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Abstract: Here we summarise the properties and algorithms of the Gray code. De-
scriptions are given of the Gray code definition, algorithms and circuits for gener-
ating the code and for conversion between binary and Gray code, for incrementing,
counting, and adding Gray code words. Some interesting applications of the code are
also treated. Java implementations of the algorithms in this paper are available at:
http://www. jucs.org/jucs_13_11/the_gray_code/data/DoranGrayPrograms.zip.
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1 Introduction

What we now call “Gray code” was invented by Frank Gray. It was described in a
patent that was awarded in 1953; however, the work was performed much earlier,
the patent being applied for in 1947. Gray was a researcher at Bell Telephone
Laboratories; during the 1930s and 1940s he was awarded numerous patents for
work related to television.? According to Heath [Hea72] the code was first, in
fact, used by Baudot for telegraphy in the 1870s, though it is only since the
advent of computers that the code has become widely known.

The term “Gray code” is sometimes used to refer to any single-distance code,
that is, one in which adjacent code words (perhaps representing integers differing
by 1) differ by 1 in one digit position only. Gray introduced what we would now
call the canonical binary single-distance code, though he mentioned that other
binary single-distance codes could be obtained by permuting the columns and
rotating the rows of the code table. The codes of Gray, and natural extensions
to bases other than binary, are only a very small subset of all single-distance
codes. Here we will use the term “the Gray code” to refer to the code of Gray
and “single-distance” to refer to the more general case; we will be concerned
mainly with properties of the Gray code.

Much has been discovered and written about the Gray code in the past; it is
associated with many elegant algorithms and circuits. However, this wealth of
technical material had never been gathered together and treated in a consistent

1 C. S. Calude, G. Stefanescu, and M. Zimand (eds.). Combinatorics and Related
Areas. A Collection of Papers in Honour of the 65th Birthday of Ioan Tomescu.

2 Gardener [Gar72] states that Gray “died in 1969. His contributions to modern com-
munications technology were immense. The method now in use for compatible color
television broadcasting was developed by Gray in the 1930’s”.
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form, hence, this self-contained survey of the code’s properties, algorithms and
circuits.

2 Definition of the Gray Code

2.1 Origin of the code

The Gray code arises naturally in many situations. Gray’s interest in the code
was related to what we would now call analog to digital conversion. The goal
was to convert an integer value, represented as a voltage, into a series of pulses
representing the same number in digital form. The technique, as described in
Gray’s patent, was to use the voltage being converted to displace vertically an
electron beam that is being swept horizontally across the screen of a cathode
ray tube. The screen has a mask etched on it that only allows the passage of
the beam in certain places; a current is generated only when the beam passes
through the mask. The passage of the beam will then give rise to a series of
on/off conditions corresponding to the pattern of mask holes that it passes.
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Figure 1: Gray’s analogue to digital device
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The original scheme was to use a mask representing a standard binary en-
coding. However, this has the problem that, if the beam is close to the boundary
between two values, a slight distortion in the beam can give an output that is
neither of the two adjacent values but a combination of each (in the example
below, in the transition from 011011 (27) to 011100 (28), the device could pro-
duce these two values but also 011111 (31) or 011000 (24) and others. To deal
with this problem Gray proposed using a mask corresponding to a code in which
adjacent code words differed in one bit position only. In that case, a slight beam
displacement would give only a small change to the encoding. Figure 1 is an
adaptation of the figure in the patent.

2.2 Gray’s definition of the code

Figure 2 is a word-for-word reproduction of the definition given by Gray in the
patent [Grab3] - it has never been explained better.

Gray’s definition is a procedure for generating, what we now call, the Gray
code of width n. As well as discussing the process, he has shown, by construction
that:

Property P1: Adjacent words in the Gray code sequence differ in one bit
position only.

2.3 Direct application of the code

Because, apart from the leading bit, the second half of the code is the same
as the first, but reversed, it follows that the first and last words of the code
sequence differ in only the leading bit. In other words:

Property P2: The Gray code is cyclic.

