On the Forcing Semantics for Monoidal t-norm Based
 Logic ${ }^{1}$

Denisa Diaconescu*
(Faculty of Mathematics and Informatics, University of Bucharest Str. Academiei Nr. 14, Bucharest, Romania Email: ddenisuca@yahoo.com)
\section*{George Georgescu}
(Faculty of Mathematics and Informatics, University of Bucharest
Str. Academiei Nr. 14, Bucharest, Romania
Email: georgescu@funinf.cs.unibuc.ro)

Abstract

M T L\)-algebras are algebraic structures for the Esteva-Godo monoidal t norm based logic ($M T L$), a many-valued propositional calculus that formalizes the structure of the real interval $[0,1]$, induced by a left-continuous t-norm. Given a complete $M T L$-algebra \mathcal{X}, we define the weak forcing value $|\varphi|_{\mathcal{X}}$ and the forcing value $[\varphi]_{\mathcal{X}}$, for any formula φ of $M T L$ in \mathcal{X}. We establish some arithmetical properties of in \mathcal{X}. Key Words: $M T L$ logic, $M T L$-algebras, forcing semantics Category: F.4.1

1 Introduction

In many cases, the approximate reasoning operates with a conjunction which generalize the one in the classical logic. The triangular norm (t-norm) is a good candidate for modelling this kind of conjunction [Bělohlavek 2002, Gottwald 2005, Klement et.al. 2000].

The structure defined by a continuous t-norm on the interval $[0,1]$ constitutes the base for Hajek's Basic Logic ($B L$) [Hájek 1998a, Hájek 1998b] and for $B L$ algebras, the structures canonically associated to $B L$ [Hájek and Ševčik 2004, Cintula and Hájek 2006].

More generally, the Esteva-Godo logic $M T L$ and $M T L$-algebras correspond to the left-continuous t-norms and their residua [Esteva and Godo 2001]. The completeness theorems for $M T L$ (and for the derived logical systems) concerns with the usual algebraic semantic [Esteva et.al. 2002]. Another kind of semantics for MTL (named Kripke semantics) are discussed in [Montagna and Ono 2002,

[^0]Montagna and Sacchetti 2004]. The Kripke semantics for $M T L$ are based on the notion of r-forcing.

The concept of truth value is the usual way to evaluate the formulas of $M T L$. For a formula φ of $M T L$, the truth value $\|\varphi\|_{\mathcal{X}}$ of φ is defined in an $M T L$-algebra \mathcal{X}.

In this paper we shall adopt an alternative point of view: for any formula φ of $M T L$ and for any complete $M T L$-algebra \mathcal{X}, we define the weak forcing value $|\varphi|_{\mathcal{X}}$ and the forcing value $[\varphi]_{\mathcal{X}}$ of φ in \mathcal{X}. These two semantics correspond to the notions of forcing and r-forcing studied in [Montagna and Ono 2002, Montagna and Sacchetti 2004]. Thus, instead of talking about "the formula φ is valid in a Kripke model", we calculate $|\varphi|_{\mathcal{X}}$ or $[\varphi]_{\mathcal{X}}$.

Section 2 contains some basic notions and results on residuated lattices and $M T L$-algebras. Some elements of syntax and semantic of $M T L$ are recalled in Section 3.

In Section 4 we establish a lot of properties regarding the behaviour of the weak forcing value w.r.t. some types of formulas of $M T L$. In Section 5 we continue to study the behaviour of $|\cdot| \mathcal{X}$ w.r.t. some formulas of $M T L$ (especially the axioms of $M T L$) and compare the truth value semantics with the weak forcing semantic.

The main result of this paper (Theorem 19) shows that $[\varphi]_{\mathcal{X}}=\|\varphi\|_{\mathcal{X}}$, for any formula φ of $M T L$ and for any complete $M T L$-algebra \mathcal{X}. The equality $[.]_{\mathcal{X}}$ $=\|\cdot\|_{\mathcal{X}}$ improves the relationship between Kripke-style semantic and algebraic semantic studied in [Montagna and Ono 2002, Montagna and Sacchetti 2004].

Section 7 contains some suggestions for further research on $|.|_{\mathcal{X}}$ and $[.]_{\mathcal{X}}$ in the framework of predicate logic $M T L \forall$ and of some non-commutative fuzzy logics associated to $M T L$ and $M T L \forall$.

$2 M T L$-algebras

A residuated lattice is a structure $\mathcal{A}=(A, \vee, \wedge, \cdot, \rightarrow, 0,1)$ equipped with an order \leq satisfying the following:
i) $(A, \vee, \wedge, 0,1)$ is a bounded lattice;
ii) $(A, \cdot, 1)$ is a commutative monoid;
iii) For any $a, b, c \in A, a \cdot b \leq c$ iff $a \leq b \rightarrow c$.

We shall write $a b$ instead of $a \cdot b$.
In a residuated lattice \mathcal{A}, the negation ${ }^{-}$is introduced by $\bar{a}=a \rightarrow 0$, for any $a \in A$.

Lemma 1. [Bělohlavek 2002] Let \mathcal{A} be a residuated lattice. Then, for all a, b, $c \in$ A, the following hold:
(1) $a \leq b$ iff $a \rightarrow b=1$;
(2) $a \cdot 0=0$;
(3) $1 \rightarrow a=a$;
(4) $a b \leq a$;
(5) $a(a \rightarrow b) \leq b$;
(6) $a \rightarrow(b \rightarrow c)=b \rightarrow(a \rightarrow c)=a b \rightarrow c$;
(7) If $b \leq c$, then $a \rightarrow b \leq a \rightarrow c$ and $c \rightarrow a \leq b \rightarrow a$;
(8) If $a \leq b$, then $a c \leq b c$;
(9) $a \rightarrow a=1$.

Lemma 2. [Bělohlavek 2002] Let \mathcal{A} be a residuated lattice. Then, for all elements $a \in A$ and $\left\{a_{i}\right\}_{i \in I} \subseteq A$, the following hold:
(1) $\left(\bigvee_{i \in I} a_{i}\right) \rightarrow a=\bigwedge_{i \in I}\left(a_{i} \rightarrow a\right)$;
(2) $a \rightarrow\left(\bigwedge_{i \in I} a_{i}\right)=\bigwedge_{i \in I}\left(a \rightarrow a_{i}\right)$;
(3) $a\left(\bigvee_{i \in I} a_{i}\right)=\bigvee_{i \in I} a a_{i}$;
(4) $\bigvee_{i \in I}\left(a \rightarrow a_{i}\right) \leq a \rightarrow\left(\bigvee_{i \in I} a_{i}\right)$;
(5) $\bigvee_{i \in I}\left(a_{i} \rightarrow a\right) \leq\left(\bigwedge_{i \in I} a_{i}\right) \rightarrow a$.

An MTL-algebra [Esteva and Godo 2001] is a residuated lattice \mathcal{A} such that, for all $a, b \in A$, we have
(iv) $(a \rightarrow b) \vee(b \rightarrow a)=1$.

Example. A t-norm is a binary operation $*$ on the interval $[0,1]$ which is associative, commutative, non-decreasing in the both arguments and the identity $a * 1=a$ holds. If $*$ is a left-continuous t-norm, then $([0,1], \vee, \wedge, *, \rightarrow, 0,1)$ is an $M T L$-algebra, where the residuum operation \rightarrow on $[0,1]$ is defined by

$$
a \rightarrow b=\bigvee\{c \mid a * c \leq b\}
$$

This structure will be called a standard MTL-algebra.
Any totally-ordered residuated lattice \mathcal{A} is an $M T L$-algebra. In this case, \mathcal{A} will be called an MTL-chain. By [Cintula and Hájek 2006], any $M T L$-algebra is isomorphic to a subdirect product of $M T L$-chains.

Lemma 3. ([Bělohlavek 2002], Theorem 2.34) If \mathcal{A} is a residuated lattice, then the following conditions are equivalent:
(i) \mathcal{A} is an $M T L$-algebra;
(ii) For all $a, b, c \in A, a \rightarrow(b \vee c)=(a \rightarrow b) \vee(a \rightarrow c)$;
(iii) For all $a, b, c \in A,(b \wedge c) \rightarrow a=(b \rightarrow a) \vee(c \rightarrow a)$.

3 Monoidal t-norm based logic

In this section we shall recall some basic notions of the monoidal t-norm based logic (MTL) (see [Esteva and Godo 2001, Esteva et.al. 2002]).

The language of $M T L$ has the following primitive symbols:

- denumerable many propositional variables (V will denote the set of propositional variables);
- the connectives $\vee, \wedge, \odot, \rightarrow$;
- the symbol \perp;
- the parenthesis (,).

The set Form of formulas of $M T L$ is defined as usual. Let us denote $\top=$ $1 \rightarrow \perp$. We list the axioms of $M T L$:
(A1) $(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi)) ;$
$(\mathrm{A} 2) \varphi \odot \rightarrow \psi ;$
$(\mathrm{A} 3) \varphi \odot \psi \rightarrow \psi \odot \varphi ;$
(A4) $\varphi \wedge \psi \rightarrow \varphi ;$
(A5) $\varphi \wedge \psi \rightarrow \psi \wedge \varphi ;$
(A6) $\varphi \odot(\varphi \rightarrow \psi) \rightarrow(\varphi \wedge \psi) ;$
(A7) $(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \odot \psi) \rightarrow \chi) ;$
(A8) $((\varphi \odot \psi) \rightarrow \chi) \rightarrow(\varphi \rightarrow(\psi \rightarrow \chi)) ;$
(A9) $(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(((\psi \rightarrow \varphi) \rightarrow \chi) \rightarrow \chi) ;$
$(\mathrm{A} 10) \perp \rightarrow \varphi$.

Modus-ponens is the only rule of inference of $M T L: \frac{\varphi, \varphi \rightarrow \psi}{\psi}$.
The notion of provable formula is defined as usual. We denote by $\vdash \varphi$ that the formula φ is provable in $M T L$.

Let Σ be a subset of the set of axioms (A1)-(A10). If φ is a formula of $M T L$, then we denote by $\vdash_{\Sigma} \varphi$ that φ can be derived from Σ by using modus-ponens; if Σ is the set of all axioms (A1)-(A10), then $\vdash_{\Sigma} \varphi$ means that $\vdash \varphi$.

Let $\mathcal{X}=(X, \vee, \wedge, \cdot, \rightarrow, 0,1)$ be an $M T L$-algebra. An evaluation of $M T L$ in \mathcal{X} is a function $e: V \rightarrow X$. Any evaluation $e: V \rightarrow X$ can be uniquely extended to a function $\hat{e}:$ Form $\rightarrow X$ with the property that for all $\varphi, \psi \in F$ orm we have:
(a) $\hat{e}(\varphi)=e(\varphi)$, if $\varphi \in V$;
(b) $\hat{e}(\perp)=0$;
(c) $\hat{e}(\varphi \vee \psi)=\hat{e}(\varphi) \vee \hat{e}(\psi)$;
(d) $\hat{e}(\varphi \wedge \psi)=\hat{e}(\varphi) \wedge \hat{e}(\psi)$;
(e) $\hat{e}(\varphi \odot \psi)=\hat{e}(\varphi) \cdot \hat{e}(\psi)$;
(f) $\hat{e}(\varphi \rightarrow \psi)=\hat{e}(\varphi) \rightarrow \hat{e}(\psi)$.

