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Abstract: For modeling real-life situations where not only the intensity of the relation
existing between elements but also its polarity is important, we have proposed (see
[Marcus and Tataram 1987a]) a new type of graphs: the signed networks. In the present
paper we study two of thier most important properties: connectivity and reachability,
and try to use them in order to offer a strategy to improve communication in social or
professional groups.
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1 Introduction

Graph Theory is one of the most powerful tools for modeling a large variety
of phenomena and processes. One of the reasons is the number of variations
to the initial definition of a graph: the digraph, the network, the signed graph,
the marked graph. Most of them stemmed out of real-life situations (electric cir-
cuits, chemical formulas, shortest or complete itineraries through a finite number
of locations, human relationships, genealogical trees etc.) but also from certain
chapters of mathematics (like the algebraic relation theory). All of them deter-
mined a strong effort towards abstractization and formalization, so that this very
versatile modeling and investigation tool can be successfully applied in a wide
variety of domains and offer insights - sometimes rather counterintuitive ones -
about their most hidden and difficult to approach aspects.

For instance, how can we study human relationships in a social or profes-
sional group where each person can have a strong sympathy for some person (or
persons), can like other ones and - at the same time - he or she can mildly or even
profoundly dislike other members of the group? Clearly, neither a signed digraph
nor a network can model such situations where not only the polarity but also the
intensity of the relationships are important. Thus, we proposed a new type of
graph, namely a network defined over the Q-semiring 〈Q, +, min,∞,−∞〉 (where
Q denotes the set of rational numbers), able to grasp both aspects, polarity and
intensity, and we called it “a signed network” (see [Marcus and Tataram 1987a]).
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Since signed networks have proved to be very useful when studying the
paradoxical and antinomic aspects of the human communication process (see
[Marcus and Tataram 1987a]), the crises that define the various stages of human
development, the direct and indirect influences that exist among contemporary
global trends (see [Marcus and Tataram 1987b]), the evolution of economic and
social indicators (see [Marcus and Tataram 1988]), we try to exploit their mod-
eling power in order to solve some problems connected with personal status,
communication, and collaboration within social or working groups. We investi-
gate the concepts of connectivity, reachability and basis with respect to signed
networks. Thus we can determine the person (or persons) that control (in a good
or in a bad sense) the communication processes in the group, the ones that are
best / worst suited to become leaders of the group.

2 Connectivity

Definition 1. A signed network is a digraph (V, X) such that to each edge x ∈ X

a rational number q �= 0 is assigned, called the edge’s value. By the capacity of
an edge we shall mean the absolute value of the rational number assigned to
that edge. We denote such a network by SN = (V, X, Q), where Q is the set of
rational numbers. �

Hence, a signed network can be represented by an adjacency table T , that is:
a three-dimension massive p × p × 2, where p = card(V ); the cell placed at the
intersection of row i with column j, 1 ≤ i, j ≤ p, i �= j, will contain a pair of
rational numbers formed by the capacity and the value of the edge linking the
vertex i with the vertex j, if such an edge exists in SN , and the symbol (∞,∞),
otherwise; if i = j, the cell will contain the pair (0, 0).

Definition 2. A signed subnetwork of a signed network SN = (V, X, Q) is a
signed network SN ′ = (V ′, X ′, Q) such that V ′ ⊆ V , X ′ ⊆ X and the values of
all edges in X ′ are the same as in X . �

Definition 3. A path P from vertex u1 to vertex un, 1 ≤ n ≤ p = card(V ),
denoted by P (u1, un), is a collection of n distinct vertices u1, u2, . . . , un and of
n−1 edges u1u2, u2u3, . . . , un−1un together with their corresponding values. To a
path P in a signed network SN = (V, X, Q) one can associate three parameters:
the length, denoted by n(P ) and given by the number of its edges; the value,
denoted by v(P ) and given by the algebraic sum of its edges’ values; the capacity,
denoted by c(P ) and given by the sum of its edges’ capacities. �

If c(P ) = v(P ), the path P is called absolutely positive; if c(P ) = −v(P ),
the path P is called absolutely negative; otherwise, P is called either positive or
negative as its value v(P ) is a positive or a negative rational number.
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Definition 4. A geodesic from vertex t to vertex u in a signed network SN =
(V, X, Q) is a path from t to u of minimum length; if from t to u several such
paths exist then the path with the minimum capacity is chosen; if there exist
several such paths too, then the path with the minimum absolute value is cho-
sen. The capacity of a geodesic from t to u can be taken as the distance from
t to u (denoted by d(t, u)). An absolutely positive / negative geodesic from the
vertex t to the vertex u in a signed network SN = (V, X, Q) is that minimum
(in the sense of the above definition) absolutely positive / negative path from t

to u if such a path exists. The capacity of such a path can be taken as the abso-
lutely positive / negative distance from t to u (denoted by d+(t, u), respectively
d−(t, u)). Obviously, there exist t, u ∈ V and P from t to u such that P is an
absolutely positive geodesic from t to u but P is not the positive geodesic from
t to u. �

In [Marcus and Tataram 1987a] a method of determining the paths of length
n ≥ 2 and the geodesics between any two vertices of a signed network SN =
(V, X, Q), given by its adjacency table, was presented. This method was inspired
from [Harary et al. 1965] and [Tomescu 1972]: first, we defined the “sum” and
“product” of two tables A and B of dimension p×p×2, p ≥ 2, containing elements
from Q

⋃∞ (the symbol ∞ has, by definition, the property that ∞+a = a+∞ =
∞ and ∞ > a, ∀a ∈ Q), by the relations:

A + B = (aij1 + bij1, aij2 + bij2)1≤i,j≤p

A × B = (aih1 + bhj1, aih2 + bhj2)1≤i,j≤p

where the index h is given by:

|aih2 + bhj2| =
min{|aim2 + bmj2| | aim1 + bmj1 = min{aik1 + bkj1| 1 ≤ k ≤ p}}.

The power n + 1, n ≥ 1, of a table A is defined by:

An+1 = An × A.

We also defined an order relation between two tables A and B, denoted by
�, namely: A � B if and only if aij1 ≤ bij1, ∀ 1 ≤ i, j ≤ p. Then, we proved the
following result:

Proposition5. ([Marcus and Tataram 1987a]) Let SN = (V, X, Q) be a signed
network and T its adjacency table.

1. ∀ 2 ≤ r ≤ p − 1 and ∀ 1 ≤ i, j ≤ p, p = card(V ):
T r

ij represents the minimal capacity and value among all paths of length r

existing between vertices ui and uj in SN .

2. T p−1 is the table of all geodesics that exist in SN .
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The proof is based on the following two lemmas:

Lemma6. The “product” of tables is isotonic with respect to the order relation
�.

Lemma7. Let T be a table of dimension p × p × 2, p ≥ 2. Then, ∀ 1 ≤ i, j ≤
p, i �= j and r ≥ 2, we have:

T r
ii = (0, 0)

and

|T r
ij2| = min(|T r−1

ij2 |, min{|tih12 + th1h22 + . . . + thr−1j2| |
tih11 + th1h21 + . . . + thr−1j1 = min{tik11 + tk1k21 + . . . + tkr−1j1 |
k1, k2, . . . kr−1 ∈ {1, 2, . . . , p} − {i, j} are pairwise different }}).

Definition 8. A signed network SN = (V, X, Q) is (absolutely) positive unilat-
eral if between any two vertices t, u ∈ V there exists at least one (absolutely)
positive path either from t to u or from u to t. A signed network SN = (V, X, Q)
is (absolutely) positive strong if between any two vertices t, u ∈ V there exists
at least one (absolutely) positive path from t to u and at least one (absolutely)
positive path from u to t. Similarly, we define an (absolutely) negative unilateral
signed network and an (absolutely) negative strong signed network. �

Definition 9. An (absolutely) positive unilateral component of a signed network
SN = (V, X, Q) is a signed subnetwork SN = (V , X, Q) of SN which is (abso-
lutely) positive unilateral. An (absolutely) positive strong component of a signed
network SN = (V, X, Q) is a signed subnetwork SN = (V , X, Q) of SN which
is (absolutely) positive strong. Similarly, we define an (absolutely) negative uni-
lateral component, respectively an (absolutely) negative strong component of a
signed network. �

3 Reachability

Definition 10. Let SN = (V, X, Q) be a signed network and u and t two vertices
in V . We say that t is reachable in an (absolutely) positive sense from u iff there
exists an (absolutely) positive path from u to t. Similarly we define a vertex that
is reachable in an (absolutely) negative sense from another one. �

Definition 11. Let SN = (V, X, Q) be a signed network and u ∈ V one of its
vertices. Then we define the following sets of vertices in V :

R+
s (u) = {v ∈ V | ∃ P (u, v) : c(P ) = v(P )},

R−
s (u) = {v ∈ V | ∃ P (u, v) : c(P ) = −v(P )}.

1782 Tataram M.: Connectivity and Reachability in Signed Networks



�

Definition 12. Let SN = (V, X, Q) be a signed network and u ∈ V one of its
vertices. Then we define the following sets of vertices in V :

R+
w(u) = {v ∈ V | ∃P (u, v) : v(P ) ≥ 0},

R−
w(u) = {v ∈ V | ∃P (u, v) : v(P ) < 0}.

�

Definition 13. Let SN = (V, X, Q) be a signed network and U ⊆ V . We denote
by

R+
s (U) =

⋃
u∈U R+

s (u), R−
s (U) =

⋃
u∈U R−

s (u), and

R+
w(U) =

⋃
u∈U R+

w(u), R−
w(U) =

⋃
u∈U R−

w(u).

�

Definition 14. Let SN = (V, X, Q) be a signed network and B ⊂ V a set with
the following properties:

1. ∀ t ∈ V : ∃ u ∈ B : t ∈ R+
s (u);

2. � B′ ⊂ B : ∀ t ∈ V : ∃ z ∈ B′ : t ∈ R+
s (z).

Then, the set B is called an absolutely positive basis for SN . Similarly, we define
an absolutely negative basis for SN . We denote them B+

s and B−
s , respectively.

�

Definition 15. Let SN = (V, X, Q) be a signed network and B ⊂ V a set with
the following properties:

1. ∀ t ∈ V : ∃ u ∈ B : t ∈ R+
w(u);

2. � B′ ⊂ B : ∀ t ∈ V : ∃ z ∈ B′ : t ∈ R+
w(z).

Then, the set B is called a positive basis for SN . Similarly, we define a negative
basis for SN . We denote them by B+

w and B−
w , respectively. �

Definition 16. Let SN = (V, X, Q) be a signed network and B ⊂ V a set with
the following properties:

1. ∀ t ∈ V : ∃ u ∈ B : t ∈ R+
w(u) ∪ R−

w(u);

2. � B′ ⊂ B : ∀ t ∈ V : ∃ z ∈ B′ : t ∈ R+
w(z) ∪ R−

w(z).

Then, the set B is called a basis for SN and we denote it by B. �
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Definition 17. Let SN = (V, X, Q) be a signed network and u ∈ V one of its
vertices. We denote by

in+(u) = {t ∈ V | ∃ (t, u) and v(t, u) ∈ Q∗
+},

and respectively

in−(u) = {t ∈ V | ∃ (t, u) and v(t, u) ∈ Q∗
−},

the set of all its positive, respectively negative direct ascendants. We denote by
in(u) the set of all the direct ascendants of the vertex u. �

Theorem 18. Let SN = (V, X, Q) be a signed network. A set B ⊂ V is an
absolutely positive basis for SN if and only if it satisfies the following conditions:

(i) R+
s (B) = V ;

(ii) � u ∈ B such that ∃ t ∈ B with the property that ∃ P (t, u) : c(P ) = v(P ).

Proof. (i) Is immediate, considering the Definition 14.
(ii) Let us suppose, for the sake of contradiction, that ∃ B′ ⊂ B such that

B′ is an absolutely positive basis for SN . Let u ∈ B − B′; according to the
hypothesis (ii), u /∈ R+

s (B) which implies that u /∈ R+
s (B′). Thus, we obtained

a contradiction.
Reciprocally, let B be the smallest subset of V such that R+

s (B) = V . Let
us suppose, for the sake of contradiction, that ∃ t, u ∈ B such that u ∈ R+

s (t).
This means that R+

s (u) ⊂ R+
s (t). Let us denote B′ = B − {u}; it follows that

R+
s (B′) = V which contradicts the hypothesis that B is minimal.