These first two properties underlie the most common practical use found
for the code which was for locating the rotational position of a shaft (see, for
example, [Fos54])3. A pattern representing the Gray code was printed on a shaft,
or on a disk, and the pattern sensed by an optical or electrical detector (see
Figure 3). Note that the least significant end of the code has fewer transitions
than does normal binary so the Gray code has another apparent advantage that
the pattern may be printed to another bit of precision with the same printing
resolution [Wal70]. Note that the read-out of the shaft’s rotational position is a
completely parallel operation.*

3 This was Baudot’s application as well [Hea72].
4 Another application of Gray code, where its cyclic and adjacency properties are made
use of, is in the labelling of Karnaugh maps for simplifying logic functions.
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The manner in which the primary reflecied binary number sy siem is
Buih up will now be explained.

Fitsi: wrile down the fitst iwo numbers in the 1-digit orthodox number
sysiem, thus:

Zem 0
Cne 1

Mok that the symbaols dilfer in only one digil.

Second: below this array write its “reflection” in 2 mansverse axis:

Zemy 0
Chne 1
mmmmmmoees

0

The symboks still differ in nol more than one digil. However, the (st
is identical with the fourth and the second with the third.

Third: 10 remove this ambiguity, add a second digil 1 the lefi of each symbol,
0 for the first iwo symbols and 1 for the: last iwo, thus:

Zem 00
One 01
Twe 11
Three 10

and dentily the 1ast two symbols with the numbers “iwo™ and “three.” Each
symbol 5 now unique and differs mom those above and below in not more
than one digit. The amay & a representation of the first (our numbers in the
primary 2-digit rellecied inary number sysiem,

The process 15 next repeated giving -

Fitsi:
Zem 00
Cne 01
Two 11
Three 10
Second:
Zem 00
Cne 01
Two 11
Three 10
10
11
01
00
Third:
Zem 000
Chne 001
Two 011
Three 0L0
Four 110
Five 111
Six 101
Seven 100

Figure 2: Gray’s definition of his reflected binary code
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(===

Figure 3: Gray code as used on a shaft encoder for determining angle of rotation

2.4 Generation of the code sequence by means related to its
definition

Let us say that going through the Gray code sequence normally, is going up, or
ascending and the opposite direction down, or descending. Generating a sequence
going down is the same as reflecting it, in Gray’s sense. The sequence of width
n comprises, by definition:

0 preceding each member of the width n — 1 sequence
1 preceding each member of the width n — 1 sequence reflected.

To generate going down, this is reflected to give:

1 preceding each member of the width n — 1 sequence reflected reflected
0 preceding each member of the width n — 1 sequence reflected.

But reflecting a sequence twice gives back the original sequence, so the width
n sequence reflected is:
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1 preceding each member of the width n — 1 sequence
0 preceding each member of the width n — 1sequence reflected.

This gives us the property:
Property P3: A descending Gray code sequence of width n is the same as
an ascending sequence except that the leading bit is inverted.

For example, the width 3 sequence appears in Table 1.

up down
000 100
001 101
011 111
010 110
110 010
111 011
101 001
100 000

Table 1: Width 3 sequence

Let’s use the following notation. The Gray code word G, of width n, is a
vector of n bits, (Gp—1,Gn_2,...,Go) and represents a number G. Likewise, a
number B has the standard representation (B,—1,B;,_2,...,Bg). We will most
usually be interested in the situation when B = G and there are two different
representations G and B of the same value.

(In expressing algorithms we will use Java but modified, to make the algo-
rithms clearer, so that we have “classes” Bit and Word, and use mathematical
expressions. To test the algorithms, convert to Java by replacing Bit with boolean
and Word with boolean [], and constants 0 by false and 1 with true. The “global”
variables have to be represented as class variables in a testing class. Note use of
Java ! for “not”. The algorithms are available converted to Java on request.)

Gray’s definition of his code sequence of width n is captured by the following
algorithm:

Word G;

public void generate (int n, Bit d){ // d: up O, down 1
G = new Word(n);
generatel(n,d);

}
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public void generatel (int m, Bit d){

if (d==0) { // up
G[m-1] = 0; generatel(m-1,0); // up
G[m-1] = 1; generatel(m-1,1); // down
}

else { // down
G[m-1] = 1; generatel(m-1,0); // up
G[m-1] = 0; generatel(m-1,1); // down

}

Dealing with the termination of recursion, and simplifying, we end up with
the simple algorithm:®

