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Balance in Systems of Finite Sets with Applications!
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Abstract: An extension of balance notion from the theory of signed graphs to the case
of finite sets systems is presented. For a finite set T', a subset S C T and a family F
of subsets of T' we denote by &, (S|F) respectively das (S|F) the minimum/maximum
number of changes (addition or deletion of elements), without repetition, which trans-
forms S into a set from F.

We are especially interested in the particular case in which F is the group <Xi,..., X»,>
generated by a family of subsets X1,...,X,, C T with symmetric difference operation.
The obtained results are applied to the theory of signed graphs.
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1 Definition and Notations

1.1

Let T be a finite set and T*) = {X|X C T} be the set of its subsets. The set
T™) with symmetric difference operation A

XAY (= (X -Y)U(Y = X) for X, Y e T®

constitutes a commutative group (T(*)7 A) isomorphic to (Z|2T|, +) .
Let X1,..., X, € T® . We denote
AX;jforo#JC|n
oo [AXore Il
(%] for J =0
and
< X17"'7Xn >:XJ|Jg [n]a

the group generated by Xi,...,X,, in (T(*)7 A) .
For a set K C N we denote by o (K) the number of odd numbers from K.
For n,k € {0,1,2,...} we denote by

nk.— nn—1)(n—2)---(n—k+1)fork>1
B! for k=10
the falling factorial.

1 C. S. Calude, G. Stefanescu, and M. Zimand (eds.). Combinatorics and Related
Areas. A Collection of Papers in Honour of the 65th Birthday of Ioan Tomescu.
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1.2
Let S € T™) and F C T™ be a family of subsets of T. We denote by

S (S|F) := min {|SAF| |F € F|}
S (S|F) := max {|SAF| |F € F|}

the minimum, respectively maximum number of changes (addition or deletion
of elements) without repetition, which transforms S into a set from F.

In other words, &y, (S|F) and s (S|F) are minimum, respectively maximum
Hamming distances apart from S to an element of F.
1.3
In this paper we consider F =< Xy, ..., X,, > and we study the numbers

5m(S| <X1,...,Xn >) and ds (Sl <X1,...,Xn >)

which will be called the minimum (respectively maximum) unbalanced index.
Every set S €< Xq,...,X,, > will be called a balanced set.

2 The main result

Lemmal. Let T be a finite set and S, X CT. We have

(1) (i) 5m(SI<X>)§IS—X|+|X|/2—%0({|X|})

(2) (i) 5M(5|<X>)2IS—X|+|X|/2+%0({|X|})~
Proof. We have

|S] =[S -X|+[SNnX]|
[SAX| S —X|+|X|—1]5NnX]|
Om (S] < X >) =min{|5],|SAX]|}
O (S] < X >) =max{|5],|SAX|}

and the Lemma follows.O

Theorem 2. Let T be a finite set and S, X1,...,X, CT. We have:

Om (S| < X1,..., X, >)<‘S—AU X

(3) (i) _%O({‘Xj_ U X, |je[n]}>

1<t<j
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6M(S| <X1a7Xn >)Z
(4) (i)
+10({X

- U X
2 T it

+ /2+

7

icl}).

Proof. The two inequalities have similar proofs. We shall consider only the first.
We use induction on n and denote by Z (n) the inductive hypothesis.
Z (1) is true according to Lemma 1.
We shall prove that Z (1),Z (n — 1) imply Z (n) . (n > 2). We have

S— U X;
€[n]

U X;
i€[n]

Om (S| < X1,...,Xn >) :min{|S A .£1X1| |7 C [n]} =

:min{ém(5|<X1,...,Xn,1 >),5m(5 A Xn|<X1,...,Xn,1 >)}§
92_
i€[n—1] }+ /
Lolx - v xjem-yl) =
2¢ 17 ke RV S N

(5- 0 %) 6 (x- o Xi>‘}+
i€[n—1] i€[n—1]

