 0
F 3.667 0 3 3 5 1 0 0

72 3 23 23 17 6 0 0

6 42 13 A(2) 4.923 4 4 5 0 0 0 0
B(2) 3.769 0 3 5 4 1 0 0
C(2) 3.307 0 2 2 7 2 0 0

78 8 18 24 22 6 0 0

6 43 14 A(2) 5.071 5 5 4 0 0 0 0
B(2) 3.571 0 3 4 5 2 0 0
C 2.929 0 1 1 8 4 0 0
D 3.786 0 4 4 5 1 0 0

84 10 21 21 23 9 0 0

Table 5: Structures, partitions Pi, entries pij , and Ri sequences
of perifusenes with h = 4, 5, and 6
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h No. K ring Pi; Kh R6 R5 R4 R3 R2 R1 R0

6 44 14 A(2) 4.714 0 10 4 0 0 0 0
B(2) 3.500 0 3 3 6 2 0 0
C 3.857 0 4 5 4 1 0 0
D 1.714 0 0 1 1 6 5 1

84 0 30 20 17 11 5 1

6 45 15 A 5.200 6 6 5 0 0 0 0
B 3.400 0 3 3 6 3 0 0
C 4.800 0 12 3 0 0 0 0
D 1.264 0 0 0 0 6 7 2
E 4.678 0 10 5 0 0 0 0
F 4.678 0 10 5 0 0 0 0

90 6 41 19 6 9 7 2

6 46 15 A 5.200 6 6 3 0 0 0 0
B 3.600 3 0 3 6 3 0 0
C 3.867 0 4 6 4 1 0 0
D 3.200 0 2 2 8 3 0 0
E 3.467 0 3 3 7 2 0 0
F 4.667 0 10 5 0 0 0 0

90 9 25 22 25 9 0 0

6 47 16 A 4.938 5 5 6 0 0 0 0
B 3.813 0 4 6 5 1 0 0
C 3.125 0 2 2 8 4 0 0
D 4.750 0 12 4 0 0 0 0
E 2.063 0 2 0 2 6 5 1
F 5.313 7 7 2 0 0 0 0

96 12 32 20 15 11 5 1

6 48 16 A 4.938 5 5 6 0 0 0 0
B 4.625 0 10 6 0 0 0 0
C 1.563 0 1 0 1 5 7 2
D 3.375 0 3 3 7 3 0 0
E(2) 4.750 0 12 4 0 0 0 0

96 5 43 23 8 8 7 2

6 49 17 A 5.059 6 6 5 0 0 0 0
B 4.118 5 0 5 6 1 0 0
C 2.059 0 2 0 2 7 5 1
D(2) 4.706 0 12 5 0 0 0 0
E 3.353 0 3 3 8 3 0 0

102 11 35 23 16 11 5 1

6 50 17 A 5.059 6 6 5 0 0 0 0
B 3.647 0 4 5 6 2 0 0
C 3.588 0 4 4 7 2 0 0
D 4.706 0 12 5 0 0 0 0
E 1.706 0 1 0 1 6 7 2
F 5.412 8 8 1 0 0 0 0