/* ALGORITHM Al: GENERATE WIDTH N GRAY CODE SEQUENCE */

Word G;

public void generate (int n, Bit d){ // d: up O, down 1
G = new Word(n);

generatel(n,d);

}

public void generatel (int m, Bit d){
if (m == 0) display(®);

else {
G[m-1] = 4; generatel(m-1,0); // up
G[m-1] = !d; generatel(m-1,1); // down
}

}

3 Relationship between binary code and Gray code

3.1 Generating the Gray code from binary

The above algorithm, with two calls per recursion, has a binary tree of possible
method calls. We can label the nodes of the tree, and thus give each Gray code
word a binary equivalent, by setting a bit prior to each recursive call:

public void generate (int n, Bit d){ // d: up O, down 1
B = new Word(n);
G = new Word(n);
generatel(n,d);
}

5 This algorithm is given in [Er84] for a generalised code in a slightly more complex
form.
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public void generatel (int m, Bit d){
if (m == 0) display(B, G);
else {
G[m-1] = 4d; B[m-1] = 0; generatel(m-1,0);
G[m-1] 'd; B[m-1] = 1; generatel(m-1,1);
}

}

The algorithm will now generate the binary integers B along with the asso-
ciated Gray codes. The inner group of statements is equivalent to:

G[m-1]
G[m-1]

d; Blm-1] 0; generatel(m-1,B[m-1]);
!d; B[m-1] = 1; generatel(m-1,B[m-1]);

i.e. (if we initialize B[n] to 0, and reduce generatel to one parameter):

G[m-1]
G[m-1]

B[m]; B[m-1] = 0; generatel(m-1);
IB[m]; B[m-1] = 1; generatel(m-1);

i.e., using an exclusive-or operator (~ in Java):

B[m-1] = 0;G[m-1]
Blm-1] = 1;G[m-1]

B[m] "B[m-1]; generatel(m-1);
B[m] "B[m-1]; generatel(m-1);

Now, as G is not used except in “display”, the generation of its elements may
be done in any order following the generation of the necessary bits of B—it can
thus be generated at “display time”. Giving;:

/* ALGORITHM A2: GENERATE WIDTH N BINARY AND GRAY
CODE */

Word G, B;

public void generate (int n){ // ascending sequence
B = new Word(n+1); B[n] = O;
G = new Word(n);
generatel(n);

}

public void generatel (int m){
if (m > 0) { // generate binary code

B[m-1] = 0; generatel(m-1);
B[m-1] = 1; generatel(m-1);
}

else { // generate Gray code and display
for (int i = G.length-1; i>=0; i--) G[i] = B[i+11®B[il;
display(B, G);
}
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3.2 Conversion from binary to Gray

The above generation algorithm gives us immediately the property (specified by
Gray):

Property P4: (G; =B, 11 ®B;),i=n—1,...,0, where B, is taken as 0.

This gives a parallel algorithm or circuit for generating G from B, because the
expressions are independent. Alternatively, if a computer has a bitwise exclusive-
or between words then we can calculate G using a right shift:

G =B & (B/2).
Exclusive-or is the opposite of “equal”, so another way of thinking of this is:

Property P5: G; = (B,11 # B;),i=n—1,...,0 (where B,, is taken as 0).

The Gray code word is a record of the transitions within the corresponding
binary word.

Here is an example:

binary word 0011110011001110100110111101101
Gray code word 0010001010101001110101100011011

3.3 Conversion of Gray to binary

Conversion of Gray to binary is not as simple as the other direction. We have
from property P4:

Vi(Biy1 ® G; = Bij11 @ Biy1 @ B;), where B, is taken as 0. So, we have:

Property P6: B, =B,;1 ®G;,i=n—1,...,0, where B,, is taken as 0.

Unfortunately these are not independent and individual equations. They do
give rise naturally to a nice sequential algorithm but the parallel version involves
a prefix accumulation of exclusive-or:

Property P6’: B, = G,,_1 & G,_2...G;.

This can be generated by a parallel prefix circuit as in Figure 4.

