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E-mail: gabriel@info.uaic.ro)

Sergiu Rudeanu
(University of Bucharest, Faculty of Mathematics and Computer Science

Str. Academiei 14, 010014, Bucharest, Romania
E-mail: srudeanu@yahoo.com)

Abstract: This paper uses category theory to emphasize the relationships between
Mealy, Moore and Rabin-Scott automata, and the behavioural automata are used as
a unifying framework. Some of the known links between Mealy, Moore and Rabin-
Scott automata are translated into isomorphisms of categories, and we also show how
behavioural automata connect to these automata. Considering the distinction between
final and sequential behaviours of an automaton, we define a sequential version of
Mealy automata and study its relationship to behavioural automata.
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1 Introduction

Several kinds of automata and behaviours of automata have been studied in the
literature. Well-known classes of automata are Mealy, Moore and Rabin-Scott au-
tomata. Their behaviour can be classified as total vs external, and sequential vs
final (see [Rudeanu 1989a, Rudeanu 1989b]). In this paper we continue the previ-
ous investigation on sequential and final behaviour [Ciobanu and Rudeanu 2006],
especially on the sequential behaviour. Informally speaking, a sequential machine
has a finite set S of states, receives inputs from a given set I, and produces out-
puts from a given set O. If the input signals i1, . . . , in are successively applied,
a sequence o1, . . . , on of outputs is produced; it depends on the state s of the
machine at the moment when the first input is received. We identify the above
sequences with the words i1 . . . in ∈ I+ and o1 . . . on ∈ O+. We refer to o1 . . . on

as the sequential behaviour of the machine.
1 C.S. Calude, G. Stefanescu, and M. Zimand (eds.). Combinatorics and Related
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The sequential functioning has led us to an equivalent “sequential” definition
of Mealy automata, the equivalence meaning in fact an isomorphism of categories
(Theorem 5). It has been noted in the literature that

– a Rabin-Scott automaton can be viewed as a Moore automaton with output
set {0, 1}.
The behavioural automata were introduced and studied in [Rudeanu 1989a]
and [Rudeanu 1989b], based on the remarks that

– both a Rabin-Scott automaton and a Mealy automaton can be viewed as a
behavioural automaton.
In [Ciobanu and Rudeanu 2006] it has been noted that

– a Moore automaton can be also viewed as a behavioural automaton.

The first remarks are formally presented in this paper as isomorphisms of cate-
gories (Theorems 8, 11 and 16), while for the last remark we construct a functor
from the category of Moore automata to a category of behavioural automata,
which is not even a monofunctor, although it is the identity on morphisms
(Proposition 18).

Unless otherwise stated, in the identities below we understand the quantifiers
∀ s ∈ S; ∀ i ∈ I; ∀w, w1, w2 ∈ I∗.

2 Mealy Automata

Recall that a Mealy automaton is an algebra (S, I, O, δ, μ), where (S, I, δ) is
a semiautomaton, and μ : S × I −→ O; the former condition means that
δ : S × I∗ −→ S is a function which satisfies

(1) δ(s, ε) = s & δ(δ(s, w1), w2) = δ(s, w1w2) .

Definition 1. Let Mealy be the category of Mealy automata as prescribed
by multi-sorted universal algebra. Let MealyIO be the subcategory of Mealy
whose objects are the Mealy automata with fixed input set I and output set O,
while the morphisms are the morphisms in Mealy of the form (h, 1I , 1O).

In other words, the objects of MealyIO are the Mealy automata of the
form (S, I, O, δ, μ) with fixed I, O, while the morphisms h : (S, I, O, δ, μ) −→
(S′, I, O, δ′, μ′) are defined by

(2) h(δ(s, w)) = δ′(h(s), w) ,

(3) μ(s, i) = μ′(h(s), i) .
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Condition (2) defines the semiautomaton morphisms (h, 1I), namely (h, 1I) :
(S, I, δ) → (S′, I, δ′). We will identify the morphism (h, 1I , 1O) with h.

The distinction between final and sequential behaviours yields a “sequential”
definition of Mealy automata.