(S A X))— U Xi

U X
i€[n—1]

i€[n—1]

?

gmin{‘S— U X,

)

:min{‘S— U X;
i€[n—1]

1
Xil/2—2o(dlx;— U Xilljelmn-1}) =
+ iG[TLLJ—l] / 2¢ ({‘ J 1§%<j Wl eln ]}>
=0m (‘S— U Xi|l<X,— U X; >>+ U X, /2—
i€[n—1] i€[n—1] i€[n—1]

1
_50 ({‘X] — 1§%€J<ij

|jem—u})<

g‘(s- U Xi)—(Xn— U Xi>‘+‘Xn— U x|/
i€[n—1] 1€[n—1] 1€[n—1]
—10< ‘Xn— U X }) + U X /2—
2 i€[n—1] i€[n—1]

Remark. For T = U X; we have

i€[n]

(5) 1
<|Tl/2— - X:— U X
<171/ 20 T 1<k<y r

icl}).
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icl}).

Lemma 3. Let A, B,C be three finite sets. We have

(i) opr (S]] < X1,...,Xp>) <

) <
<|T|/2+ = X — X
<ITl/2+ 20({‘ J 1§ng<j F

(1) AN B-C=(A-C)A(B-C)
(ii) If B D C then:
(8). [AANC|=|A-B|+|(AnB)AC|.O

Theorem 4. Let T be a finite set S, X1,..., X, CT and I U---U I, = [n] be
a p-partition into nonempty parts of [n]. We have

)
(i) 6m (S| < X1,..., X >) <

<o (S—Z| < X1 =Ty X — 7 >)+|2] /2
1

_50({|XI1|7|X12_X11|7|XI3 _sz_X11|7"~7}XIp_XIp71 _"'_Xh|})

(10)

+ 0({|X11|7|X12_X11|a|XI3_X12_X11|7'- | X _Xip—1_"'_XI1|})
where
A X; fora#J Cn)
1%} for J =0
and
Z = UX]t.
tel

Proof. For any L C [p], with the notation

IL = U It
teL

we have

X, =X U I = A ij AX[,.
teL jEf,eULIt teL i

(i) We choose Ky C [n] such that [(SAXk,) — Z| is minimum. We use the

fact that
Z 2 XIL7VL c [p]7

(SAXk,)NZC X, U---UXy, =7,
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we apply Lemma 3(ii),(i), Theorem 2 and Remark(after Theorem 2)(i) and we
obtain

§(S| <X1,...,X,>)=min{|SAX,| |J C [n]} <
< min {[SAXj, AX;| [ € [n]|} < min{|SAXk,AXy, | |L € [p]} =
=min {[(SAXk,) — Z| + [((SAXk,) N Z) AXy, [ |L C [pl]} =
[(SAXk,) — Z] + min{[((SAXk,) N Z) AXy, | |L C [p]} =
=[(S—2Z)A (XK, — Z)| 4 6m ((SAXK,) N Z| < Xp,,..., Xp, >) =

‘(S—Z)A(tEAK Xt—Z)‘+5m,((SAXKO)ﬁZ| <X11,...,X[p >) =

= }(S—Z)A A (Xt—Z)}—i—ém ((SAXKO)QZ| <X[1,...,X]p >) <

teKy
<O (S—Z| <X, —Z,...,X1,— Z >)+ 2| /2—
1
—50({|X]1|,|X]2 —X]1|,|X]3 —X]2 _X11|;~~'7‘Xip_Xip,1 —~'~—X[1|}).