Alternatively [Wan66], if a computer has a bitwise xor between words and
fast parallel shifts then the binary code may be generated by a succession of xors
and shifts that implement the work of figure 4, level by level:

B=Ga(G/2);B=Ba (B/4);B=Ba (B/16)...
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Figure 4: Parallel Gray to Binary Conversion Circuit

However, there are conversion techniques that are more suited to software.
Let’s concentrate on the bits of the Gray code word that are 1. Define for each
G a vector of integers I of length z, I = (I,_1,I,_3,...,Iy) which is the set of
subscripts for which the Gray code is not zero. Recalling property P5, that the
Gray code word is a record of the transitions within the corresponding binary
word, I,_; is the position of the first 1 in the binary code and I,_5 is the next
0, etc. Now, we have:

B=B, 12" '+ B, 22" % +...+ B2’
Listing only the bits of B that are non-zero:

B=[28-1 4 ol g [oleos o ol g
Applying a Booth recoding:

B = [21271+1 _ 21272+1} 4 [2sz3+1 _ 21274+1] NI
(-1 if the number of 1 bits in B is odd)

Let’s write P(X,a,b) for the parity of (X, ...X}), which can be defined as
Xa® - ®Xp, or (Xg+...4+Xp) mod 2. Also write P(X, i) for P(X,n—1,1)
and P(X) for P(X,n —1,0).



Doran RW.: The Gray Code 1583

We may write the above:

Property PT:

B = (—1)P(GLmatl) pLatl) 4 (—1)P(G LoD plo+l _ 1] — P(G).

This property may be used to convert from Gray to binary by adding the
shifted bits of the Gray code with appropriate sign.

Here is an example:

binary word 0011100111
Gray code word 0010010100

B = 0100000000 — 0000100000 4 0000001000 — 0000000001

This property also explains the origin of difficulty with doing arithmetic on
Gray code words. In a conventional binary word, if bit i is one it means 27, but
bit 4 in a Gray code word could represent +21 or -2¢*1 - the sense can only be
resolved if the parity of the leading part of the word up to the bit is determined.
In a sense, Gray code is a signed-bit ternary representation [Wal70], where each
bit can be 1, 0, or -1 (but with the restriction that non-zero bits must alternate
in sign).

Although the property P7 could be used to convert from Gray to Binary, it
is not a good approach, because the subtractions involve propagation of carry. A
better approach, ([Irs87], also noted by Gray himself), is to replace each power
2% in the above by (2i-1)+1. We get:

B =(—1)P(GLatl) patl) _q] 4 4 (—1)P(GTotD) [lo+] 1]

+ (_1)P(G,sz1+1) 4 (_1)P(G,Iz,2+1) o+ (_1)P(G,Io+1) _ P(G)
The second line is zero. So we have:

Property P8:
B = (—1)PG L1t [oTmatl) ) 4 4 (=1)P(GlotD) [plo+1 _q],

The reason that this is useful is that the successive additions and subtrac-
tions can now be performed to construct the binary equivalent with no carry
being required at any stage (in fact, addition and subtraction may be replaced
by exclusive-or).

Here is an example:
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binary word 0011100110
Gray code word 0010010101

B =0011111111 — 0000011111 4 0000000111 — 0000000001
= 0011100000 4 0000000110
= 0011100110

3.4 Parity of Gray code word

Property P8 shows that knowledge of the parity of a Gray code word can useful.
We will see other examples of its use later.

Recall that in going up from B to B+1 exactly one bit of G changes. It
follows that exactly two bits change in going from B to B+2. Thus the number
of bits that are 1 remains the same or changes by 2, i.e. the parity remains the
same. This gives us:

Property P9: The parity of a Gray code word is 0 if and only if it represents
an even number, i.e. P(G,n — 1,0) = By.

One of the drawbacks of the conventional binary representation is that the
parity of the result of an arithmetic operation is not easy to predict from the
parities of its operands. However, the sum or difference of two numbers is even if,
and only if, the inputs are both even or both odd, and the product is even if either
operand is even. This allows the parity of Gray-code results to be predicted:

Property P10: If the parities of two Gray code operands are P, and P,
then the parity of the Gray code result is:

+ P, ® P
* P& Py.

3.5 Gray codes arising in binary counters

In [Bur70] it was noted that Gray codes arise naturally if one constructs a binary
counter from master-slave (i.e. race-free or edge-triggered) toggle flip-flops. In
a master-slave flip-flop the “second” flip-flops, represent the value. However, if
we concentrate on the “first” flip-flops they are seen to be following a different
pattern.