The truth value $\|\varphi\|_{\mathcal{X}}$ of a formula φ in \mathcal{X} is defined by:

$$
\|\varphi\|_{\mathcal{X}}=\bigwedge\{\hat{e}(\varphi) \mid e \text { is an evaluation in } \mathcal{X}\}
$$

4 Weak forcing value of a formula of $M T L$

In this section we shall define the weak forcing value $|\varphi|_{\mathcal{X}}$ of a formula φ of $M T L$ in a complete $M T L$-algebra \mathcal{X}. Besides the truth value $\|\varphi\|_{\mathcal{X}}$ of φ in \mathcal{X}, $|\varphi|_{\mathcal{X}}$ constitutes an alternative to evaluate the formula φ in \mathcal{X}. The weak forcing value is a rafinement of the notion of validity in a Kripke model (in the sense of [Montagna and Ono 2002, Montagna and Sacchetti 2004]).

We fix a complete $M T L$-algebra $\mathcal{X}=(X, \vee, \wedge, \cdot, \rightarrow, 0,1)$.
Definition 4. An \mathcal{X}-valued weak forcing property is a function

$$
f:(V \cup\{\perp\}) \times X \rightarrow X
$$

such that the following conditions hold:
(i) If $\varphi \in V$ and $x, y \in X$, then $x \leq y$ implies $f(\varphi, y) \leq f(\varphi, x)$;
(ii) $f(\perp, 1)=0$.

Definition 5. Let f be an \mathcal{X}-valued weak forcing property. For any $\varphi \in$ Form and $x \in X$, we define, by induction, the element $[\varphi]_{x}^{f}$ of X :
(1) $[\varphi]_{x}^{f}=f(\varphi, x)$, if $\varphi \in V$;
(2) $[\perp]_{x}^{f}=\bar{x}$;
(3) If $\varphi=\alpha \vee \beta$, then $[\varphi]_{x}^{f}=[\alpha]_{x}^{f} \vee[\beta]_{x}^{f}$;
(4) If $\varphi=\alpha \wedge \beta$, then $[\varphi]_{x}^{f}=[\alpha]_{x}^{f} \wedge[\beta]_{x}^{f}$;
(5) If $\varphi=\alpha \odot \beta$, then $[\varphi]_{x}^{f}=\bigvee_{y, z \in X}\left((x \rightarrow y z)[\alpha]_{y}^{f}[\beta]_{z}^{f}\right)$;
(6) If $\varphi=\alpha \rightarrow \beta$, then $[\varphi]_{x}^{f}=\bigwedge_{y \in X}\left([\alpha]_{y}^{f} \rightarrow[\beta]_{x y}^{f}\right)$.

For simplicity, we shall usually write $[\varphi]_{x}$ instead of $[\varphi]_{x}^{f}$.
Definition 6. The weak forcing value $|\varphi|_{\mathcal{X}}$ of a formula φ in \mathcal{X} is defined by

$$
|\varphi|_{\mathcal{X}}=\bigwedge\left\{[\varphi]_{1}^{f} \mid \mathrm{f} \text { is an } \mathcal{X} \text {-valued weak forcing property }\right\} .
$$

Lemma 7. Let f be an \mathcal{X}-valued weak forcing property. For any formula φ of $M T L$ and $y \leq x$ in X, we have $[\varphi]_{x} \leq[\varphi]_{y}$.

Proof. We proceed by induction on the complexity of φ. We treat only the case $\varphi=\alpha \rightarrow \beta$. If $y \leq x$, then $y z \leq x z$, hence, by induction hypothesis, we have $[\beta]_{x z} \leq[\beta]_{y z}$, for all $z \in X$. Then, by Lemma $1,(7)$, we get

$$
[\varphi]_{x}=\bigwedge_{z \in X}\left([\alpha]_{z} \rightarrow[\beta]_{x z}\right) \leq \bigwedge_{z \in X}\left([\alpha]_{z} \rightarrow[\beta]_{y z}\right)=[\varphi]_{y}
$$

Remark. By Lemma $7,[\varphi]_{1} \leq[\varphi]_{x}$, for any $x \in X$.
In what follows, we emphasize the behaviour of $[\cdot]^{f}$ and $|\cdot| \mathcal{X}$ w.r.t. some formulas of $M T L$.

Proposition 8. Let f be an \mathcal{X}-valued weak forcing property. For all formulas φ, ψ, χ of $M T L$ and $x, y, a, b, c, p, q, t \in X$, the following hold:
(1) $[\varphi \rightarrow \varphi]_{x}=1$;
(2) $[\mathrm{T}]_{x}=1$;
(3) $[\psi]_{x} \leq[\varphi \rightarrow \psi]_{x}$;
(4) $[\varphi]_{x} \cdot[\varphi \rightarrow \psi]_{y} \leq[\psi]_{x y}$;
(5) $[\varphi]_{x} \cdot[\varphi \rightarrow \psi]_{x} \leq[\psi]_{x^{2}}$;
(6) $[\varphi \rightarrow \psi]_{a} \cdot[\psi \rightarrow \chi]_{b} \leq[\varphi]_{c} \rightarrow[\chi]_{a b c}$;
(7) $[\varphi \rightarrow \psi]_{x} \leq[\psi \rightarrow \chi]_{y} \rightarrow[\varphi \rightarrow \chi]_{x y}$;
(8) $[\varphi \rightarrow(\psi \rightarrow \chi)]_{x}=\bigwedge_{u, v \in X}\left([\varphi]_{u}[\psi]_{v} \rightarrow[\chi]_{\text {xuv }}\right)$;
(9) $[\varphi \odot \psi \rightarrow \chi]_{x}=\bigwedge_{p, q, t \in X}\left((t \rightarrow p q)[\varphi]_{p}[\psi]_{q} \rightarrow[\chi]_{t x}\right)$;
(10) $[\varphi \rightarrow(\psi \rightarrow \chi)]_{x}=[\psi \rightarrow(\varphi \rightarrow \chi)]_{x}$;
(11) $[(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))]_{x}=1$;
(12) $[(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))]_{x}=1$;
(13) $[\varphi \odot \psi \rightarrow \chi)]_{x} \leq[\varphi \rightarrow(\psi \rightarrow \chi)]_{x}$;
(14) $[(\varphi \odot \psi \rightarrow \chi) \rightarrow(\varphi \rightarrow(\psi \rightarrow \chi))]_{x}=1$;
(15) $[(\varphi \rightarrow \psi) \wedge(\varphi \rightarrow \chi)]_{x}=[\varphi \rightarrow(\psi \wedge \chi)]_{x} ;$
(16) $[\varphi \odot(\psi \vee \chi)]_{x}=[(\varphi \odot \psi) \vee(\varphi \odot \chi)]_{x}$.

Proof.
(1) By Lemma 7, $[\varphi \rightarrow \varphi]_{x} \geq[\varphi \rightarrow \varphi]_{1}=\bigwedge_{u \in X}\left([\varphi]_{u} \rightarrow[\varphi]_{u}\right)=1$.
(2) Since \top is $\perp \rightarrow \perp$, by (1) we obtain $[\top]_{x}=1$.
(3) By Lemma 1, (4), and Lemma $7,[\psi]_{x} \leq[\psi]_{u x}$, for each $u \in X$. Then, by Lemma 1, (1), (7), $[\psi]_{x} \leq[\varphi]_{u} \rightarrow[\psi]_{x} \leq[\varphi]_{u} \rightarrow[\psi]_{u x}$ for each $u \in X$. Hence $[\psi]_{x} \leq \bigwedge_{u \in X}\left([\varphi]_{u} \rightarrow[\psi]_{u x}\right)=[\varphi \rightarrow \psi]_{x}$.
(4) According to Lemma 1, (5), we have
$[\varphi]_{x} \cdot[\varphi \rightarrow \psi]_{y}=[\varphi]_{x} \cdot \bigwedge_{u \in X}\left([\varphi]_{u} \rightarrow[\psi]_{y u}\right) \leq[\varphi]_{x} \cdot\left([\varphi]_{x} \rightarrow[\psi]_{x y}\right) \leq[\psi]_{x y}$.
(5) By (4).
(6) Using (4), we have $[\varphi]_{c} \cdot[\varphi \rightarrow \psi]_{a} \cdot[\psi \rightarrow \chi]_{b} \leq[\psi]_{a c} \cdot[\psi \rightarrow \chi]_{b} \leq[\chi]_{a b c}$, so, the inequality $[\varphi \rightarrow \psi]_{a} \cdot[\psi \rightarrow \chi]_{b} \leq[\varphi]_{c} \rightarrow[\chi]_{a b c}$ follows.
(7) According to (6), for each $u \in X$ we have $[\varphi \rightarrow \psi]_{x} \cdot[\psi \rightarrow \chi]_{y} \leq[\varphi]_{u}$ $\rightarrow[\chi]_{u x y}$, so $[\varphi \rightarrow \psi]_{x} \cdot[\psi \rightarrow \chi]_{y} \leq \bigwedge_{u \in X}\left([\varphi]_{u} \rightarrow[\chi]_{u x y}\right)=[\varphi \rightarrow \chi]_{x y}$. Hence $[\varphi \rightarrow \psi]_{x} \leq[\psi \rightarrow \chi]_{y} \rightarrow[\varphi \rightarrow \chi]_{x y}$.
(8) Applying the clause (6) of Definition 5, Lemma 2, (2), and Lemma 1, (6), we obtain

$$
\begin{aligned}
{[\varphi \rightarrow(\psi \rightarrow \chi)]_{x} } & =\bigwedge_{u \in X}\left([\varphi]_{u} \rightarrow[\psi \rightarrow \chi]_{x u}\right)= \\
& =\bigwedge_{u \in X}\left([\varphi]_{u} \rightarrow \bigwedge_{v \in X}\left([\psi]_{v} \rightarrow[\chi]_{x u v}\right)\right)= \\
& =\bigwedge_{u, v \in X}\left([\varphi]_{u}[\psi]_{v} \rightarrow[\chi]_{x u v}\right) .
\end{aligned}
$$

(9) We apply the clauses (6) and (5) of Definition 5 and Lemma 2, (1), and we obtain

$$
\begin{aligned}
{[\varphi \odot \psi \rightarrow \chi]_{x} } & =\bigwedge_{t \in X}\left([\varphi \odot \psi]_{t} \rightarrow[\chi]_{t x}\right)= \\
& =\bigwedge_{t \in X}\left(\left(\bigvee_{p, q \in X}(t \rightarrow p q)[\varphi]_{p}[\psi]_{q}\right) \rightarrow[\chi]_{t x}\right)=
\end{aligned}
$$

$$
\left.=\bigwedge_{p, q, t \in X}\left((t \rightarrow p q)[\varphi]_{p}[\psi]_{q} \rightarrow[\chi]_{t x}\right)\right) .
$$