Let us observe that this result holds for every type of basis in a signed
network.

Corollary 19. Every signed network admits an (absolutely) positive basis, an
(absolutely) negative basis, respectively a basis.

Proof. We consider the case of the absolutely positive basis; the other cases
follow similarly.

We apply Theorem 18. If B = V , the condition (i) in Theorem 18 is trivially
satisfied but, in most cases, the condition (ii) is not satisfied. Let B+

s be a set of
vertices from V which is minimal with respect to condition (i). Then, according
to the proof of Theorem 18, B+

s must satisfy the condition (ii). Consequently,
following the characterization of the absolutely positive bases given in Theorem
18, B+

s is an absolutely positive basis for SN .

Corollary 20.

(i) Let U, U ′ be two absolutely positive strong components of a signed network
SN and let t, u ∈ B+

s ; if t ∈ U and u ∈ U ′ then U = U ′.
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(ii) Let U, U ′ be two positive strong components of a signed network SN and let
t, u ∈ B+

w ; if t ∈ U and u ∈ U ′ then U = U ′.

(iii) Let U, U ′ be two absolutely negative strong components of a signed network
SN and let t, u ∈ B−

s ; if t ∈ U and u ∈ U ′ then U = U ′.

(iv) Let U, U ′ be two absolutely positive strong components of a signed network
SN and let t, u ∈ B−

w ; if t ∈ U and u ∈ U ′ then U = U ′.

Proof. All four assertions follow immediately from condition (ii) of Theorem 18.

Proposition21. Let SN = (V, X, Q) be a signed network.

(i) If in+(u) = ∅ then u ∈ B+
s , ∀ B+

s of SN ;

(ii) If in−(u) = ∅ then u ∈ B−
s , ∀ B−

s of SN ;

(iii) If in+(u) = in−(u) = ∅, then the vertex u belongs to every basis of SN .

Proof. (i) and (ii) are immediate, considering the hypothesis, the Definition 4
and, respectively, Definitions 14, 15, 16 given above.

(iii) We give a proof by contradiction. Let u ∈ V be such that in+(u) =
in−(u) = ∅ and suppose that, for instance, u /∈ B+

w , ∀B+
w of SN . Then, according

to Definition 15: ∃ t ∈ B+
w : u ∈ R+

w(t), that is: ∃ P = t, t1, t2, . . . tn, u such
that v(P ) ≥ 0. If v(tn, u) > 0 then in−(u) = ∅ but in+(u) � t; similarly: if
v(tn, u) < 0 then in+(u) = ∅ but in−(u) � t. Hence, in both cases, we contradict
the hypothesis that both sets, in+(u) and in−(u), are empty.

Theorem 22.

(i) Let SN = (V, X, Q) be an absolutely positive unilateral signed network. Then,
∃B+

s for SN if and only if ∃u ∈ V : in+(u) = ∅ and u is the only vertex in
V having this property;

(ii) Let SN = (V, X, Q) be an absolutely negative unilateral signed network.
Then, ∃ B−

s for SN if and only if ∃ u ∈ V : in−(u) = ∅ and u is the only
vertex in V having this property;

(iii) Let SN = (V, X, Q) be a positive unilateral signed network. Then, ∃B+
w for

SN if and only if ∃ u ∈ V : in+(u) = in−(u) = ∅ and u is the only vertex in
V having this property;

(iv) Let SN = (V, X, Q) be a negative unilateral signed network. Then, ∃B−
w for

SN if and only if ∃ u ∈ V : in+(u) = in−(u) = ∅ and u is the only vertex in
V having this property;
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(v) Let SN = (V, X, Q) be a unilateral signed network. Then, ∃B for SN if and
only if ∃ u ∈ V : in+(u) = in−(u) = ∅ and u is the only vertex in V having
this property;

Proof. (i) “=⇒” Let SN = (V, X, Q) be an absolutely positive unilateral signed
network and u its unique vertex having the property that in+(u) = ∅. We want
to prove that its unique absolutely positive basis is B+

s = {u}. The existence
of an absolutely positive basis, in the sense of Definition 14, is granted by the
hypothesis that SN is absolutely positive unilateral, while the fact that the
vertex u belongs to any such basis is granted by Proposition 21(i).