So, as the input and second flip-flops run through the ordinary binary inte-
gers, the first flip-flops run through the Gray code. The values of F; and S; 11 are
entirely governed by the changes that occur in S;. Assuming that the counter is
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Figure 5: Binary counter with master/slave flip/flops
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Table 2: Binary counter with master/slave flip/flops: and example

initially cleared, the sequence of events detalied in table 2 will be repeated. It
can be seen that at all times F; = S;11 @ S, so that F indeed is the Gray code.
Because S; 1 is always set to F; , but delayed, we see another interesting fact:

Property P11: Column i of a listing of the Gray code is the same as column
i+ 1 of binary, rotated up by 2°.

4 Properties related to the transition bit index

4.1 Generation by minimal change

The Algorithms Al and A2 generate a full Gray Code word at each step. How-
ever, because only one bit changes it is possible to generate each word from the
previous by changing just that bit. But which bit?
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e
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Follow the execution of a certain level of recursion i in Algorithm Al- it is
called from level 7 + 1 and passes control to level i — 1. Successive calls to level

1 will be with direction:
up (d=0); down (d=1); up (d=0); down (d=1); etc.
The action of level i is then:
G[i-1] := 0, call level i-1, G[i-1] := 1, call level i-1; return;
Gl[i-1] := 1, call level i-1, G[i-1] := 0, call level i-1; return; etc.

Assuming that the Gray code word is initialized to 0, it can be seen that the

above sequence is equivalent to:
call level i-1, G[i-1] := 1, call level i-1;
call level i-1, G[i-1] := 0, call level i-1; etc.

That is, level i switches bit i — 1 between successive calls to level i — 1. So
we get [Er85]:

/* ALGORITHM A3.1: GENERATE WIDTH N GRAY CODE SEQUENCE,
BY SWITCHING */

Word G;

public void generate (int n){ // ascending sequence
G = new Word(n); // initialized to all 0
generatel(n) ;

}

public void generatel (int m){
if (m == 0) display(Q);
else {

generatel(m-1);
G[m-1] = !'G[m-1];
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generatel(m-1);

}

4.2 The sequence of transition indices

The algorithm A3.1 identifies the location of each element as it is switched. It
is straightforward to modify the algorithm so that it produces the sequence in
which indices change®

/* ALGORITHM A3.2: GENERATE SEQUENCE OF GRAY CODE
TRANSITIONS */

public void generate (int n){
if (n > 0) {
generate(n-1);
display(n-1);
generate(n-1);
}
}

We see that the sequence of transitions is an inorder traversal of a binary
tree. Its definition is even simpler than the Gray code itself [BER76]:

sequence for width-n = sequence for width-(n — 1), n — 1, sequence for
width-(n — 1).

5 Gray Code Incrementers

The task of an incrementer is, given a Gray code word, find the next in ascend-
ing order (likewise decrementers and descending). Incrementers are related to
counters and to generating algorithms based on incrementing.

There are many papers, disclosures, and patents on this topic [Fis57, Maj71,
CoSh69]. They all seem to have as a common concept the condition that is sat-
isfied for a count-up to occur. Consider algorithm A3.1. When the algorithm
switches G[m — 1] at level m > 1, level m —1 has been entered an odd number of
times and level m — 2, and below, an even number of times. Thus, when G[m — 1]
is switched, G[m — 2] = 1 and G[m — 3] and below are all zero. Conversely, when
this condition occurs, G[m — 1] must be the next to be switched”

6 Gardener [Gar72] shows that the solution to the “Towers of Hanoi” problem with n
disks is given by the transition sequence for a width-n Gray code. If the disks are
numbered from the top, the transition sequence specifies the disk to be moved next.
The algorithm for solving the “Towers” problem is identical in form to algorithm
A3.2.

" Gardener [Gar72] describes how the “Chinese rings” puzzle has analogous properties
so that the Gray code gives the solution to the puzzle.
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If m =1 then level 0 does not exist so we need another condition to look at.
From the construction of the code we see that every second switch is of GJ0].
Every switch changes the parity, thus, when counting up, G[0] will be switched
next if P(G) is 0. When counting down, G[0] will be switched next if P(G) is 1.