(10) By (8).
(11) By (8), Lemma 7 and (6) it follows that

$$
\begin{aligned}
{[(\varphi \rightarrow \psi)} & \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))]_{x}= \\
& =\bigwedge_{u, v \in X}\left([\varphi \rightarrow \psi]_{u}[\psi \rightarrow \chi]_{v} \rightarrow \bigwedge_{w \in X}\left([\varphi]_{w} \rightarrow[\chi]_{\text {suvw }}\right)\right)= \\
& =\bigwedge_{u, v, w \in X}\left([\varphi]_{w}[\varphi \rightarrow \psi]_{u}[\psi \rightarrow \chi]_{v} \rightarrow[\chi]_{\text {xuvw }}\right) \geq \\
& \geq \bigwedge_{u, v, w \in X}\left([\varphi]_{w}[\varphi \rightarrow \psi]_{u}[\psi \rightarrow \chi]_{v} \rightarrow[\chi]_{\text {uvw }}\right)=1 .
\end{aligned}
$$

(12) Applying Lemma 7 and (10), we get

$$
\begin{aligned}
{[(\varphi \rightarrow(\psi} & \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))]_{x}= \\
& =\bigwedge_{u \in X}\left([\varphi \rightarrow(\psi \rightarrow \chi)]_{u} \rightarrow[\psi \rightarrow(\varphi \rightarrow \chi)]_{u x}\right) \geq \\
& \geq \bigwedge_{u \in X}\left([\varphi \rightarrow(\psi \rightarrow \chi)]_{u} \rightarrow\left[\psi \rightarrow(\varphi \rightarrow \chi]_{u}\right)=1 .\right.
\end{aligned}
$$

(13) Let $u, v \in X$. By (9), $[\varphi \odot \psi \rightarrow \chi]_{x} \leq[\varphi]_{u}[\psi]_{v} \rightarrow[\chi]_{x u v}$, hence, by (8), we get $[\varphi \odot \psi \rightarrow \chi]_{x} \leq \bigwedge_{u, v \in X}\left([\varphi]_{u}[\psi]_{v} \rightarrow[\chi]_{x u v}\right)=[\varphi \rightarrow(\psi \rightarrow \chi)]_{x}$.
(14) Similar to (12).
(15) We have the following

$$
\begin{aligned}
{[(\varphi \rightarrow \psi)} & \wedge(\varphi \rightarrow \chi)]_{x}=[\varphi \rightarrow \psi]_{x} \wedge[\varphi \rightarrow \chi]_{x}= \\
& =\bigwedge_{y \in X}\left([\varphi]_{y} \rightarrow[\psi]_{x y}\right) \wedge \bigwedge_{y \in X}\left([\varphi]_{y} \rightarrow[\chi]_{x y}\right)= \\
& =\bigwedge_{y \in X}\left(\left([\varphi]_{y} \rightarrow[\psi]_{x y}\right) \wedge\left([\varphi]_{y} \rightarrow[\chi]_{x y}\right)\right)= \\
& =\bigwedge_{y \in X}\left([\varphi]_{y} \rightarrow\left([\psi]_{x y} \wedge[\chi]_{x y}\right)\right)=\bigwedge_{y \in X}\left([\varphi]_{y} \rightarrow[\psi \wedge \chi]_{x y}\right)= \\
& =[\varphi \rightarrow(\psi \wedge \chi)]_{x} .
\end{aligned}
$$

(16) We can write

$$
\begin{aligned}
{[(\varphi \odot \psi)} & \vee(\varphi \odot \chi)]_{x}=[\varphi \odot \psi]_{x} \vee[\varphi \odot \chi]_{x}= \\
& =\left(\bigvee_{y, z \in X}(x \rightarrow y z)[\varphi]_{y}[\psi]_{z}\right) \vee\left(\bigvee_{y, z \in X}(x \rightarrow y z)[\varphi]_{y}[\chi]_{z}\right)= \\
& =\bigvee_{y, z \in X}\left(\left((x \rightarrow y z)[\varphi]_{y}[\psi]_{z}\right) \vee\left((x \rightarrow y z)[\varphi]_{y}[\chi]_{z}\right)\right)= \\
& =\bigvee_{y \in X}(x \rightarrow y z)[\varphi]_{y}\left([\psi]_{z} \vee[\chi]_{z}\right)= \\
& =\bigvee_{y, z \in X}(x \rightarrow y z)[\varphi]_{y}[\psi \vee \chi]_{z}=[\varphi \odot(\psi \vee \chi)]_{x} .
\end{aligned}
$$

Corollary 9. For any formulas φ, ψ and χ of $M T L$, the following hold:
(1) $|\varphi \rightarrow \varphi|_{\mathcal{X}}=1$;
(2) $|\top|_{\mathcal{X}}=1$;
(3) $|\psi|_{\mathcal{X}} \leq|\varphi \rightarrow \psi|_{\mathcal{X}}$;
(4) $|\varphi \rightarrow(\psi \rightarrow \chi)| \mathcal{X}=|\psi \rightarrow(\varphi \rightarrow \chi)| \mathcal{X}$;
(5) $|(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))| \mathcal{X}=1$;
(6) $|(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))|_{\mathcal{X}}=1$;
(7) $|(\varphi \odot \psi \rightarrow \chi) \rightarrow(\varphi \rightarrow(\psi \rightarrow \chi))|_{\mathcal{X}}=1$.

Corollary 10. If $|\varphi|_{\mathcal{X}}=|\varphi \rightarrow \psi|_{\mathcal{X}}=1$, then $|\psi|_{\mathcal{X}}=1$.
Remark. Assume that Σ is the set of axioms (A1), (A3), (A4), (A8), (A10) and φ is a formula of $M T L$. By Corollaries 9 and 10 , if $\vdash_{\Sigma} \varphi$, then $|\varphi|_{\mathcal{X}}=1$.

Proposition 11. Let f be an \mathcal{X}-valued weak forcing property. For any formula φ of MTL and $x, y \in X$, we have:
(1) $[\neg \varphi]_{x}=\bigwedge_{y \in X}\left(x y[\varphi]_{y}\right)^{-}=x \rightarrow \bigwedge_{y \in X}\left(y[\varphi]_{y}\right)^{-}$;
(2) $x y[\neg \varphi]_{x}[\varphi]_{y}=0$;
(3) $[\varphi]_{x} \leq[\neg \neg \varphi]_{x}$;
(4) $[\neg \varphi]_{x}=[\neg \neg \neg \varphi]_{x}$;
(5) $[\neg(\varphi \vee \psi)]_{x}=[\neg \varphi \wedge \neg \psi]_{x}$;
(6) $[\varphi \rightarrow \psi]_{x} \leq[\neg \psi \rightarrow \neg \varphi]_{x}$;
(7) $[\varphi \rightarrow \neg \psi]_{x} \leq[\psi \rightarrow \neg \varphi]_{x}$;
(8) $x[\varphi \odot \neg \varphi]_{x}=0$;
(9) $[\varphi \rightarrow(\psi \odot \neg \psi)]_{x} \leq[\neg \varphi]_{x}$.

Proof.
(1) $[\neg \varphi]_{x}=\bigwedge_{y \in X}\left([\varphi]_{y} \rightarrow[\perp]_{x y}\right)=\bigwedge_{y \in X}\left([\varphi]_{y} \rightarrow \overline{x y}\right)=\bigwedge_{y \in X}\left(x y[\varphi]_{y}\right)^{-}$.

In a similar way we get $[\neg \varphi]_{x}=x \rightarrow \bigwedge_{y \in X}\left(y[\varphi]_{y}\right)^{-}$.
(2) By (1), for any $y \in X$, we have $[\neg \varphi]_{x} \leq\left(x y[\varphi]_{y}\right)^{-}$, hence $x y[\neg \varphi]_{x}[\varphi]_{y}=0$.
(3) Let $y \in X$. By (2), $x y[\varphi]_{x}[\neg \varphi]_{y}=0$, hence $x[\varphi]_{x} \leq\left(y[\neg \varphi]_{y}\right)^{-}$.

Thus $x[\varphi]_{x} \leq \bigwedge_{y \in X}\left(y[\neg \varphi]_{y}\right)^{-}$, so $[\varphi]_{x} \leq x \rightarrow \bigwedge_{y \in X}\left(y[\neg \varphi]_{y}\right)^{-}=[\neg \neg \varphi]_{x}$.
(4) Let $y \in X$. By (3) and (2) we get $x y[\varphi]_{y}[\neg \neg \neg \varphi]_{x} \leq x y[\neg \neg \varphi]_{y}[\neg \neg \neg \varphi]_{x}=0$, therefore $x[\neg \neg \neg \varphi]_{x} \leq\left(y[\varphi]_{y}\right)^{-}$. Thus $x[\neg \neg \neg \varphi]_{x} \leq \bigwedge_{y \in X}\left(y[\varphi]_{y}\right)^{-}$, hence $[\neg \neg \neg \varphi]_{x}$ $\leq x \rightarrow \bigwedge_{y \in X}\left(y[\varphi]_{y}\right)^{-}=[\neg \varphi]_{x}$. The converse implication follows by (3).
(5) We have

$$
\begin{aligned}
{[\neg \varphi \wedge \neg \psi]_{x} } & =[\neg \varphi]_{x} \wedge[\neg \psi]_{x}=\bigwedge_{y \in X}\left(x y[\varphi]_{y}\right)^{-} \wedge \bigwedge_{y \in X}\left(x y[\psi]_{y}\right)^{-}= \\
& =\bigwedge_{y \in X}\left(\left(x y[\varphi]_{y}\right)^{-} \wedge \bigwedge_{y \in X}\left(x y[\psi]_{y}\right)^{-}\right)= \\
& =\bigwedge_{y \in X}\left(x y[\varphi]_{y} \vee x y[\psi]_{y}\right)^{-}=\bigwedge_{y \in X}\left(x y\left([\varphi]_{y} \vee[\psi]_{y}\right)^{-}\right)= \\
& =\bigwedge_{y \in X}\left(x y[\varphi \vee \psi]_{y}\right)^{-}=[\neg(\varphi \wedge \psi)]_{x} .
\end{aligned}
$$

(6) Let $y, z \in X$. According to Proposition 8, (4), $[\varphi]_{y}[\varphi \rightarrow \psi]_{x} \leq[\psi]_{x y}$, hence, by (3), we get $[\varphi \rightarrow \psi]_{x} \cdot[\neg \psi]_{z} \cdot x y z \cdot[\varphi]_{y} \leq x y z \cdot[\psi]_{x y}[\neg \psi]_{z}=0$. Then, for each $y \in X$, we have $[\varphi \rightarrow \psi]_{x}[\neg \psi]_{z} \leq\left(x y z[\varphi]_{y}\right)^{-}$, therefore $[\varphi \rightarrow \psi]_{x}[\neg \psi]_{z} \leq$ $\bigwedge_{y \in X}\left(x y z[\varphi]_{y}\right)^{-}=[\neg \varphi]_{x z}$.