(ii) We choose K¢ C [n] such that |(SAXk,) — Z| is maximum and the proof
follows the same way.O

Remark. For p =n and I; = {t},t € [n] we have

X, =X
Z = U X;
1€[n]

D) om(S—Z| <X, —Z,.... X, —Z>)=0p(S—Z|<D,...,0 >) =

(11) =‘S— U X,
1€[n]
(12)
(i) o (S—Z| <Xy, —Z,...,. Xn—2Z>)=0u(S—Z|<2,...,0>) =
~|s- x|
i€[n]

Thus, we obtain Theorem 2 from Theorem 4.
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3 Applications to the Theory of signed graphs

A signed graph is a simple graph G = (V, E) with an edge set bipartition E =
E~ U E*. We say that the edges from E~ are negative and those from E7T
are positive. We denote by G~ := (V,E~) and G+ := (V, E™) the spanning
subgraphs of G with edge set E~ respectively ET. A subgraph G’ < G is said
to be negative if it contains an odd number of negative edges and it is positive
otherwise. A signed graph is called balanced if each of its cycles is positive
or, by Cartwright and Harary’s characterization [Cartwright and Harary 1956,
if and only if the vertex set may be partitioned in two subsets (one of them
may be empty) so that each positive edge has its ends in the same subset and
each negative edge has its ends in different subsets. The unbalanced index 4 (G)
of a signed graph G is the minimum number of sign-changes of edges which
transforms G into a balanced graph.

3.1

Let G = (V, E) be a signed graph with V' ={1,2,3,...,n}.
For @ # A, B C V we denote
E [A, B] := the edges of G which have one end in A and one end in B
A=V-A
G [4] := the subgraph induced in G by the vertices of A

f

T := E (G) the edge set of G

X;:=E[{i},V — {i}], the edge set of G that contains i
AX,forog#1CV

7= il
& for [ =g

S := E~ (G) the negative edge set of G.

It is easy to show the following estimation of the unbalanced index of G

5 (G) =dm (S| < X1y, .., Xy >) = min {|SAX,| [T C V}.

i =

We shall denote d,,, (G) in place of § (G) and we denote analogously by
om (G) =0 (S| < Xq1,..., X, >)

the maximum number of sign-changes of edges (without repetition) which trans-
forms G into a balanced graph.
Let V3 U...U V, =V be a p-partition with nonempty parts of V. We denote
Gy =G [V, fort € [p]
Xy, = jeAjo’ for t € [p]
Z

U Xy,.
telp]
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We consider the signed graphs Gy; t € [p] with the induced bipartition: E~ (G;) =
E (Gy) N E~ (G) It is easy to prove the following equalities

Xy, = E[V,,V,] for t € [p|
Z=B(C)-E(@) -~ E(G))
Xw—Xw_l—X‘/t_Q—---—leZE[W,W+1U-"UVP],f0rt€[p]
S (S = Z| < Xy = Zyovo s Xy = Z5) = 60 (Gh) + - -+ 1 (G)
5M(S—Z|<X1—Z,...,Xn—Z>)=5A4(G1)+---+5M(Gp).

Lemma 5. For any n1,...,n, € N we have

(13) @lo({na,. - smp}) /2] = [(na -4 np) /2] = [n2/2] = - = [1p/2];

(14) (ii) lo({n1,...np}) /2] =

=o({ni(ne+---4+np),na(nz+---+np),...,np_1np}).0

Lemma6. For any n € N we have

(15) 0 £ =5(3) - g2
(16) ) 7+ 1) =5 () + 5ln/2l.0

Theorem 7. Let G = (V,E) be a signed graph and V; U---U Vo =V oap
-partition with nonempty parts of V.. We have

(17) (1) 0m (G) = |E(G)] /2 <

Y (0 (Go) —1E (G| /2) ~ %0({IE[Vt,V2+1 U-- UVl [T <t <pl})

te[p]
(15) (i) 3 (G) B (G)] /2 2
S 0 (Go) = 1B (GOl /2) + 50 (LB Vi Visa U+ U] 1< < p))

te[p]

where Gy = G [V4] for t € [p].
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Proof. The two inequalities have similar proofs. We shall consider only the first.
According to Theorem 2(i) and the preceding estimations we have