Property P12: When counting an n-bit Gray Code in direction d (=0 for
up, =1 for down), the next bit s to be switched is given by:

P(G)=d :s=0

P(G)=1-d: sissuchthat G-y =1and G; =0,i <s—1.

This converts readily into a circuit if P(G) is known. In making a free-running
counter the approach taken seems to be to provide an extra flip/flop that is by
driven the clock and is used to select between the two alternatives. So, if flip/flop
P is the parity flip-flop then the signals to toggle or switch the counter flip/flops
are as in the example in Figure 6.

» » = . +— Clk

Figure 6: Gray code up counter

In terms of an algorithm for generating the code, Boothroyd [Boo64] calcu-
lates the parity and finds the last set bit by a scan from left to right.

/* ALGORITHM A4: INCREMENT/DECREMENT A GRAY CODE WORD
G OF WIDTH N =*/

public void increment (Word G, Bit d){ // 4 0 up, 1 down

Bit p = 0; // parity of word G
int lastl = G.length; // lowest i such that G[i] ==
// find parity and last 1
for (int i = G.length-1; i>=0; i--)
if (G[i]l==1) {
p="!p;
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lastl = i;
}

int switchPos; // index of bit to switch
// find switchPos

if (p ~ !d) switchPos = 0;

else

if (lastl < G.length-1) switchPos = lastl+l;

else switchPos = G.length-1;
G[switchPos] = ! G[switchPos]; // switch the bit

}

Misra [Mis75] gives a generation algorithm based on the concept of incre-
menting. However, he keeps track of the parity separately and maintains a stack
of indices of bits that are 1, which gives an algorithm that is very fast. [Er85]
gives a coding of Misra’s algorithm and incorporates some improvements.

6 Serial Addition

We have seen that the sign of the weight assigned to a bit in a Gray code word
depends on the parity of the word at that bit, starting at the high-order end.
However, most serial arithmetic operations must commence with the low-order
end. If we know the entire parity of the word then it possible to commence serial
operation from the low-order bits, because we may compute parities using:

P(G,n—1,k)=P(G,k—1,0)& P(G).

We have already seen one example, the Gray code counter, where knowledge
of the parity overall is maintained in an auxilliary flip-flop. In [Luc59], Harold
Lucal proposed using a modified Gray Code where the parity is maintained
as the least significant bit. Lucal showed how serial arithmetic could then be
implemented.

It is clear that addition of Gray codes can be performed serially if we com-
mence at the least significant end and know the parity of the two operands.
We can work out the high-order parities at each bit as we go using the above
formula. From property P10 we can find the parity of the sum and maintain the
parity of each bit, and we can propagate a carry. This is straightforward but
involves carrying a large amount of information between bits. Lucal, however,
showed that addition could be performed by carrying only two bits between each
stage as follows:

/* ALGORITHM A5: SERIAL ADDITION OF GRAY CODE WORDS */

public void add (int n, // width of words
Word A, Word B, // addends, low order bit parity
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Word S) { // result, low order bit parity

Bit E, F; // running carries
Bit ET, FT; // temp carries
// not needed if loop statements parallel
E = A[0]; F = B[0];
S[0] = E " F;

for (int i=1; i<=n; i++) {
S[i] = (E & F) -~ A[i] ~ BI[il;
ET = (E & (!F)) =~ A[il;
FT = (('E) & F) ~ BI[il;
E = ET;
F = FT;
}

// at this point, if E and F are not O, there is an overflow
// and the value represented by S is the 1s-complement of

// the sum

¥

This surprising algorithm is based on the observation that it is not necessary
to know the exact parity of A[i] and BJ[i] but to know whether they have different
parities or the same parity. The interpretation of the bits E and F is:

EF = 00 - parity of A and B the same, no change in binary carry
EF = 01 - parity different and B had the last 1

EF = 10 - parity different and A had the last 1

EF = 11 - parity of A and B the same, change in binary carry.

CE and CF must both be 0 on completion, otherwise there is an overflow.
Refer to [Luch9] for details and a proof that this algorithm is correct. Note the
expression for the sum bit which represents a change in binary code of the binary
sum as occurring when one of the inputs change (indicated by A[i] and by Bli])
or the carry changes (indicated by (E and F)) - this is the same equation as for
binary addition.