It follows that $[\varphi \rightarrow \psi]_{x} \leq[\neg \psi]_{z} \rightarrow[\neg \varphi]_{x z}$. This last inequality holds for each $z \in X$, therefore $[\varphi \rightarrow \psi]_{x} \leq \bigwedge_{z \in X}\left([\neg \psi]_{z} \rightarrow[\neg \varphi]_{x z}\right)=[\neg \psi \rightarrow \neg \varphi]_{x}$.
(7) Similar to (6).
(8) According to Definition 5, (5), and the previous equality (2), one obtains $x[\varphi \odot \neg \varphi]_{x}=x \bigvee_{y, z \in X}(x \rightarrow y z)[\varphi]_{y}[\neg \varphi]_{z}=\bigvee_{y, z \in X} x(x \rightarrow y z)[\varphi]_{y}[\neg \varphi]_{z} \leq$ $\bigvee_{y, z \in X} y z[\varphi]_{y}[\neg \varphi]_{z}=0$.
(9) Let $y \in X$. By Proposition 8, (4), and the previous equality (8), we get $[\varphi \rightarrow(\psi \odot \neg \psi)]_{x} \cdot x y[\varphi]_{y} \leq x y[\psi \odot \neg \psi]_{x y}=0$. Thus $[\varphi \rightarrow(\psi \odot \neg \psi)]_{x} \leq\left(x y[\varphi]_{y}\right)^{-}$, for any $y \in X$, hence $[\varphi \rightarrow(\psi \odot \neg \psi)]_{x} \leq \bigwedge_{y \in X}\left(x y[\varphi]_{y}\right)^{-}=[\neg \varphi]_{x}$.

5 The behaviour of $|\cdot| \mathcal{X}$ w.r.t. some formulas of $M T L$

In this section we will compare the two kinds of semantics: truth value and weak forcing. A formula φ of $M T L$ is valid in the weak forcing semantic iff $[\varphi]_{1}^{f}=1$, for any \mathcal{X}-valued weak forcing property.

In the following we will analyze the behaviour of $|\cdot| \mathcal{X}$ w.r.t. the axioms of $M T L$ and some other formulas. We will prove that some axioms are valid via the new kind of semantics, while others are not valid (in this latter case we will provide a counterexample of a weak forcing property f for which $[\varphi]_{1}^{f} \neq 1$).

This analysis is very important in providing the similarities and the differences between the two semantics $|\cdot|_{\mathcal{X}}$ and $\|\cdot\|_{\mathcal{X}}$.
(A1) $(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
By Corollary 9, (5), this axiom is valid w.r.t. the weak forcing semantic.
$(\mathrm{A} 2) \varphi \odot \rightarrow \psi$
Let us consider $\mathcal{X}=L_{3}=\left\{0, \frac{1}{2}, 1\right\}$ with the canonical structure of $M V_{3^{-}}$ algebra ${ }^{2}$.
${ }^{2}$ An $M V$-algebra is a structure $\left(A, \oplus, \odot,{ }^{-}, 0,1\right)$, where \oplus and \odot are binary operations, - is unary and 0,1 are constants, satisfying the following axioms:
a) $(A, \oplus, 0)$ and $(A, \odot, 1)$ are commutative monoids,
b) $x \odot 0=0$ and $x \oplus 1=1$, for any $x \in A$,
c) $x^{--}=x$, for any $x \in A$,

Let us consider $p, q \in V$ (some propositional variables) and the weak forcing property f which has the following behaviour w.r.t. p and q :

f	0	$\frac{1}{2}$	1
p	1	1	1
q	1	1	0

We have the followings:
$[p \odot q]_{0}^{f}=\bigvee_{y, z \in L_{3}} \cdot f(p, y) \cdot f(q, z)=1$
$[p \odot q]_{\frac{1}{2}}^{f}=\bigvee_{y, z \in L_{3}}\left(\frac{1}{2} \rightarrow y z\right) \cdot f(p, y) \cdot f(q, z)=1$
$[p \odot q]_{1}^{f}=\bigvee_{y, z \in L_{3}}(1 \rightarrow y z) \cdot f(p, y) \cdot f(q, z)=\frac{1}{2}$
$[p \odot q \rightarrow q]_{1}^{f}=\bigwedge_{x \in L_{3}}\left([p \odot q]_{x}^{f} \rightarrow f(q, x)\right)=(1 \rightarrow 1) \wedge(1 \rightarrow 1) \wedge\left(\frac{1}{2} \rightarrow 0\right)=\frac{1}{2}$
Thus $[p \odot q \rightarrow q]_{1}^{f}=\frac{1}{2} \neq 1$ which prove that (A2) is not valid w.r.t. the new semantics.
$(\mathrm{A} 3) \varphi \odot \psi \rightarrow \psi \odot \varphi$
Let f be a weak forcing property. Using Lemma 1, (9), we get:

$$
\begin{aligned}
& {[\varphi \odot \psi \rightarrow \psi \odot \varphi]_{1}^{f}=\bigwedge_{t \in L_{3}}\left([\varphi \odot \psi]_{t}^{f} \rightarrow[\psi \odot \varphi]_{t}^{f}\right)=} \\
& \quad=\bigwedge_{t \in L_{3}}\left[\left(\bigvee_{y, z \in L_{3}}(t \rightarrow y z)[\varphi]_{y}^{f}[\psi]_{z}^{f}\right) \rightarrow\left(\bigvee_{y, z \in L_{3}}(t \rightarrow y z)[\varphi]_{y}^{f}[\psi]_{z}^{f}\right)\right]=1
\end{aligned}
$$

Hence, the axiom is valid w.r.t. the weak forcing semantic.
(A4) $\varphi \wedge \psi \rightarrow \varphi$
Let f be a weak forcing property.
By Lemma 3, (3), and Lemma 1, (9), we have:

$$
\begin{aligned}
& {[\varphi \wedge \psi \rightarrow \varphi]_{1}^{f}=\bigwedge_{y \in L_{3}}\left([\varphi \wedge \psi]_{y}^{f} \rightarrow[\varphi]_{y}^{f}\right)=\bigwedge_{y \in L_{3}}\left(\left([\varphi]_{y}^{f} \wedge[\psi]_{y}^{f}\right) \rightarrow[\varphi]_{y}^{f}\right)=} \\
& \quad=\bigwedge_{y \in L_{3}}\left(\left([\varphi]_{y}^{f} \rightarrow[\varphi]_{y}^{f}\right) \vee\left([\psi]_{y}^{f} \rightarrow[\varphi]_{y}^{f}\right)\right)= \\
& \quad=\bigwedge_{y \in L_{3}}\left(1 \vee\left([\psi]_{y}^{f} \rightarrow[\varphi]_{y}^{f}\right)\right)=1 .
\end{aligned}
$$

Therefore this axiom is valid in the new semantics.
d) $(x \oplus y)^{-}=x^{-} \odot y^{-}$, for any $x, y \in A$,
e) $\left(x \odot y^{-}\right) \oplus y=\left(y \odot x^{-}\right) \oplus x$, for any $x, y \in A$.

An $M V_{3}$-algebra is an $M V$-algebra with the property $x \oplus x \oplus x=x \oplus x$.
Any $M V$-algebra is an $M T L$-algebra, where the implication is given by $x \rightarrow y=$ $\bar{x} \oplus y$.
(A5) $\varphi \wedge \psi \rightarrow \psi \wedge \varphi$
Let f be a weak forcing property. Using Lemma 3, (3), Lemma 2, (2), and the definition of an $M T L$-algebra, we obtain:

$$
\begin{aligned}
{[\varphi} & \wedge \psi \rightarrow \psi \wedge \varphi]_{1}^{f}=\bigwedge_{y \in L_{3}}\left([\varphi \wedge \psi]_{y}^{f} \rightarrow[\psi \wedge \varphi]_{y}^{f}\right)= \\
& \left.=\bigwedge_{y \in L_{3}}\left([\varphi \varphi]_{y}^{f} \wedge[\psi]_{y}^{f}\right) \rightarrow\left([\psi]_{y}^{f} \wedge[\psi]_{y}^{f}\right)\right)= \\
& =\bigwedge_{y \in L_{3}}\left[\left([\varphi]_{y}^{f} \rightarrow\left([\psi]_{y}^{f} \wedge[\psi]_{y}^{f}\right)\right) \vee\left([\psi]_{y}^{f} \rightarrow\left([\psi]_{y}^{f} \wedge[\psi]_{y}^{f}\right)\right)\right]= \\
& \left.=\bigwedge_{y \in L_{3}}\left[\left(\left([\varphi]_{y}^{f} \rightarrow[\psi]_{y}^{f}\right) \wedge\left([\varphi]_{y}^{f} \rightarrow[\varphi]_{y}^{f}\right)\right) \vee\left([\psi]_{y}^{f} \rightarrow[\psi]_{y}^{f}\right) \wedge\left([\psi]_{y}^{f} \rightarrow[\varphi]_{y}^{f}\right)\right)\right]= \\
& =\bigwedge_{y \in X}\left[\left([\varphi]_{y}^{f} \rightarrow[\psi]_{y}^{f}\right) \vee\left([\psi]_{y}^{f} \rightarrow[\varphi]_{y}^{f}\right)\right]=1
\end{aligned}
$$

Therefore this axiom is valid w.r.t. the weak forcing semantic.
(A6) $\varphi \odot(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \psi)$
Let us consider $\mathcal{X}=L_{3}=\left\{0, \frac{1}{2}, 1\right\}$ with the canonical structure of $M V_{3}$ algebra and let $p, q \in V$ and f be a weak forcing property which has the following behaviour w.r.t. p, q :

f	0	$\frac{1}{2}$	1
p	1	1	1
q	1	1	0

Because $[p \rightarrow q]_{x}^{f}=\bigwedge_{y \in L_{3}} f(p, y) \rightarrow f(q, x \cdot y)$, we obtain $[p \rightarrow q]_{0}^{f}=1$, $[p \rightarrow q]_{\frac{1}{2}}^{f}=1$ and $[p \rightarrow q]_{1}^{f}=0$.
We also have the followings:

$$
\begin{aligned}
& {[p \odot(p \rightarrow q)]_{0}^{f}=\bigvee_{t, z \in L_{3}} f(p, t) \cdot[p \rightarrow q]_{z}^{f}=1} \\
& {[p \odot(p \rightarrow q)]_{\frac{1}{2}}^{f}=\bigvee_{t, z \in L_{3}}\left(\frac{1}{2} \rightarrow t z\right) \cdot f(p, t) \cdot[p \rightarrow q]_{z}^{f}=1} \\
& {[p \odot(p \rightarrow q)]_{1}^{f}=\bigvee_{t, z \in L_{3}}(1 \rightarrow t z) \cdot f(p, t) \cdot[p \rightarrow q]_{z}^{f}=\frac{1}{2}} \\
& {[p \odot(p \rightarrow q) \rightarrow(p \wedge q)]_{1}^{f}=\bigwedge_{x \in L_{3}}\left([p \odot(p \rightarrow q)]_{x}^{f} \rightarrow[p \wedge q]_{x}^{f}\right)=} \\
& \quad=\bigwedge_{x \in L_{3}}\left([p \odot(p \rightarrow q)]_{x}^{f} \rightarrow(f(p, x) \wedge f(q, x))\right)= \\
& \quad=[1 \rightarrow(1 \wedge 1)] \wedge[1 \rightarrow(1 \wedge 1)] \wedge\left[\frac{1}{2} \rightarrow(1 \wedge 0)\right]=1 \wedge 1 \wedge \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Thus, $[p \odot(p \rightarrow q) \rightarrow(p \wedge q)]_{1}^{f}=\frac{1}{2} \neq 1$. This prove that axiom (A6) is not valid w.r.t. the weak forcing semantic.
(A7) $(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \odot \psi) \rightarrow \chi)$
From [Iorgulescu 2004], the set $A=\{0, a, b, c, d, 1\}$ is organized as a lattice as in Figure 1 and as an $M T L$-algebra \mathcal{A} with the operation \rightarrow and \odot as in the following tables:

	0 abccd 1		0 abcc 1
0	111111	0	000000
a	$d 11111$	a	$000 a 0 a$
b	a a 1111		$00 b b b b$
c	0 a d 1 d 1	c	$0 a b c b c$
d	a a c c 11	d	$00 b b d d$
1	$0 a b c d 1$	1	$0 a b c d 1$

Let us consider $p, q, r \in V$ and f a weak forcing property with the following behaviour w.r.t. p, q, r :

f	0	a	b	c	d	1
p	1	1	d	d	d	d
q	1	a	a	0	0	0
r	b	0	0	0	0	0

Because $[p \odot q]_{x}^{f}=\bigwedge_{y, z \in A}(x \rightarrow y z) \cdot f(p, y) \cdot f(q, z)$, we have $[p \odot q]_{0}^{f}=1$, $[p \odot q]_{a}^{f}=d,[p \odot q]_{b}^{f}=a,[p \odot q]_{c}^{f}=0,[p \odot q]_{d}^{f}=a$ and $[p \odot q]_{1}^{f}=0$. We have the followings:
$[(p \odot q) \rightarrow r]_{1}^{f}=\bigwedge_{x \in A}\left([p \odot q]_{x}^{f} \rightarrow f(r, 1 \cdot x)\right)=\bigwedge_{x \in A}\left([p \odot q]_{x}^{f} \rightarrow f(r, x)\right)=$

$$
=(1 \rightarrow b) \wedge(d \rightarrow 0) \wedge(a \rightarrow 0) \wedge(0 \rightarrow 0) \wedge(a \rightarrow 0) \wedge(0 \rightarrow 0)=a
$$

Because $[q \rightarrow r]_{x}^{f}=\bigwedge_{y \in A}(f(q, y) \rightarrow f(r, x \cdot y))$, we obtain that $[q \rightarrow r]_{x}^{f}=b$, for all $x \in A$. Then, we also have:
$[p \rightarrow(q \rightarrow p)]_{1}^{f}=\bigwedge_{x \in A}\left(f(p, x) \rightarrow[q \rightarrow r]_{x}^{f}\right)=(1 \rightarrow b) \wedge(d \rightarrow b)=b$
Thus, $[p \rightarrow(q \rightarrow p)]_{1}^{f} \rightarrow[(p \odot q) \rightarrow r]_{1}^{f}=b \rightarrow a=a$.
By definition, we have
$[(p \rightarrow(q \rightarrow r)) \rightarrow((p \odot q) \rightarrow r)]_{1}^{f}=\bigwedge_{x \in A}\left([p \rightarrow(q \rightarrow r)]_{x}^{f} \rightarrow[(p \odot q) \rightarrow r]_{x}^{f}\right)$,
therefore we have
$[(p \rightarrow(q \rightarrow r)) \rightarrow((p \odot q) \rightarrow r)]_{1}^{f} \leq[p \rightarrow(q \rightarrow r)]_{1}^{f} \rightarrow[(p \odot q) \rightarrow r]_{1}^{f}=a$.
Hence, axiom (A7) is not valid w.r.t. the new kind of semantics.

Figure 1:
(A8) $((\varphi \odot \psi) \rightarrow \chi) \rightarrow(\varphi \rightarrow(\psi \rightarrow \chi)$
By Corollary 9, (7), this axiom is valid w.r.t. the weak forcing semantic.
(A9) $(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(((\psi \rightarrow \varphi) \rightarrow \chi) \rightarrow \chi)$
Let us consider $\mathcal{X}=L_{3}=\left\{0, \frac{1}{2}, 1\right\}$ with the canonical structure of $M V_{3^{-}}$ algebra. Let us also consider $p, q, r \in V$, some propositional variables, and f a weak forcing property with the following behaviour w.r.t. p, q, r :

f	0	$\frac{1}{2}$	1
p	0	0	0
q	$\frac{1}{2}$	0	0
r	0	0	0

Beacause $[q \rightarrow p]_{x}^{f}=\bigwedge_{y \in L_{3}}(f(q, y) \rightarrow f(p, x \cdot y))$, we obtain that $[q \rightarrow p]_{0}^{f}=$ $\frac{1}{2},[q \rightarrow p]_{\frac{1}{2}}^{f}=\frac{1}{2}$ and $[q \rightarrow p]_{1}^{f}=\frac{1}{2}$.
We have the followings:
$[p \rightarrow(q \rightarrow r)]_{0}^{f}=\bigwedge_{z \in L_{3}}\left(f(p, z) \rightarrow[q \rightarrow r]_{0}^{f}\right)=\bigwedge_{z \in L 3}\left(0 \rightarrow[q \rightarrow r]_{0}^{f}\right)=1$
$[(q \rightarrow p) \rightarrow r]_{x}^{f}=\bigwedge_{y \in L 3}\left([q \rightarrow p]_{y}^{f} \rightarrow f(r, x \cdot y)\right)=\bigwedge_{y \in L 3}\left([q \rightarrow p]_{y}^{f} \rightarrow 0\right)=\frac{1}{2}$
$[((q \rightarrow p) \rightarrow r) \rightarrow r]_{0}^{f}=\bigwedge_{x \in L_{3}}\left([(q \rightarrow p) \rightarrow r]_{x}^{f} \rightarrow f(r, 0)\right)=\frac{1}{2}$
$[p \rightarrow(q \rightarrow r)]_{0}^{f} \rightarrow[((q \rightarrow p) \rightarrow r) \rightarrow r]_{0}^{f}=1 \rightarrow \frac{1}{2}=\frac{1}{2}$
Because $[(p \rightarrow(q \rightarrow r)) \rightarrow(((q \rightarrow p) \rightarrow r) \rightarrow r)]_{1}^{f}=\bigwedge_{x \in L_{3}}([p \rightarrow(q \rightarrow$
$\left.r)]_{x}^{f} \rightarrow[((q \rightarrow p) \rightarrow r) \rightarrow r]_{x}^{f}\right)$, we have that $[(p \rightarrow(q \rightarrow r)) \rightarrow(((q \rightarrow p) \rightarrow$
$r) \rightarrow r)]_{1}^{f} \leq[p \rightarrow(q \rightarrow r)]_{0}^{f} \rightarrow[((q \rightarrow p) \rightarrow r) \rightarrow r]_{0}^{f}=\frac{1}{2}$, therefore axiom
(A9) is not valid w.r.t. the weak forcing semantic.
$(\mathrm{A} 10) \perp \rightarrow \varphi$
Let us consider $\mathcal{X}=L_{3}=\left\{0, \frac{1}{2}, 1\right\}$ with the canonical structure of $M V_{3}$ algebra and let $p \in V$ and f a weak forcing property such that $f(p, x)=0$, for all $x \in L_{3}$. We have

$$
\begin{aligned}
& {[\perp \rightarrow p]_{1}^{f}=\bigwedge_{x \in L_{3}}\left([\perp]_{x}^{f} \rightarrow[p]_{x}^{f}\right)=\bigwedge_{x \in L_{3}}(\bar{x} \rightarrow f(p, x))=} \\
& \quad=(\overline{0} \rightarrow 0) \wedge\left(\frac{\overline{1}}{2} \rightarrow 0\right) \wedge(\overline{1} \rightarrow 0)=0
\end{aligned}
$$

Therefore (A10) is not valid in the new semantics.
In the same way we can study the behaviour of $|\cdot| \mathcal{X}$ w.r.t. some other formulas of $M T L$. For example, let us consider the formula $(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$, where φ, ψ are $M T L$-formulas. From [Esteva and Godo 2001], we know that this formula is
valid with respect to the truth value semantics. Now, let us consider L_{3} with the canonical structure of $M V_{3}$-algebra and let $p, q \in V$. Let us consider a weak forcing property f with the following behaviour w.r.t. p, q :

f	0	$\frac{1}{2}$	1
p	1	1	0
q	1	$\frac{1}{2}$	$\frac{1}{2}$

By definition, we obtain:

$$
\begin{aligned}
& {[p \rightarrow q]_{1}^{f}=\bigwedge_{y \in L_{3}}(f(p, y) \rightarrow f(q, y))=} \\
& \quad=(f(p, 0) \rightarrow f(q, 0)) \wedge\left(f\left(p, \frac{1}{2}\right) \rightarrow f\left(q, \frac{1}{2}\right)\right) \wedge(f(p, 1) \rightarrow f(q, 1))= \\
& \quad=(1 \rightarrow 1) \wedge\left(1 \rightarrow \frac{1}{2}\right) \wedge\left(0 \rightarrow \frac{1}{2}\right)=\frac{1}{2} \\
& {[q \rightarrow p]_{1}^{f}=\bigwedge_{y \in L_{3}}(f(q, y) \rightarrow f(p, y))=(1 \rightarrow 1) \wedge\left(\frac{1}{2} \rightarrow 1\right) \wedge\left(\frac{1}{2} \rightarrow 0\right)=\frac{1}{2}} \\
& \text { It follows that }[(p \rightarrow q) \vee(q \rightarrow p)]_{1}^{f}=[p \rightarrow q]_{1}^{f} \vee[q \rightarrow p]_{1}^{f}=\frac{1}{2} \vee \frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

Therefore this formula is not valid with respect the new kind of semantics.

6 Forcing value of a formula of $M T L$

In [Montagna and Ono 2002, Montagna and Sacchetti 2004], it was proved that the r-forcing (this notion was introduced also in [Montagna and Ono 2002] and [Montagna and Sacchetti 2004]) is a more adequate notion for reflecting the logical structure of $M T L$. Arising from r-forcing, we shall define in this section the \mathcal{X}-valued forcing property and forcing value $[\varphi]_{\mathcal{X}}$ of a formula of $M T L$ in a complete $M T L$-algebra \mathcal{X}. The first one is obtained from an \mathcal{X}-valued weak forcing property $f:(V \cup\{\perp\}) \times X \rightarrow X$ by adding a condition that homogenizes the action of f w.r.t. elements of X. Then one can define the forcing value $[\varphi]_{\mathcal{X}}$, resulting a semantic $[\cdot]_{\mathcal{X}}$ of $M T L$ distinct from $|\cdot|_{\mathcal{X}}$.

One of the main results of the above papers [Montagna and Ono 2002] and [Montagna and Sacchetti 2004] asserts that the Kripke completeness (defined by means of r-forcing) coincides with the usual algebraic completeness of $M T L$. In this section we shall extend this result, by proving that $[\varphi]_{\mathcal{X}}=\|\varphi\|_{\mathcal{X}}$, for any formula of $M T L$.