Definition 2. Let Mealy∗IO be the category whose objects are the algebras
(S, I, O, δ, α), where (S, I, δ) is a semiautomaton and α : S × I∗ −→ O∗ satisfies

(4) α(s, i) ∈ O ,

(5) α(s, wi) = α(s, w)α(δ(s, w), i) ,

while the morphisms h : (S, I, O, δ, α) −→ (S′, I, O, δ′, α′) are the semiautoma-
ton morphisms h which satisfy

(6) α(s, i) = α′(h(s), i) .

Proposition3. In Mealy∗IO the components α of the objects and the mor-
phisms h satisfy the identities

(7) α(s, ε) = ε ,

(8) α(s, w1w2) = α(s, w1)α(δ(s, w1), w2) ,

(9) α(s, w) = α′(h(s), w) .

Proof. Taking w := ε in (5) and using (1), we obtain α(s, i) = α(s, ε)α(s, i),
which implies (7).

We prove (8) by induction on w2. For w2 := ε, (8) is verified via (1). For
w2 := i, (8) reduces to (5). Supposing that (8) holds for w2, we prove it for w2i

by using in turn (5), then the inductive hypothesis and (1), and finally (5):

α(s, w1)α(δ(s, w1), w2i) = α(s, w1)α(δ(s, w1), w2)α(δ(δ(s, w1), w2), i)

= α(s, w1w2)α(δ(s, w1w2), i) = α(s, w1w2i) .

Similarly, property (9) is verified for w := ε in view of (7), while for w := i

it reduces to (6). The passage from w to wi follows by using in turn (5), the
inductive hypothesis, (2) and again (5):

α(s, wi) = α(s, w)α(δ(s, w), i) = α′(h(s), w)α′(h(δ(s, w)), i)

= α′(h(s), w)α′(δ′(h(s), w), i) = α′(h(s), wi) .

Corollary 4. Conditions (4), (5), (6) are equivalent to (4), (8), (9).

Theorem 5. The categories MealyIO and Mealy∗IO are isomorphic.
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Proof. Define
F1 : MealyIO −→ Mealy∗IO

by F1(S, I, O, δ, μ) = (S, I, O, δ, α), where α : S × I∗ −→ O∗ is defined by (7),

(10) α(s, i) = μ(s, i) ,

and (5), while F1(h) = h on morphisms.
Since (10) implies (4), F1 is well defined on objects. If h is a morphism in

MealyIO, then h is a semiautomaton morphism which satisfies (3), hence we
obtain (6) via (10):

α(s, i) = μ(s, i) = μ′(h(s), i) = α′(h(s), i) .

So h is a morphism in Mealy∗IO too, showing that F1 is well defined on mor-
phisms.

Define
G1 : Mealy∗IO −→ MealyIO

by G1(S, I, O, δ, α) = (S, I, O, δ, μ), where μ : S × I −→ O is defined by

(10′) μ(s, i) = α(s, i) ,

while G1(h) = h on morphisms.
It follows by (10′) and (4) that μ(s, i) ∈ O, therefore G1 is well defined on

objects. If h is a morphism in Mealy∗IO, then h is a semiautomaton morphism
which satisfies (6). According to (10′), identity (6) becomes (3), so that h is a
morphism in MealyIO too, showing that G1 is well defined on morphisms.

It remains to prove that G1F1 and F1G1 are identity maps on objects. Indeed,

G1F1(S, I, O, δ, μ) = G1(S, I, O, δ, α) = (S, I, O, δ, μ′) ,

where μ′(s, i) = α(s, i) = μ(s, i) by (10′) and (10). Besides,

F1G1(S, I, O, δ, α) = F1(S, I, O, δ, μ) = (S, I, O, δ, α′) ,

where we have to prove that α′ = α. Indeed, α′(s, ε) = ε = α(s, ε) by (7), while
α′(s, i) = μ(s, i) = α(s, i) by (10) and (10′). Finally if α′(s, w) = α(s, w), then
by using (5), the inductive hypothesis and α′(s, i) = α(s, i), we obtain

α′(s, wi) = α′(s, w)α′(δ(s, w), i) = α(s, w)α(δ(s, w), i) = α(s, wi) .