Om (G) < (6m (G1) + -+ 0m (Gp)) + (|E(G)| = [E(G1)| = --- = |[E(G))]) /12—
50 {IE Vi, Vi U= U V[T <t <pl})
and (i) follows. O

Theorem 8. Let G = (V, E) ~ K,, be a complete signed graph and ViU -UVp =
V' be a p-partition with nonempty parts of V.. We have

(19) (i) 6m (G) = f () <D (0m (G1) = £ (n4)),
t€(p]

(20) (ii) 600 (G) = f(n+1) > > (1 (Gr) — £ (e + 1)),
telp]

where Gy = G V4], ny = |Vy| fort € [p] and n=1|V]|.

Proof. The two inequalities have similar proofs. We shall consider only the first.
We have

@I (5)

BGol=(y) o el

|E[Vi,Vigr U--- UVl =ng (ngg1 + -+ np), for t € {1,2,3,...,p—1}
n=mny+- -+ Ny
According to Theorem 7(i) we have

(@~ (3(5) - 5l0/21) <

<% (3n 6= (=5 (75) - 5lmr) ) + 3 (an -y Lnt/2J> -

telp]

1
—50({711 (ne+-4mnp),na(ns+--+np),...,np_1mp})

and by Lemmas 5 and 6(i) we obtain the inequality (i) from the theorem. O

Corollary 9. Let G—(V, E) be a signed graph, ViU-- UVp =V be ap -partition
with nonempty part of V- and Gy := G [V4] ,t € [p] be the induced signed graphs.
If Gy is balanced for t € [p] then we have

(21) (i) om (G) <
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S% (|E(G)|—Z|E(Gt)|) ——o({‘E {‘/t;‘/tJrlU }

-

te[p]
(22) (i) dar (G) >
%( |_t§]|E Gt)+%O({}E{V},Vt+1U---UVp”|1§t<p}).

Proof. We aply the Theorem 7 for 6 (G;) =0, t € [p] and the Corollary follows.
O

Remark. If we ignore in (21) the term

2 ({ Ve Ve 0w N < <))

( |_Z|Eat),

an inequality obtained in 1981 by J. Akiyama, D. Avis, V. Chvatal and H. Era,
[Akiyama et al. 1981].

we have

(23) om (G) <

[\3|H

Corollary 10. Let G = (V, E) ~ K,, be a complete signed graph with n = |V|.
We have

(24) (i) 0m (G) < f (n)
(I. Tomescu, 1973, [Tomescu 1973])
(25) (i) o (G) > f(n+1).

Proof. We apply the Theorem 8 for p =n,V; = [t] .t € [n] and we have
Om (Gi) = 0m (G1) =0
fVil) = (1) =0
fVil+1) = f(2) = 0.
(i) 0m (G) = f (n) < —nf (1) =
(i) o0n (G) = f(n+1) = —

Remark. (i) The inequality (24) was proposed without proof in 1959 by R. Abel-
son and M.J. Rosenberg [Abelson and Rosenberg 1958] and it was proved in 1973
by Ioan Tomescu [Tomescu 1973].

()zO.D

(ii) It is easy to show that in (24) equality holds if an only if Gt ~ K|, /2| /2]
and in (25) equality holds if and only if G~ ~ K|, 2)[n/2]-
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Corollary 11. Let G = (V,E) ~ K,, be a complete signed graph @ # V' CV
and G' = G [V'] be the induced signed graph with n = |V| and n' = |V'].
We have

(26) (i) 0m (G) = £ (n) < 0m (G') = f ()

(27) (i) o (G) = f(n+1) 2 0m (G') = f (0 +1).