We fix a complete $M T L$-algebra $\mathcal{X}=(X, \vee, \wedge, \cdot, \rightarrow, 0,1)$.
Definition 12. An \mathcal{X}-valued forcing property is an \mathcal{X}-valued weak forcing property $f:(V \cup\{\perp\}) \times X \rightarrow X$ such that $f(\varphi, x)=x \rightarrow f(\varphi, 1)$, for any $\varphi \in V$ and $x \in X$.

Definition 13. The forcing value $[\varphi]_{\mathcal{X}}$ of a formula φ in \mathcal{X} is defined by

$$
[\varphi]_{\mathcal{X}}=\bigwedge\left\{[\varphi]_{1}^{f} \mid \mathrm{f} \text { is an } \mathcal{X} \text {-valued forcing property }\right\}
$$

Let f be an \mathcal{X}-valued forcing property.

Proposition 14. For any $\varphi \in$ Form and $x \in X,[\varphi]_{x}^{f}=x \rightarrow[\varphi]_{1}^{f}$.
Proof. By induction on the complexity of φ.
(1) If φ is an atomic formula, then we apply Definition 12 and we are done.
(2) $[\perp]_{x}=\bar{x}=x \rightarrow 0=x \rightarrow[\perp]_{1}$.
(3) $\varphi=\alpha \vee \beta$. By induction hypothesis, $[\alpha]_{x}=x \rightarrow[\alpha]_{1}$ and $[\beta]_{x}=x \rightarrow[\beta]_{1}$, hence, by Lemma 3, we get

$$
\begin{aligned}
{[\varphi]_{x} } & =[\alpha]_{x} \vee[\beta]_{x}=\left(x \rightarrow[\alpha]_{1}\right) \vee\left(x \rightarrow[\beta]_{1}\right) \leq x \rightarrow\left([\alpha]_{1} \vee[\beta]_{1}\right)= \\
& =x \rightarrow[\alpha \vee \beta]_{1}=x \rightarrow[\varphi]_{1} .
\end{aligned}
$$

(4) $\varphi=\alpha \wedge \beta$. By induction hypothesis, $[\alpha]_{x}=x \rightarrow[\alpha]_{1}$ and $[\beta]_{x}=x \rightarrow[\beta]_{1}$, hence, using Lemma 2, (2), it follows that

$$
\begin{aligned}
{[\varphi]_{x} } & =[\alpha]_{x} \wedge[\beta]_{x}=\left(x \rightarrow[\alpha]_{1}\right) \wedge\left(x \rightarrow[\beta]_{1}\right)=x \rightarrow\left([\alpha]_{1} \wedge[\beta]_{1}\right)= \\
& =x \rightarrow[\alpha \wedge \beta]_{1}=x \rightarrow[\varphi]_{1}
\end{aligned}
$$

(5) $\varphi=\alpha \odot \beta$.

By induction hypothesis, $[\alpha]_{u}=u \rightarrow[\alpha]_{1}$ and $[\beta]_{u}=u \rightarrow[\beta]_{1}$, for all $u \in X$.
Then $[\varphi]_{x}=\bigvee_{y, z \in x}(x \rightarrow y z)[\alpha]_{y}[\beta]_{z}=\bigvee_{y, z \in x}(x \rightarrow y z)\left(y \rightarrow[\alpha]_{1}\right)\left(z \rightarrow[\beta]_{1}\right)$.
Let $y, z \in X$. Hence, by Lemma $1,(5)$,
$x(x \rightarrow y z)\left(y \rightarrow[\alpha]_{1}\right)\left(z \rightarrow[\beta]_{1}\right) \leq y z\left(y \rightarrow[\alpha]_{1}\right)\left(z \rightarrow[\beta]_{1}\right) \leq[\alpha]_{1}[\beta]_{1}$
Therefore, by Lemma 1, (1), we get
$(x \rightarrow y z)\left(y \rightarrow[\alpha]_{1}\right)\left(z \rightarrow[\beta]_{1}\right) \leq x \rightarrow[\alpha]_{1}[\beta]_{1}$
This last inequality holds for all $y, z \in X$, therefore
(a) $[\varphi]_{x} \leq x \rightarrow[\alpha]_{1}[\beta]_{1}$

Particulary, $[\varphi]_{1} \leq[\alpha]_{1}[\beta]_{1}$. On the other hand,
$[\alpha]_{1}[\beta]_{1}=\left(1 \rightarrow[\alpha]_{1}[\beta]_{1}\right)\left([\alpha]_{1} \rightarrow[\alpha]_{1}\right)\left([\beta]_{1} \rightarrow[\beta]_{1}\right) \leq[\alpha \odot \beta]_{1}=[\varphi]_{1}$
It follows that
(b) $[\varphi]_{1}=[\alpha \odot \beta]_{1}=[\alpha]_{1}[\beta]_{1}$

From (a) and (b) we infer that
(c) $[\varphi]_{x} \leq x \rightarrow[\varphi]_{1}$

The converse inequality $x \rightarrow[\varphi]_{1} \leq[\varphi]_{x}$ follows easily by
$x \rightarrow[\varphi]_{1}=x \rightarrow[\alpha]_{1}[\beta]_{1}=\left(x \rightarrow[\alpha]_{1}[\beta]_{1}\right)\left([\alpha]_{1} \rightarrow[\alpha]_{1}\right)\left([\beta]_{1} \rightarrow[\beta]_{1}\right) \leq[\varphi]_{x}$
(6) $\varphi=\alpha \rightarrow \beta$.

By induction hypothesis, $[\alpha]_{u}=u \rightarrow[\alpha]_{1}$ and $[\beta]_{u}=u \rightarrow[\beta]_{1}$, for all $u \in X$.
Then, by Lemma 1, (6), we get

$$
\begin{aligned}
{[\varphi]_{x} } & =\bigwedge_{y \in X}\left([\alpha]_{y} \rightarrow[\beta]_{x y}\right)=\bigwedge_{y \in X}\left(\left(y \rightarrow[\alpha]_{1}\right) \rightarrow\left(x y \rightarrow[\beta]_{1}\right)\right)= \\
& =\bigwedge_{y \in X}\left(x y\left(y \rightarrow[\alpha]_{1}\right) \rightarrow[\beta]_{1}\right)
\end{aligned}
$$

Thus $[\varphi]_{x} \leq x[\alpha]_{1} \rightarrow[\beta]_{1}$. Particulary, $[\varphi]_{1} \leq 1[\alpha]_{1} \rightarrow[\beta]_{1}$.
For any $y \in X$, we have $y\left(y \rightarrow[\alpha]_{1}\right)\left([\alpha]_{1} \rightarrow[\beta]_{1}\right) \leq[\beta]_{1}$, hence $[\alpha]_{1} \rightarrow[\beta]_{1} \leq y\left(y \rightarrow[\alpha]_{1}\right) \rightarrow[\beta]_{1}=\left(y \rightarrow[\alpha]_{1}\right) \rightarrow\left(y \rightarrow[\beta]_{1}\right)$ Therefore $[\alpha]_{1} \rightarrow[\beta]_{1} \leq \bigwedge_{y \in X}\left(\left(y \rightarrow[\alpha]_{1}\right) \rightarrow\left(y \rightarrow[\beta]_{1}\right)\right)=[\alpha \rightarrow \beta]_{1}=[\varphi]_{1}$. It follows that
(d) $[\varphi]_{1}=[\alpha \rightarrow \beta]_{1}=[\alpha]_{1} \rightarrow[\beta]_{1}$,
hence $[\varphi]_{x} \leq x \rightarrow[\varphi]_{1}$. On the other hand, by using Lemma 1, (7), we obtain
$x \rightarrow[\varphi]_{1}=x \rightarrow\left([\alpha]_{1} \rightarrow[\beta]_{1}\right)=x[\alpha]_{1} \rightarrow[\beta]_{1} \leq x y\left(y \rightarrow[\alpha]_{1}\right) \rightarrow[\beta]_{1}=$

$$
=\left(y \rightarrow[\alpha]_{1}\right) \rightarrow\left(x y \rightarrow[\beta]_{1}\right)=[\alpha]_{y} \rightarrow[\beta]_{x y}
$$

Then $x \rightarrow[\varphi]_{1} \leq \bigwedge_{y \in X}\left([\alpha]_{y} \rightarrow[\beta]_{x y}\right)=[\varphi]_{x}$.
We conclude that $[\varphi]_{x}=x \rightarrow[\varphi]_{1}$.
Corollary 15. Let f be an \mathcal{X}-valued forcing property. For any $\varphi, \psi \in F$ orm we have:
(1) $[\varphi \vee \psi]_{1}^{f}=[\varphi]_{1}^{f} \vee[\psi]_{1}^{f}$;
(2) $[\varphi \wedge \psi]_{1}^{f}=[\varphi]_{1}^{f} \wedge[\psi]_{1}^{f}$;
(3) $[\varphi \odot \psi]_{1}^{f}=[\varphi]_{1}^{f} \cdot[\psi]_{1}^{f}$;
(4) $[\varphi \rightarrow \psi]_{1}^{f}=[\varphi]_{1}^{f} \rightarrow[\psi]_{1}^{f}$.

Proof. By the proof of Proposition 14.
For any \mathcal{X}-valued forcing property f, let us consider the evaluation $\lambda_{f}: V \rightarrow$ X defined by $\lambda_{f}(\varphi)=f(\varphi, 1)$, for any $\varphi \in V$.

Proposition 16. For any $\varphi \in$ Form, we have $[\varphi]_{1}=\hat{\lambda}_{f}(\varphi)$.
Proof. By induction on the complexity of φ, according to Corollary 15
If $e: V \rightarrow X$ is an evaluation, then we define the function $f_{e}:(V \cup\{\perp\}) \times X \rightarrow X$ by $f_{e}(\varphi, x)=x \rightarrow e(\varphi)$, for all $\varphi \in V \cup\{\perp\}$ and $x \in X$. By definition, f_{e} is a \mathcal{X}-valued forcing property.

Proposition 17. Let $f=f_{e}$ the \mathcal{X}-valued forcing property associated with the evaluation e. For all $\varphi \in$ Form and $x \in X$, we have $[\varphi]_{x}^{f}=x \rightarrow \hat{e}(\varphi)$.

Proof. By induction on the complexity of φ :
$-\varphi$ is an atomic formula: $[\varphi]_{x}^{f}=f(\varphi, x)=x \rightarrow e(\varphi)=x \rightarrow \hat{e}(\varphi)$;
$-\varphi=\alpha \vee \beta$: by induction hypothesis, $[\alpha]_{x}^{f}=x \rightarrow \hat{e}(\alpha),[\beta]_{x}^{f}=x \rightarrow \hat{e}(\beta)$.
Then, by using Lemma 2, (4), we obtain
$[\varphi]_{x}^{f}=[\alpha]_{x}^{f} \vee[\beta]_{x}^{f}=(x \rightarrow \hat{e}(\alpha)) \vee(x \rightarrow \hat{e}(\beta)) \leq$

$$
\leq x \rightarrow(\hat{e}(\alpha) \vee \hat{e}(\beta))=x \rightarrow \hat{e}(\varphi)
$$

By Lemma 3, (2), we obtain

$$
\begin{aligned}
x \rightarrow \hat{e}(\varphi) & =x \rightarrow \hat{e}(\alpha \vee \beta)=x \rightarrow(\hat{e}(\alpha) \vee \hat{e}(\beta))= \\
& =(x \rightarrow \hat{e}(\alpha)) \wedge(x \rightarrow \hat{e}(\beta))=[\alpha]_{x}^{f} \wedge[\beta]_{x}^{f} \leq[\alpha]_{x}^{f} \vee[\beta]_{x}^{f}= \\
& =[\alpha \vee \beta]_{x}^{f}=[\varphi]_{x}^{f}
\end{aligned}
$$

Therefore $[\varphi]_{x}^{f}=x \rightarrow \hat{e}(\varphi)$.