102 14 35 20 14 10 7 2

6 51 20 A(2) 5.350 9 9 2 0 0 0 0
B(2) 1.850 0 2 0 2 7 7 2
C(2) 4.800 0 16 4 0 0 0 0

120 18 54 12 4 14 14 4

Table 5: Structures, partitions Pi ... (cont.)
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No. h K R6 R5 R4 R3 R2 R1 R0 r6 r5 r4 r3 r2 r1 r0 ...
4 4 5 2 6 12 0 0 0 0 0.400 1.200 2.400 0.000 0.000 0.000 0.000 ...
5 4 7 6 9 8 3 2 0 0 0.857 1.286 1.143 0.429 0.286 0.000 0.000 ...
6 4 8 10 6 8 6 2 0 0 1.250 0.750 1.000 0.750 0.250 0.000 0.000 ...
7 4 9 13 12 3 1 3 3 1 1.444 1.333 0.333 0.111 0.333 0.333 0.111 ...
8 5 6 2 8 20 0 0 0 0 0.333 1.333 3.333 0.000 0.000 0.000 0.000 ...
9 5 9 7 14 17 4 3 0 0 0.778 1.556 1.889 0.444 0.333 0.000 0.000 ...
10 5 10 7 18 17 4 4 0 0 0.700 1.800 1.700 0.400 0.400 0.000 0.000 ...
11 5 11 12 13 18 9 3 0 0 1.091 1.182 1.636 0.818 0.273 0.000 0.000 ...
12 5 12 14 18 12 10 6 0 0 1.167 1.500 1.000 0.833 0.500 0.000 0.000 ...
13 5 13 20 10 16 14 5 0 0 1.538 0.769 1.231 1.077 0.385 0.000 0.000 ...
14 5 13 17 24 12 1 4 5 2 1.308 1.846 0.923 0.077 0.308 0.385 0.154 ...
15 5 14 23 17 12 7 6 4 1 1.643 1.214 0.857 0.500 0.429 0.286 0.071 ...
16 6 7 2 10 30 0 0 0 0 0.286 1.429 4.286 0.000 0.000 0.000 0.000 ...
17 6 11 8 19 30 5 4 0 0 0.727 1.727 2.727 0.455 0.364 0.000 0.000 ...
18 6 13 8 27 32 5 6 0 0 0.615 2.077 2.462 0.385 0.462 0.000 0.000 ...
19 6 14 14 20 34 12 4 0 0 1.000 1.429 2.429 0.857 0.286 0.000 0.000 ...
20 6 15 14 24 34 14 4 0 0 0.933 1.600 2.267 0.933 0.267 0.000 0.000 ...
21 6 16 18 30 24 14 10 0 0 1.125 1.875 1.500 0.875 0.625 0.000 0.000 ...
22 6 17 17 34 27 14 10 0 0 1.000 2.000 1.588 0.824 0.588 0.000 0.000 ...
23 6 17 21 36 29 1 5 7 3 1.235 2.118 1.706 0.059 0.294 0.412 0.176 ...
24 6 18 25 22 33 20 8 0 0 1.389 1.222 1.833 1.111 0.444 0.000 0.000 ...
25 6 19 27 27 27 23 10 0 0 1.421 1.421 1.421 1.211 0.526 0.000 0.000 ...
26 6 19 28 31 28 12 9 5 1 1.474 1.632 1.474 0.632 0.474 0.263 0.053 ...
27 6 19 22 45 29 1 5 8 4 1.158 2.368 1.526 0.053 0.263 0.421 0.211 ...
28 6 20 30 34 30 9 8 6 3 1.500 1.700 1.500 0.450 0.400 0.300 0.150 ...
29 6 21 38 16 32 30 10 0 0 1.810 0.762 1.524 1.429 0.476 0.000 0.000 ...
30 6 22 35 45 18 11 12 8 3 1.591 2.045 0.818 0.500 0.545 0.364 0.136 ...
31 6 22 41 25 28 20 12 5 1 1.864 1.136 1.273 0.909 0.545 0.227 0.045 ...
32 6 23 45 29 24 18 13 7 2 1.957 1.261 1.043 0.783 0.565 0.304 0.087 ...
33 6 24 48 40 16 8 18 12 2 2.000 1.667 0.667 0.333 0.750 0.500 0.083 ...

Table 6: Sequences for catafusenes with h = 4,5,6 rings.
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... s6 s5 s4 s3 s2 s1 z + 1 s6 + s5 s4 + s3 s6521 No.