3 Moore and Rabin-Scott Automata

Recall that a Moore automaton is an algebra (S, I, O, δ, μ) where (S, I, δ) is a
semiautomaton and μ : S −→ O. The category Moore of Moore automata is
defined as prescribed by multi-sorted universal algebra.
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Definition 6. The subcategory MooreIO of Moore has as objects the Moore
automata with fixed input set I and output set O, while the morphisms are the
morphisms in Moore of the form (h, 1I , 1O). So h : S −→ S′ and we will identify
the morphism with its component h.

In view of the above definition, the morphism conditions are (2) and

(11) μ(s) = μ′(h(s)) .

Recall also that a Rabin-Scott automaton is an algebra (S, I, δ, F ) where
(S, I, δ) is a semiautomaton and F is a subset of S (the set of final states).

Definition 7. Let RSI be the category of Rabin-Scott automata with a fixed
input set I, the morphisms being the semiautomaton morphisms h which satisfy

(12) s ∈ F ⇐⇒ h(s) ∈ F ′ .

Theorem 8. The categories MooreI{0, 1} and RSI are isomorphic.

Proof. Define
F2 : MooreI{0, 1} −→ RSI

by F2(S, I, {0, 1}, δ, μ) = (S, I, δ, F ) with s ∈ F ⇐⇒ μ(s) = 1, and F2(h) = h.
But h is a semiautomaton morphism and (11) implies (12) because

s ∈ F ⇐⇒ μ(s) = 1 ⇐⇒ μ′(h(s)) = 1 ⇐⇒ h(s) ∈ F ′ ,

so that h is a morphism in RSI and the definition F2(h) = h is correct.
Define

G2 : RSI −→ MooreI{0, 1}
by G2(S, I, δ, F ) = (S, I, {0, 1}, δ, μ) where μ : S −→ {0, 1} is defined by μ(s) =
1 ⇐⇒ s ∈ F , while G2(h) = h. But h is a semiautomaton morphism and (12)
implies (11) because

μ(s) = 1 ⇐⇒ s ∈ F ⇐⇒ h(s) ∈ F ′ ⇐⇒ μ′(h(s)) = 1 ,

so that h is a morphism in MooreI{0, 1} and the definition G2(h) = h is correct.
The functoriality of F2 and G2 and the fact that G2F2 and F2G2 are identity

functors, are immediate.

4 Behavioural Automata and Connections

Definition 9. Consider two fixed sets I and Ω and a fixed partial function
Φ : Ω2 ◦−→ Ω. A behavioural automaton or b-automaton for short, is an algebra
(S, I, Ω, δ, α), where (S, I, δ) is a semiautomaton and α : S × I∗ −→ Ω is a
function which satisfies
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(13) α(s, w) = Φ(α(s, ε), α(s, w)) ,

(14) α(δ(s, i), w) = Φ(α(s, i), α(s, iw)) ,

to the effect that the right-hand sides exist and the equalities hold.

In [Rudeanu 1989a] and [Rudeanu 1989b], the behavioural automata were
called behaviouristic2 automata.

Definition 10. The category BehIΩΦ, or simply Beh, of b-automata has these
algebras as objects, while the morphisms are the triples (h, 1I , 1Ω), where h :
S −→ S′ is a semiautomaton morphism and

(9) α(s, w) = α′(h(s), w) .

Theorem 11. The category BehI{0, 1}Φ2, where Φ2 : {0, 1}2 → {0, 1}, Φ2(x, y)
= y, is isomorphic to the category RSI.

Proof. Define
F3 : BehI{0, 1}Φ2 −→ RSI

by F3(S, I, {0, 1}, δ, α) = (S, I, δ, F ) with F = {δ(s, w) | α(s, w) = 1}, and
F3(h) = h. Then F3(h) = h is a morphism of Rabin-Scott automata because it
is a semiautomaton morphism and (9) implies (12):

s ∈ F ⇐⇒ δ(s, ε) ∈ F ⇐⇒ α(s, ε) = 1

⇐⇒ α′(h(s), ε) = 1 ⇐⇒ δ′(h(s), ε) ∈ F ′ ⇐⇒ h(s) ∈ F ′ .