7 Extensions of Gray codes

7.1 Bases other than binary

The original definition of Gray code applied to binary digits. However, it is very
straightforward to extend the concept of a distance-1 transition to numbers of
other bases, or even mixed-base numbers. A distance-1 transition is extended
to mean a change by 1 in one digit only. The algorithms for generation and
conversion are straightforward extensions of those for the binary case.

For example, to generate the code sequence, for each increment at a given
digit, the lower order code is generated once, alternately up and down. Suppose,
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for example, a code is desired for numbers that have a base 5 digit followed by
a base 3 digit.

Natural sequence Gray sequence Binary code

0,0 0,0 000,00
0,1 0,1 000,01
0,2 0,2 000,11
1,0 1,2 001,11
1,1 1,1 001,01
1,2 1,0 001,00
2,0 2,0 011,00
2.1 2,1 011,01
2,2 2,2 011,11
3,0 3,2 010,11
3,1 3,1 010,01
3,2 3,0 010,00
4,0 4,0 110,00
4,1 4,1 110,01
4,2 4,2 110,11

If the digits are encoded in canonical binary Gray code then the encoding is
itself a binary Gray code. Note that the Gray code will not normally be cyclic.
The rules for conversion and counting are also natural extensions of the binary
case.

There have been many papers exploring the generation of Gray codes in
bases other than binary [ER84], [Dar72], [Bar81]. [ThMu93] introduces a parallel
algorithm for generation, but using the power of a reconfigurable bus for fast
carry propoagation.

7.2 Related concepts

The concept of adjacent symbols differing at one bit position only has been
extended in many ways. A shift of concept usually involves refiguring the algo-
rithms that apply to bit strings to apply to the new domain.

Finding the order of selection of + or - in the set of expressions +/- f( +/-
f(+/-...)) where f is monotone, so that the results are in order, is found to be
the Gray code sequence itself [Sal72], [Sal73].

Algorithms have been developed for the single change set partition sequences
[ KayT6],
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eg. (123);(12)(3); (1) (2) (3); (1) (2 3); (13) (2). Similarly for the partitions
of an integer [Sav89]. P(5,3): 1+1+1+1+1 = H+1+142 = 14242 = 1+1+3 =
2+3. Also for compositions, split of n into k parts[Kli82] L(6,3): 2+2+2 =3 + 2
+ 1 =4+ 1 +1. Others analogous transition sequences are covered in [KoRu93|
and [Pro85] .

Another path of generalization remains within weighted number systems but
seeks variations to its properties. One direction is to look for uniformly weighted
codes (those with the same number of 1 bits) [BER76] and another is for distance-
1 codes with the “snake in the box” property that words distance k apart in the
counting sequence differ by k bits [Kau70]. There are legions of other codes with
similar and related properties studied in the literature.

7.3 Paths on the n-cube

In the binary case, code words of length n can be regarded as the vertices of an
n-cube and a complete Gray code sequence represents one of the Hamiltonian
paths. This can have an application in hypercube computer networks. If the
nodes are assigned binary numbers then the Gray code defines a path that allows
a message to be sent to all processors, once only.

As mentioned earlier the Gray codes are just a small subset of the distance-1
codes and Hamiltonian paths. The number of such paths as a function of n is
not known, however paths that have additional properties have been enumerated
[Gil58].

The n-cube can be generalized to a more-complex graph in the case of bases
other than binary. Paths of special interest have also been studied in this case
[ShRa78], [Coh63].

8 Applications of Gray codes

Gray codes continually turn out to have new applications. Two of the more-
interesting applications are considered here.

8.1 Gray codes and Walsh functions

Yuen [Yeu71] has shown that there is a nice relationship between width n Gray
code sequence and the set of Walsh functions of length 2. A set of Walsh
functions of length 2" is usually defined as a set of discrete-valued functions in
an interval with values that are orthogonal [Bea75]. However, they may also be
regarded as set of 2™ binary code words of length that are maximally distant, i.e.
each word is distance 2! from all others. For example, n=3, a set of 8 length-8
Walsh functions, each distance 4 from all others, is presented in Table 3.