Proof. It V! =V we have equality in (26) and (27).
If V! #V we denote V" =V — V' n/ = |V"| and G” = G [V"] the induced
signed graph. We apply the Theorem 8 and Corollary 9 and we have

(1) o (G) = f(n) < (0 (G') = [ (n) + (0 (G") = f(n")) < 6m (G") = [ (1)
(i) Orr (G)—f (n+1)=(0m (G") = f (W +1)+ (0 (G") = f (n"+1)
>0u (G')—f (n/+1).0

Remark. If the subgraph G” is balanced then we obtain from (26) and (27)

(28) Oom (G) < f(n) = f ()

(29) v (G)> fn+1)—f(n' +1).

The inequality (28) was obtained in 1976 by T. Sozansky, [Sozanski 1976].

3.2  An inequality on the maximum number of negative cycles in
complete signed graphs

Let G ~ K,, be a complete graph with V (G) = {1,2,3,...,n}. We denote
C (G) := the set of cycles contained by the graph G;
C (G} e) = the set of cycles G that contain the edge e,e € E(G);
C (G) = the set of k-cycles of G, k > 3;
Ck (G;e) := the set of k-cycles of G that contain the edge e,e € E € G,k > 3;
T:=C(G);
X :=C(G;e) foree E(G);
Xp = EEAFXS = the set of cycles of GG that contain an odd number of edges from
F.FCE(G).

If we interpret F' as the negative edge set of G then X is the set of negative
cycles of G.

Theorem 12. Let G ~ K,, be a complete graph. We have

1 nk 1 1 n+1
2 Xrp| |[FCE(G Z Z . )
(20)  max{|Xp| [FCE@}>1 > T+l |5
3<k<n
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Proof. We consider the edge set of G in lexicographic order

E(G)= {el,eg,eg,...,e(g)}.

The first (n — 1) edges are incident in 1, the following (n — 2) edges are incident
in 2 but not in 1, the following (n — 3) edges are incident in 3 but not in 1 and
2, etc.

According to Theorem 2(ii) we have

(30) max {|Xr| | FCE(G)} =0m (®| < Xel,Xe2,...,Xe(7L) >> >
1
2|T|/2+50({|‘X€1|a|){€2_‘X€1|a|‘X€3_‘Xez_‘Xel|a"'})'

It is easy to show the following estimations

nk
G1) (@) =3 =
(32) Cr (Gse) = (n—2)"2 for e € E(Q)
1 nk 1 /n2 pn=L n2
@ m=e@=3 ¥ Feg(Grag ot y)
(34)
X|=1C (Gie)|= Y. (n—2)2=(n-2)"2+(n—2)"2+ - +(n -2t
3<k<n

We consider in GG the edges incident in 1 and for 1 <¢ <n — 1 we have

‘Xef, _Xef,—l - _X€1| = |X€t| - |X€t N (Xet—l U"'UXel)‘ =
= |X5t| - |(X€t mXet—l) U"'U(Xet mX61)| =
= [Xe,| - Z | Xe, N Xe,

1<i<t—1
—(n—2) [(n—s)@+(n—3)”——4+~-~+(n—3)l+(n—3)9} -
—(t-1) [(n—3)@+(n—3)"—’4+-~+(n—3)l+1 =

—(n—t—1) [(n—g)ﬂ+(n—3)"——4+---+(n—3>l+(n—3>9}.

We obtain
O({|X61|7|X62 _X61|7|X63 _Xe2 _Xe1|7"' 7|Xen—1 -X -2 _Xe1|})

0 for n = (mod2)
=<¢n—1
for n =1 (mod2).
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We continue the estimation for the graph G — {1} and the edges incident in
2, for the graph G — {1,2} and the edges incident in 3, etc.
Finally we obtain

(35) o({|Xei|s |1 Xe, = Xey |, [ Xey = Xeg — Xey| -0 }) =
n;Z+n;4+n;6+---+g+§forn50(mod2)
n;1+n;3+n;5+---+%+§fornzl(mod2).
=th2e34 | = 2 B B

and the Theorem follows from (30), (33) and (35). O
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