Define
G3 : RSI −→ BehI{0, 1}Φ2

by G3(S, I, δ, F ) = (S, I, {0, 1}, δ, α) with α(s, w) = 1 ⇐⇒ δ(s, w) ∈ F , and
G3(h) = h. To prove that G3 is correctly defined on objects, we note that
condition (13) is trivially satisfied in BehI{0, 1}Φ2, while condition (14) reduces
to α(δ(s, i), w) = α(s, iw), which is fulfilled because

α(δ(s, i), w) = 1 ⇐⇒ δ(δ(s, i), w) ∈ F ⇐⇒ δ(s, iw) ∈ F ⇐⇒ α(s, iw) = 1 .

Besides, G3(h) = h is indeed a morphism in BehI{0, 1}Φ2, because h is a semi-
automaton morphism and (12) implies (9):

α(s, w) = 1 ⇐⇒ δ(s, w) ∈ F ⇐⇒ h(δ(s, w)) ∈ F ′

2 Behaviourism : theory that man’s actions are automatic responses to stimuli and
not dictated by consciousness; behaviouristic, a.; cf. The New National Dictionary,
Collins, London and Glasgow, 1966.
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⇐⇒ δ′(h(s), w) ∈ F ′ ⇐⇒ α′(h(s), w) = 1 .

The functoriality of F3 and G3 is immediate. To prove the isomorphism, we
compute

G3F3(S, I, {0, 1}, δ, α) = G3(S, I, δ, F ) = (S, I, {0, 1}, δ, α′) ,

where α′(s, w) = 1 ⇐⇒ δ(s, w) ∈ F ⇐⇒ α(s, w) = 1, showing that α′ = α and
hence G3F3 is the identity, and

F3G3(S, I, δ) = F3(S, I, {0, 1}, δ, α) = (S, I, δ, F ′) ,

where

s ∈ F ′ ⇐⇒ δ(s, ε) ∈ F ′ ⇐⇒ α(s, ε) = 1 ⇐⇒ δ(s, e) ∈ F ⇐⇒ s ∈ F ,

showing that F ′ = F and hence F1G1 is the identity.

Corollary 12. The categories MooreI{0, 1} and BehI{0, 1}Φ2 are isomorphic.

Definition 13. Consider the category BehIO∗Φ2−1, where Φ2−1 : O∗×O∗ ◦−→
O∗ is defined by Φ2−1(ω1, ω1ω) = ω, else nil; in other words, Φ2−1(ω1, ω2) =
ω ⇐⇒ ω1ω = ω2.

It follows that condition (13) becomes α(s, w) = α(s, ε)α(s, w), which is
equivalent to α(s, ε) = ε. Therefore the objects of BehIO∗Φ2−1 are the algebras
(S, I, O∗, δ, α) where (S, I, δ) is a semiautomaton and the map α : S×I∗ −→ O∗

satisfies

(7) α(s, e) = ε ,

(5) α(s, wi) = α(s, w)α(δ(s, w), i) ,

(which are the translations of (13), (14)), while the morphisms are the semiau-
tomaton morphisms h : S −→ S′ which satisfy (9).

Lemma14. The map α ∈ (S, I, O∗, δ, α) ∈ BehIO∗Φ2−1 satisfies

(8) α(s, w1w2) = α(s, w1)α(δ(s, w1), w2) .

Proof. For w1 := ε, condition (8) reduces to an identity via (1), while for w2 := i

it reduces to (5). Now if (8) holds, then by using in turn (8) with w2 := iw2,
then (5) with s := δ(s, w1) and finally (8) with w2 := i, we obtain

α(s, w1iw2) = α(s, w1)α(δ(s, w1), iw2)

= α(s, w1)α(δ(s, w1), i)α(δ(δ(s, w1), i), w2) = α(s, w1i)α(δ(s, w1i), w2) .
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Definition 15. Let BehMealyIO be the full subcategory of BehIO∗Φ2−1 whose
objects are the b-automata which satisfy

(4) α(s, i) ∈ O .

Theorem 16. The categories Mealy∗IO and BehMealyIO coincide.

Proof. According to Definition 2, the category Mealy∗IO is characterized by
conditions (4),(5),(6), while in view of Definitions 13 and 15 BehMealyIO is
characterized by conditions (4),(5),(7),(9). But clearly (9)=⇒(6), hence, using
also Proposition 3, we get

{(4), (5), (7), (9)} =⇒ {(4), (5), (6)} =⇒ {4), (5), (7), (9)} .