Doran RW.: The Gray Code 1593

Gray rank Gray code Walsh code

0 000 0 000 00000000
1001 1 001 00001111
2010 3 011 00110011
3011 2 010 00111100
4100 7 111 01010101
5101 6 110 01011010
6 110 4 100 01100110
7111 5 101 01101001

Table 3: Gray and Walsh codes

The contrast with Gray code is striking. Walsh are maximally distant, there
is no natural sequence to the code words. Gray words are minimally distant with
a well-defined sequence. It is surprising that there is a relationship between the
two concepts.

The algorithm to generate each member of a set of Walsh functions is also
delightfully simple:

/* ALGORITHM A6: GENERATE WIDTH 2%*n WALSH FUNCTION */
/* CODE WORD i (0<=i<=2%%n-1) */

public void generateW (int n, int i){
generateWl(n,i,0);
}

public void generateWl (int m, int i, Bit d){
if (m == 0) display(d);
else {
generateWl(m-1, i/2, d);
generateWl(m-1, i/2, 4" (i mod 2));
}
}

This algorithm is quite similar to algorithm A3.1. As pointed out by Yuen,
the number of transitions in the Walsh code word is the rank of the binary
pattern of i in the Gray code sequence, and there must be one word for each
possible number of transitions. Furthermore, the bits of the corresponding Gray
code word may be used to specify the transition points in the Walsh word, in
the same sequence as the sequence of index changes when generating the Gray
sequence. So, if i is represented as Gray code G with bits Go,G1,Gg then the
sequence of changes in Walsh word number i is 0,G2,G1,G 2,Gg,G2,G1,G2.

Although there is no natural order as such, one which has reason is where the
code words are listed in order of number of transitions. This can be generated
by replacing d ® (¢ mod 2): by d ® (i mod 2) @ ((¢/2) mod 2)) in the above
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algorithm, effectively converting from binary to Gray en passent.

8.2 Analog to digital conversion

The original application of Gray code was in A to D conversion. It is interesting
that even with fully electronic A-D it appears to be somewhat faster and simpler
to convert an analog signal v to a Gray code than to convert it to binary. The
standard approach, if v is in the range 0 to 2"-1, is to determine the first bit by
subtracting 277! - if the result is positive then the first bit is 1, if negative, the
first bit is 0. The process continues with the reduced signal in the first case but
with the original signal in the second case. There is therefore a decision to be
made at each stage that slows the process down.

vl = v;

for (int i = n-1; i>=0; i--){
v2 = vl- Math.pow(2,i-1);
B[i] = (v2>0);
if (v2>0) v1 = v2;
}

However, it is possible to produce the Gray code version of the signal without
making decisions, though it requires the determination of the absolute value of
a voltage (which is realized as a rectifier).

/* ALGORITHM A7: CONVERSION OF ANALOG SIGNAL V TO
GRAY CODE */
public void AtoD(double v, Word G){
int n = G.length;
double v2 = v Math.pow(2,n-1);
G[n-1] = (v2>0);
double vl = [v2];
for (int i=n-2; i>=0; i--) {
v2 = (vi- Math.pow(2,i));
G[il = (v2<0);
vl = |v2];
}
}

The fact that the Gray code is produced can be shown by noting that the V1
in the second algorithm is the same as the first where Bli] = 1 but is the 2¢~1
complement elsewhere. The second algorithm treats the first bit in the opposite
fashion to the others. This algorithm has difficulty in dealing with the integer
boundary values. This is finessed, as is the issue of rounding, by incrementing v
by 0.5 before commencing the algorithm.

The algorithm was expounded by Yuen in the papers [Yue77], [Yue78]. Lippel
[Lip78] pointed out that the idea was in [Smi56] and attributed there to a 1949
thesis by R. P. Sallen. The algorithm above is related to non-restoring division.
Yuen [Yue88] showed how it could be extended to division and square rooting.
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9 Summary

The simple Gray code offers a dense counting sequence that is not very suited
to humans but has the potential of being more “natural” for machines. The
properties of Gray code were explored in the early days of computing and the
code shown to be suitable for simple serial arithmetic. However, when computer
arithmetic became parallel, the Gray code turned out to be slower or more-
complex than standard binary.

Be that as it may, the algorithms and circuits involving Gray codes deserve
to be remembered because of their elegance and simplicity. Gray code continues
to turn up in diverse areas — who knows, it may again find more widespread
practical uses in the future.
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