... 2.400 6.000 9.600 0.000 0.000 0.000 3 8.400 9.600 8.400 4

... 5.143 6.429 4.571 1.286 0.571 0.000 2 11.572 5.857 12.143 5

... 7.500 3.750 4.000 2.250 0.500 0.000 1 11.250 6.250 11.750 6

... 8.667 6.667 1.333 0.333 0.667 0.333 1 15.334 1.666 16.334 7

... 2.000 6.667 13.333 0.000 0.000 0.000 4 8.667 13.333 8.667 8

... 4.667 7.778 7.556 1.333 0.667 0.000 3 12.445 8.889 13.112 9

... 4.200 9.000 6.800 1.200 0.800 0.000 3 13.200 8.000 14.000 10

... 6.545 5.909 6.545 2.455 0.545 0.000 2 12.454 9.000 12.999 11

... 7.000 7.500 4.000 2.500 1.000 0.000 2 14.500 6.500 15.500 12

... 9.231 3.846 4.923 3.231 0.769 0.000 1 13.077 8.154 13.846 13

... 7.846 9.231 3.692 0.231 0.615 0.385 2 17.077 3.923 18.077 14

... 9.857 6.071 3.429 1.500 0.857 0.286 1 15.928 4.929 17.071 15

... 1.714 7.143 17.143 0.000 0.000 0.000 5 8.857 17.143 8.857 16

... 4.364 8.636 10.909 1.364 0.727 0.000 4 13.000 12.273 13.727 17

... 3.692 10.385 9.846 1.154 0.923 0.000 4 14.077 11.000 15.000 18

... 6.000 7.143 9.714 2.571 0.571 0.000 3 13.143 12.285 13.714 19

... 5.600 8.000 9.067 2.800 0.533 0.000 3 13.600 11.867 14.133 20

... 6.750 9.375 6.000 2.625 1.250 0.000 3 16.125 8.625 17.375 21

... 6.000 10.000 6.353 2.471 1.176 0.000 3 16.000 8.824 17.176 22

... 7.412 10.588 6.824 0.176 0.588 0.412 3 18.000 7.000 19.000 23

... 8.333 6.111 7.333 3.333 0.889 0.000 2 14.444 10.666 15.333 24

... 8.526 7.105 5.684 3.632 1.053 0.000 2 15.631 9.316 16.684 25

... 8.842 8.158 5.895 1.895 0.947 0.263 2 17.000 7.790 18.210 26

... 6.947 11.842 6.105 0.158 0.526 0.421 3 18.789 6.263 19.736 27

... 9.000 8.500 6.000 1.350 0.800 0.300 2 17.500 7.350 18.600 28

... 10.857 3.810 6.095 4.286 0.952 0.000 1 14.667 10.381 15.619 29

... 9.545 10.227 3.273 1.500 1.091 0.364 2 19.772 4.773 21.227 30

... 11.182 5.682 5.091 2.727 1.091 0.227 1 16.864 7.818 18.182 31

... 11.739 6.304 4.174 2.348 1.130 0.304 1 18.043 6.522 19.477 32

... 12.000 8.333 2.667 1.000 1.500 0.500 1 20.333 3.667 22.333 33

Table 6: Sequences for catafusenes ... (cont).
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No. h K R6 R5 R4 R3 R2 R1 R0 r6 r5 r4 r3 r2 r1 r0 ...
1 4 6 0 10 6 6 2 0 0 0.000 1.667 1.000 1.000 0.333 0.000 0.000 ...
2 5 9 0 24 12 0 4 4 1 0.000 2.667 1.333 0.000 0.444 0.444 0.111 ...
3 5 9 3 14 12 12 4 0 0 0.333 1.556 1.333 1.333 0.444 0.000 0.000 ...
4 5 11 5 24 9 6 6 4 1 0.455 2.182 0.818 0.545 0.545 0.364 0.091 ...
5 6 9 0 24 12 12 6 0 0 0.000 2.667 1.333 1.333 0.667 0.000 0.000 ...
7 6 12 3 28 26 3 6 5 1 0.250 2.333 2.167 0.250 0.500 0.417 0.083 ...
8 6 12 3 23 23 17 6 0 0 0.250 1.917 1.917 1.417 0.500 0.000 0.000 ...
9 6 13 8 18 24 22 6 0 0 0.615 1.385 1.846 1.692 0.462 0.000 0.000 ...
10 6 14 10 21 21 23 9 0 0 0.714 1.500 1.500 1.643 0.643 0.000 0.000 ...
12 6 15 6 41 19 6 9 7 2 0.400 2.733 1.267 0.400 0.600 0.467 0.133 ...
13 6 15 9 25 22 25 9 0 0 0.600 1.667 1.467 1.667 0.600 0.000 0.000 ...
14 6 16 12 32 20 15 11 5 1 0.750 2.000 1.250 0.938 0.688 0.313 0.063 ...
15 6 16 5 43 23 8 8 7 2 0.313 2.688 1.438 0.500 0.500 0.438 0.125 ...
16 6 17 11 35 23 16 11 5 1 0.647 2.059 1.353 0.941 0.647 0.294 0.059 ...
17 6 17 14 35 20 14 10 7 2 0.824 2.059 1.176 0.824 0.588 0.412 0.118 ...
18 6 20 18 54 12 4 14 14 4 0.900 2.700 0.600 0.200 0.700 0.700 0.200 ...
6 6 10 0 14 18 22 6 0 0 0.000 1.400 1.800 2.200 0.600 0.000 0.000 ...
11 6 14 0 30 20 17 11 5 1 0.000 2.143 1.429 1.214 0.786 0.357 0.071 ...

... s6 s5 s4 s3 s2 s1 P s6 + s5 s4 + s3 s6521 No.

... 0.000 8.333 4.000 3.000 0.667 0.000 16 8.333 7.000 9.000 1

... 0.000 13.333 5.333 0.000 0.889 0.444 20 13.333 5.333 14.666 2

... 2.000 7.778 5.333 4.000 0.889 0.000 20 9.778 9.333 10.667 3

... 2.727 10.909 3.273 1.636 1.091 0.364 20 13.636 4.909 15.091 4

... 0.000 13.333 5.333 4.000 1.333 0.000 24 13.333 9.333 14.666 5

... 1.500 11.667 8.667 0.750 1.000 0.417 24 13.167 9.417 14.584 7

... 1.500 9.583 7.667 4.250 1.000 0.000 24 11.083 11.917 12.083 8

... 3.692 6.923 7.385 5.077 0.923 0.000 24 10.615 12.462 11.538 9

... 4.286 7.500 6.000 4.929 1.286 0.000 24 11.786 10.929 13.072 10

... 2.400 13.667 5.067 1.200 1.200 0.467 24 16.067 6.267 17.734 12

... 3.600 8.333 5.867 5.000 1.200 0.000 24 11.933 10.867 13.133 13

... 4.500 10.000 5.000 2.813 1.375 0.313 24 14.500 7.813 16.188 14

... 1.875 13.438 5.750 1.500 1.000 0.438 24 15.313 7.250 16.751 15

... 3.882 10.294 5.412 2.824 1.294 0.294 24 14.176 8.236 15.764 16

... 4.941 10.294 4.706 2.471 1.176 0.412 24 15.235 7.177 16.823 17

... 5.400 13.500 2.400 0.600 1.400 0.700 24 18.900 3.000 21.000 18

... 0.000 7.000 7.200 6.600 1.200 0.000 22 7.000 13.800 8.200 6

... 0.000 10.714 5.714 3.643 1.571 0.357 22 10.714 9.357 12.642 11

Table 7: Sequences for perifusenes with h = 4, 5, and 6 rings.
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