Corollary 17. The categories BehMealyIO and MealyIO are isomorphic.

Proof. By Theorem 5 and Theorem 16.

Remark A: There is a fully faithful monofunctor

F4 : MealyIO −→ MooreIO

defined by F4(S, I, O, δ, μ) = (S′, I, O, δ′, μ′), where S′ = S × O, δ′((s, o), i) =
(δ(s, i), μ(s, i)), μ′(s, o) = o and F4(h) = h.

It is worth to note that the transformation F4 over objects has been used
in the literature to prove that Mealy automata and Moore automata have the
same generative power ([Creanga et al. 1973], Theorem II.6.7).

Remark B: There is a functor

G4 : MooreIO −→ MealyIO

defined as follows: G4(S, I, O, δ, μ) = (S, I, O, δ, μ′) with μ′(s, i) = μ(δ(s, i)), and
G4(h) = h.

Proposition18. There is a functor

G′
4 : MooreIO −→ BehMealy

as follows: G′
4(S, I, O, δ, μ) = (S, I, O∗, δ, α), where

(7) α(s, ε) = ε ,

(15) α(s, wi) = α(s, w)μ(δ(s, wi)) ,

and G′
4(h) = h on morphisms.
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Proof. In view of Theorem 5 and Remark A we obtain the functor

G′
4 = F1 ◦ G4 : MooreIO −→ BehMealy

such that G′
4(S, I, O, δ, μ) = (S, I, O∗, δ, α) satisfies (7),

(16) α(s, i) = μ′(s, i) = μ(δ(s, i))

and G′
4(h) = h. It remains to prove (15), which follows from

(17) α(s, i1 . . . in) = μ(δ(s, i1))μ(δ(s, i1i2)) . . . μ(δ(s, i1 . . . in)) .

And (17) can be proved without difficulty, by induction.

To see that G4 is not a monofunctor, consider the following example. Suppose
A1 = (S, I, O, δ, μ1) and A2 = (S, I, O, δ, μ2) are Moore automata for which
there is σ ∈ S such that σ �= δ(s, w) ∀ s ∈ S ∀w ∈ I+, while μ1 and μ2 coincide
outside σ. Then G4(A1) = G4(A2).
In particular this might happen even if A1 and A2 are reachable automata with
common initial state s0 and σ = s0.

Remark C: We can associate with each category K considered above, a
category K0 whose objects are the objects of K endowed with an initial state
s0, while the morphisms are those morphisms h in K which satisfy an extra
condition h(s0) = s′0. Then the results we have established above are duplicated
by practically identical results for the category K0.

The functors between categories are summarized in the following diagrams:

BehMealyIO Mealy∗IO

�G1

��
MooreIO

G′
4

��

�� F4

G4

��MealyIO

F1

��

MooreI{0, 1}
F2

� ��
RSI

G2

�� �
G3

��BehI{0, 1}Φ2

F3��

5 Conclusion and Related Work

In this paper we define a sequential version of Mealy automata, and study its
relationship to behavioural automata. Category theory is used to emphasize the
relationships between Mealy, Moore and Rabin-Scott automata, and show how
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behavioural automata connect to these automata. The categorical approach has
enabled us to evaluate the degree of connections of the form “A is a particular
case of B”: sometimes they can be refined to an isomorphism of categories, but
other times they cannot.

We conjecture that functors F4 and G4 form an adjunction. Further work in-
cludes an algebraic investigation of the functions which can appear as sequential
and final behaviour of some automata.

Automata have a long and respectable history in computing. Attempts to
express automata theory in terms of category theory have appeared many years
ago. An approach to automata theory by using categories and functors was given
in the papers written by Arbib and Manes, see, e.g., [Arbib and Manes 1974],
[Arbib and Manes 1975]. They studied automata in the category of sets for the
linear sequential automata and the tree automata, or the category of modules for
the linear sequential automata. Their main idea is to express the type of studied
automata by a suitable functor on the corresponding category. We also mention
the books [Ehrig and Pfender 1972] and [Eilenberg 1974], and emphasize the
contribution of [Cazanescu 1967] where the monomorphisms and epimorphisms
in the category of Mealy automata are proven to be the injective and surjective
morphisms, respectively.
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