- the case $\varphi=\alpha \wedge \beta$ follows similarly;
$-\varphi=\alpha \odot \beta$: by definition and induction hypothesis $[\alpha]_{x}^{f}=x \rightarrow \hat{e}(\alpha),[\beta]_{x}^{f}=$ $x \rightarrow \hat{e}(\beta)$, we get
$[\varphi]_{x}^{f}=\bigvee_{y, z \in X}(x \rightarrow y z)[\alpha]_{y}^{f}[\beta]_{z}^{f}=\bigvee_{y, z \in X}(x \rightarrow y z)(y \rightarrow \hat{e}(\alpha))(z \rightarrow \hat{e}(\beta))$
Let $y, z \in X$. Then $x(x \rightarrow y z)(y \rightarrow \hat{e}(\alpha))(z \rightarrow \hat{e}(\beta)) \leq \hat{e}(\alpha) \hat{e}(\beta)$, hence $(x \rightarrow y z)(y \rightarrow \hat{e}(\alpha))(z \rightarrow \hat{e}(\beta)) \leq x \rightarrow \hat{e}(\alpha \odot \beta)=x \rightarrow \hat{e}(\varphi)$. It results that $[\varphi]_{x}^{f} \leq x \rightarrow \hat{e}(\varphi)$. According to the previous expression of $[\varphi]_{x}^{f}$, the converse inequality $x \rightarrow \hat{e}(\varphi)=x \rightarrow \hat{e}(\alpha) \hat{e}(\beta) \leq[\varphi]_{x}^{f}$ is obvious;
$-\varphi=\alpha \rightarrow \beta$: by induction hypothesis, $[\alpha]_{u}^{f}=u \rightarrow \hat{e}(\alpha),[\beta]_{u}^{f}=u \rightarrow \hat{e}(\beta)$, for all $u \in X$. According to Lemma 2, (2), we can write

$$
\begin{aligned}
{[\varphi]_{x}^{f} } & =\bigwedge_{y \in X}\left([\alpha]_{y} \rightarrow[\beta]_{x y}\right)=\bigwedge_{y \in X}((y \rightarrow \hat{e}(\alpha)) \rightarrow(x y \rightarrow \hat{e}(\beta)))= \\
& =\bigwedge_{y \in X}(x \rightarrow((y \rightarrow \hat{e}(\alpha)) \rightarrow(y \rightarrow \hat{e}(\beta))))= \\
& =x \rightarrow \bigwedge_{y \in X}((y \rightarrow \hat{e}(\alpha)) \rightarrow(y \rightarrow \hat{e}(\beta)))
\end{aligned}
$$

Thus $[\varphi]_{x}^{f} \leq x \rightarrow((1 \rightarrow \hat{e}(\alpha)) \rightarrow(1 \rightarrow \hat{e}(\beta)))=x \rightarrow(\hat{e}(\alpha) \rightarrow \hat{e}(\beta))=$ $x \rightarrow \hat{e}(\varphi)$. Let $y \in X$. Then $y(y \rightarrow \hat{e}(\alpha))(\hat{e}(\alpha) \rightarrow \hat{e}(\beta)) \leq \hat{e}(\beta)$, hence

$$
\begin{aligned}
\hat{e}(\alpha \rightarrow \beta) & =\hat{e}(\alpha) \rightarrow \hat{e}(\beta) \leq y(y \rightarrow \hat{e}(\alpha)) \rightarrow \hat{e}(\beta)= \\
& =(y \rightarrow \hat{e}(\alpha)) \rightarrow(y \rightarrow \hat{e}(\beta))
\end{aligned}
$$

This inequality is true for any $y \in X$, so
$\hat{e}(\alpha \rightarrow \beta) \leq \bigwedge_{y \in X}((y \rightarrow \hat{e}(\alpha)) \rightarrow(y \rightarrow \hat{e}(\beta)))$
Applying Lemma 1, (7), we obtain
$x \rightarrow \hat{e}(\varphi)=x \rightarrow \hat{e}(\alpha \rightarrow \beta) \leq x \rightarrow \bigwedge_{y \in X}((y \rightarrow \hat{e}(\alpha)) \rightarrow(y \rightarrow \hat{e}(\beta)))=[\varphi]_{x}^{f}$
Proposition 18. There exists a bijective correspondence between the \mathcal{X}-valued forcing properties and the evaluations of $M T L$ in \mathcal{X}.

Proof. The assignments $f \mapsto \lambda_{f}$ and $e \mapsto f_{e}$ prove the bijective correspondence between the set of \mathcal{X}-valued forcing properties and the set of evaluations in \mathcal{X}.

The following theorem is a consequence of the previous results.
Theorem 19. For any formula φ of $M T L$, we have $[\varphi]_{\mathcal{X}}=\|\varphi\|_{\mathcal{X}}$.
Corollary 20. If the formula φ is provable in $M T L$, then $[\varphi]_{\mathcal{X}}=1$.

$7 \quad$ Final discussion and open questions

We shall discuss two possible directions to extend and improve the results obtained in the previous sections.
7.1 The predicate logic $M T L \forall$ was introduced by Esteva and Godo in the paper [Esteva and Godo 2001]. The language of $M T L \forall$ has the following primitive symbols: variables, predicates symbols, the connectives $\vee, \wedge, \odot, \rightarrow$, the constant \perp, the quantifiers \exists, \forall and the paranthesis (,). The axioms of $M T L \forall$ are those of $M T L$ plus:
$(\forall 1) \forall v \varphi \rightarrow \varphi(w / v) \quad(w$ is substitutable for v in $\varphi)$
$(\forall 2) \forall v(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \forall v \psi) \quad(v$ is not free in $\varphi)$
$(\forall 3) \forall v(\varphi \vee \psi) \rightarrow(\varphi \vee \forall v \psi) \quad(v$ is not free in $\varphi)$
$(\exists 1) \varphi(w / v) \rightarrow \exists v \varphi \quad(w$ is substitutable for v in $\varphi)$
$(\exists 2) \forall v(\varphi \rightarrow \psi) \rightarrow(\exists v \varphi \rightarrow \psi) \quad(v$ is not free in $\psi)$.
The inference rules of $M T L \forall$ are modus ponens and generalization: $\frac{\varphi}{\forall x \varphi}$.
The formulas and the sentences of $M T L \forall$ are defined as usual. If D is a non-empty set, then $M T L \forall(D)$ will be the language obtained from $M T L \forall$ by adding the elements of D as new constants.

Let \mathcal{X} be a complete $M T L$-algebra and D a non-empty set. A first-order \mathcal{X} evaluation with domain D is a function e from the set $\operatorname{At}(D)$ of atomic sentences in $M T L \forall(D)$ into \mathcal{X}. Any first-order \mathcal{X}-evaluation e with domain D can be uniquely extended by induction to a function \hat{e} from the sentences of $M T L \forall(D)$ into \mathcal{X}. The truth value $\|\varphi\|_{\mathcal{X}}$ of a sentence φ of $M T L \forall(D)$ in \mathcal{X} is defined as usual [Esteva and Godo 2001, Esteva et.al. 2002].

Now we shall extend the definitions of preceding sections to the new setting. An \mathcal{X}-valued weak forcing property with domain D is a function $f:(\operatorname{At}(D) \cup\{\perp$ $\}) \times X \rightarrow X$ such that $f(\perp, 1)=0$ and, for all $\varphi \in \operatorname{At}(D)$ and $x, y \in X, x \leq y$ implies $f(\varphi, y) \leq f(\varphi, x)$. In an analogous way we can define the notion of \mathcal{X} valued forcing property with domain D.

Let f be an \mathcal{X}-valued weak forcing property with domain D. For any sentence φ of $\operatorname{MTL} \forall(D)$ and $x \in X$, the element $[\varphi]_{x}^{f}$ of X is defined by the conditions (1)-(6) of Definition 5 and the following new clauses:
(i) If $\varphi=\forall v \psi$, then $[\varphi]_{x}^{f}=\bigwedge_{d \in D}[\psi(d)]_{x}^{f}$;
(ii) If $\varphi=\exists v \psi$, then $[\varphi]_{x}^{f}=\bigwedge_{y<x} \bigvee_{y<z} \bigvee_{d \in D}[\psi(d)]_{z}^{f}$.

Now, for any sentence φ of $M T L \forall$, we can define the weak forcing value $|\varphi|_{\mathcal{X}}$ and the forcing value $[\varphi]_{\mathcal{X}}$ of φ in \mathcal{X}.

For $|\cdot|_{\mathcal{X}}$ and $[\cdot]_{\mathcal{X}}$ we can formulate the following open questions:
Open question 21. Analyse the behaviour of $|\cdot| \mathcal{X}$ and $[\cdot]_{\mathcal{X}}$ w.r.t. the axioms and some other types of sentences in $M T L \forall$.

Open question 22. Compare the semantics $|\cdot|_{\mathcal{X}},[\cdot]_{\mathcal{X}},\|\cdot\|_{\mathcal{X}}$ and extend the results of Section 5 .

The following two propositions constitute a first step in solving the problem 21. We fix a \mathcal{X}-valued weak forcing property f with domain D.

Proposition 23. Let $\varphi(v)$ be a formula of $M T L \forall$, χ a sentence of $M T L \forall$, $x \in X$ and $a \in D$. Then the following properties hold:
(1) $[\forall v \varphi]_{x}^{f} \leq[\varphi(a)]_{x}^{f}$;
(2) $[\varphi(a)]_{x}^{f} \leq[\exists v \varphi]_{x}^{f}$;
(3) $[\forall v(\chi \rightarrow \varphi)]_{x}^{f}=[\chi \rightarrow \forall v \varphi]_{x}^{f}$;
(4) $[\exists v \varphi \rightarrow \chi]_{x}^{f}=[\forall v(\varphi \rightarrow \chi)]_{x}^{f}$.

Proof.
(1) Obvious.
(2) For any $y<x$, we have $[\varphi(a)]_{x}^{f} \leq \bigvee_{y<z} \bigvee_{b \in D}[\varphi(b)]_{z}^{f}$, hence $[\varphi(a)]_{x}^{f} \leq \bigwedge_{y<x}$ $\bigvee_{y<z} \bigvee_{b \in D}[\varphi(b)]_{z}^{f}=[\exists v \varphi]_{x}^{f}$.
(3) By the definition of $[\cdot]_{x}^{f}$ and Lemma 2, (2), we get $[\forall v(\chi \rightarrow \varphi)]_{x}^{f}=\bigwedge_{b \in D}$ $\bigwedge_{y \in X}\left([\chi]_{y}^{f} \rightarrow[\varphi(b)]_{x y}^{f}\right)=\bigwedge_{y \in X}\left([\chi]_{y}^{f} \rightarrow \bigwedge_{b \in D}[\varphi(b)]_{x y}^{f}\right)=\bigwedge_{y \in X}\left([\chi]_{y}^{f} \rightarrow[\forall v \varphi]_{x y}^{f}\right)$ $=[\chi \rightarrow \forall v \varphi]_{x}^{f}$.
(4) Let $b \in D$ and $y \in X$. According to Proposition 8, (4) and the previous inequality (2) we get $[\exists v \varphi \rightarrow \chi]_{x}^{f} \leq[\exists v \varphi]_{y}^{f} \rightarrow[\chi]_{x y}^{f} \leq[\varphi(b)]_{y}^{f} \rightarrow[\chi]_{x y}^{f}$. Therefore, for any $b \in D$, we have $[\exists v \varphi \rightarrow \psi]_{x}^{f} \leq \bigwedge_{y \in X}\left([\varphi(b)]_{y}^{f} \rightarrow[\chi]_{x y}^{f}\right)=[\varphi(b) \rightarrow \chi]_{x}^{f}$. Thus $[\exists v \varphi \rightarrow \chi]_{x}^{f} \leq \bigwedge_{b \in D}[\varphi(b) \rightarrow \chi]_{x}^{f}=[\forall v(\varphi \rightarrow \chi)]_{x}^{f}$.

Proposition 24. Let $\varphi(v), \psi(v)$ two formulas of $M T L \forall$. Then $[\forall v(\varphi \rightarrow \psi)]_{x}^{f}$ $\leq[\forall v \varphi \rightarrow \forall v \psi]_{x}^{f}$.
Proof. Let $y \in X$ and $a \in D$. By Proposition 23, (1), and Proposition 8, (4), we get $[\forall v(\varphi \rightarrow \psi)]_{x}^{f} \cdot[\forall v \varphi]_{y}^{f} \leq[\varphi(a) \rightarrow \psi(a)]_{x}^{f} \cdot[\varphi(a)]_{y}^{f} \leq[\psi(a)]_{x y}^{f}$, hence $[\forall v(\varphi \rightarrow \psi)]_{x}^{f} \cdot[\forall v \varphi]_{y}^{f} \leq \bigwedge_{a \in D}[\psi(a)]_{x y}^{f}$. Thus $[\forall v(\varphi \rightarrow \psi)]_{x}^{f} \leq[\forall v \varphi]_{y}^{f} \rightarrow$ $[\forall v \psi]_{x y}^{f}$, for each $y \in X$. Therefore, $[\forall v(\varphi \rightarrow \psi)]_{x}^{f} \leq \bigwedge_{y \in X}\left([\forall v \varphi]_{y}^{f} \rightarrow[\forall v \psi]_{x y}^{f}\right)$ $=[\forall v \varphi \rightarrow \forall v \psi]_{x}^{f}$.
7.2 Recently, a lot of non-commutative fuzzy algebras and their logical calculi were investigated [Cintula and Hájek 2006], [Gottwald 2005], [Iorgulescu 2006a], [Iorgulescu 2006b], [Piciu 2007]. Pseudo MTL-algebras (psMTL-algebras, for short) were defined in [Flondor et.al. 2001] arising from the structure of the interval $[0,1]$ induced by a left-continuous non-commutative t-norm.

A psMTL-algebra is a structure $\mathcal{X}=(X, \vee, \wedge, \cdot, \rightarrow, \rightsquigarrow, 0,1)$, where:
(C1) $(X, \vee, \wedge, 0,1)$ is a bounded lattice;
(C2) $(X, \cdot, 1)$ is a monoid;
(C3) $x \cdot y \leq z$ iff $x \leq y \rightarrow z$ iff $y \leq x \rightsquigarrow z$;
(C4) $(x \rightarrow y) \vee(y \rightarrow x)=(x \rightsquigarrow y) \vee(y \rightsquigarrow x)=1$.
By definition, a ps $M T L$-algebra \mathcal{X} is representable if it is isomorphic to a subdirect product of $\mathrm{ps} M T L$-chains ${ }^{3}$ The variety of representable $\mathrm{ps} M T L$ algebras is characterized by Kühr's identities [Kühr 2003]:

$$
\begin{aligned}
& (y \rightarrow z) \vee(z \rightsquigarrow((x \rightarrow y) \cdot z))=1 \\
& (y \rightsquigarrow z) \vee(z \rightarrow(z \cdot(x \rightsquigarrow y)))=1
\end{aligned}
$$

The ps $M T L$-algebras constitute the algebraic base for the propositional calculul $\mathrm{ps} M T L$, elaborated in [Hájek 2003a, Hájek 2003b]. An extension of $\mathrm{ps} M T L$ is $\mathrm{ps} M T L^{r}$, a logical system obtained from $\mathrm{ps} M T L$ by adding Kühr's axioms:
$(\mathrm{K} 1)(\psi \rightarrow \varphi) \vee(\chi \rightsquigarrow((\varphi \rightarrow \psi) \odot \chi))$;
$(\mathrm{K} 2)(\psi \rightsquigarrow \varphi) \vee(\chi \rightarrow(\chi \odot(\varphi \rightsquigarrow \psi)))$.
A standard completeness theorem for $\mathrm{ps} M T L^{r}$ was proved by Jenei and Montagna in [Jenei and Montagna 2003], by using a generalization of a technique from [Jenei and F. Montagna 2002].

Two predicate logics $\operatorname{ps} M T L \forall$ and $\mathrm{ps} M T L \forall^{r}$ were developed by Hájek and Ševčik in [Hájek and Ševčik 2004] and an weak completeness theorem for the $\mathrm{ps} M T L^{r}$ logic was established.

In the framework of logics $\mathrm{ps} M T L, \operatorname{ps} M T L^{r}, \operatorname{ps} M T L \forall$ and $\mathrm{ps} M T L \forall^{r}$ we can formulate the following open questions:

Open question 25. Extend the Kripke semantics of [Montagna and Ono 2002, Montagna and Sacchetti 2004] to these non-commutative logics in order to obtain similar standard completeness theorems for $\mathrm{ps} M T L^{r}$ and $\mathrm{ps} M T L \forall^{r}$.

[^1]Open question 26. Define appropiate notions of weak forcing value and forcing value for the logics $\mathrm{ps} M T L, \mathrm{ps} M T L^{r}, \mathrm{ps} M T L \forall, \mathrm{ps} M T L \forall^{r}$ and obtain noncommutative versions of the results proved in Sections 4 and 5.

Acknowledgments

The authors would like to thank Dr. Luca Spada and the referees for their valuable suggestions on this paper.

References

[Bělohlavek 2002] Bělohlavek, R.: "Fuzzy relational systems: foundations and principles"; Kluwer (2002).
[Cintula and Hájek 2006] Cintula, P., Hájek, P.: "Triangular norm based predicate fuzzy logics"; Proceedings Linz seminar of fuzzy logic (2006).
[Esteva et.al. 2002] Esteva, F., Gispert, J., Godo, L., Montagna, F.: "On the standard and the rational completeness of some axiomatic extensions of the monoidal t-norm logic"; Studia Logica 71 (2002), 293-420.
[Esteva and Godo 2001] Esteva, F., Godo, L.: "Monoidal t-norm based logic: toward a logic for left-continuous t-norm"; Fuzzy Sets and Systems 124 (2001), 271-288.
[Flondor et.al. 2001] Flondor, P., Georgescu, G., Iorgulescu, A.: "Pseudo t-norms and pseudo BL-algebras"; Soft Comput. 72 (2001), 355-371.
[Gottwald 2005] Gottwald, S.: "Mathematical fuzzy logic as a tool for the treatment of vague information" Information Science 172 (2005), 41-71.
[Hájek 1998a] Hájek, P.: "Basic fuzzy logic and BL-algebras"; Soft Computing 2 (1998), 124-128.
[Hájek 1998b] Hájek, P.: "Metamathematics of fuzzy logic"; Kluwer (1998).
[Hájek 2003a] Hájek, P.: "Fuzzy logics with non-commutative conjunctions"; J. Logic Comput. 13, 4 (2003), 469-479.
[Hájek 2003b] Hájek, P.: "Observations on non-commutative fuzzy logic"; Soft Computing 8 (2003), 38-43.
[Hájek and Ševčik 2004] Hájek, P., Ševčik, J.: "On fuzzy predicate calculi with noncommutative conjunction"; In: Proc. of East West Fuzzy Colloq., Zittau (2004) 103-110.
[Iorgulescu 2004] Iorgulescu, A.: "On BCK-algebras - part IV"; Institute of Mathematics of the Romanian Academy, Preprint no. 4 (2004).
[Iorgulescu 2006a] Iorgulescu, A.: "Classes of pseudo-BCK algebras, part I"; J. MultiVal. Logic \& Soft. Comp. 12 (2006), 71-130.
[Iorgulescu 2006b] Iorgulescu, A.: "Classes of pseudo-BCK algebras, part II" J. MultiVal. Logic \& Soft. Comp. 12 (2006), 575-629.
[Jenei and F. Montagna 2002] Jenei, S., Montagna, F.: "A proof of standard completeness for Esteva and Godo's logic MTL"; Studia Logica 70 (2002), 183-192.
[Jenei and Montagna 2003] Jenei, S., Montagna, F.: "A proof of standard completeness for non-commutative monoidal t-norm logic"; Neural Network World 13 (2003), 481-488.
[Jipsen and Tsinakis 2002] Jipsen, P., Tsinakis, C.: "A survey of residuated lattices"; Ordered algebraic structures (Martinez, J. Ed.), Kluwer (2002) 19-56.
[Klement et.al. 2000] Klement, E.P., Mesiar, R., Pap, E.: "Triangular norms"; Kluwer (2000).
[Kühr 2003] Kühr, J.: "Pseudo-BL algebras and DRl-monoids"; Math. Bohemica 128 (2003), 199-208.
[Montagna and Ono 2002] Montagna, F., Ono, H.: "Kripke completeness, undecidebility and standard completeness for Esteva and Godo's logic $M T L \forall^{\prime \prime}$; Studia Logica 71 (2002), 227-245.
[Montagna and Sacchetti 2004] Montagna, F., Sacchetti, L.: "Kripke-style semantics for many-valued logics"; Math. Log. Q. 50, 1 (2004), 104-107.
[Piciu 2007] Piciu, D.: "Algebras of fuzzy logic"; Ed. Universitaria Craiova (2007).

[^0]: ${ }^{1}$ C. S. Calude, G. Stefanescu, and M. Zimand (eds.). Combinatorics and Related * Areas. A Collection of Papers in Honour of the 65th Birthday of Ioan Tomescu.

 * Corresponding author: Denisa Diaconescu

[^1]: ${ }^{3}$ A non-commutative residuated lattice is a structure $\mathcal{X}=(X, \vee, \wedge, \cdot, \rightarrow, \rightsquigarrow, 0,1)$ verifying the conditions (C1)-(C3) (see [Jipsen and Tsinakis 2002]). Any totally ordered non-commutative residuated lattice is a ps $M T L$-chain.