Let us suppose, for the sake of contradiction, that ∃ t∈ V such that B+
s =

{u, t}. According to Theorem 18 (ii), � P (u, t) : c(P ) = v(P ) and � P ′(t, u) :
c(P ′) = v(P ′), which contradicts the hypothesis that SN is absolutely positive
unilateral.

Let us now suppose, for the sake of contradiction, that ∃ t ∈ V such that
D+

s = {t} is another absolutely positive basis for SN , besides B+
s (we supposed

that card(B+
s ) = 1 in order to ensure the minimality condition). In this case,

R+
s (t) = V , which means that the vertex u too can be reached from t by means

of an absolutely positive path. This conclusion contradicts the hypothesis that
in+(u) = ∅.

“⇐=” Let SN be an absolutely positive signed network and B+
s its unique

absolutely positive basis. We want to prove that SN admits only one vertex with
no positive ascendants, namely the vertex that constitutes the basis B+

s . Let us
suppose, for the sake of contradiction, that B+

s = {u} and that in+(u) �= ∅.
Hence, there exists at least one vertex t ∈ SN such that: ∃(t, u) ∈ X : v(t, u) > 0.
Consequently, R+

s (u) ⊂ R+
s (t). But: R+

s (u) = V because {u} = B+
s , which gives

us the contradiction we looked for.
Let us now suppose, for the sake of contradiction, that ∃ u, t ∈ V such that

in+(u) = in+(t) = ∅. According to Proposition 21(i), the vertex t - as well as
the vertex u - belong to every absolutely positive basis of SN . If {t} �= B+

s we
contradict the hypothesis that B+

s is unique.
If t ∈ B+

s , then, according to Proposition 21(ii), � P (t, u) : c(t, u) = v(t, u),
which contradicts the hypothesis that SN is absolutely positive unilateral.

(ii)–(iv): The assertions (ii), (iii), (iv), and (v) can be proved in a similar
way.

Theorem 23. Let SN = (V, X, Q) be an acyclic signed network. Then:

(i) ∃ B+
s for SN and B+

s = {u | in+(u) = ∅};
(ii) ∃ B−

s for SN and B−
s = {u | in−(u) = ∅};

(iii) ∃ B for SN and B = {u | in+(u) = in−(u) = ∅};
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Proof. (i) Let SN = (V, X, Q) be an acyclic signed network. First, we will use
Theorem 18 to prove that B+

s exists, then we will prove that it is unique.
Notice that

B = {u ∈ V | in+(u) = ∅}
⇒ �t ∈ V such that P (t, u) : c(P ) = v(P )
⇒ �z ∈ B such that P (z, u) : c(P ) = v(P ).

So, we have to prove that R+
s (B) = V .

Notice that
t0 ∈ V

⇒ in+(t0) �= ∅ (otherwise, t0 ∈ B)
⇒ ∃t1 ∈ V : v(t1, t0) > 0.

We distinguish two cases:

(a) in+(t1) = ∅
This implies that t1 ∈ B ⇒ R+

s (B) = V and the existence is proved.

(b) in+(t1) �= ∅
This implies that ∃t2 ∈ V : v(t2, t1) > 0.
By repeating the above argument we obtain a sequence of vertices, denoted
t0, t1, . . . , tk ∈ V such that either

(1) in+(tk) = ∅, hence tk ∈ B or

(2) in+(tk) �= ∅, and then ∃tk+1 ∈ V : v(tk+1, tk) > 0.

Let us denote by P the path tk, (tk, tk−1), tk−1, . . . , t1, (t1, t0), t0 thus ob-
tained. All the vertices in P are distinct since we supposed that SN is acyclic.
Also, P is finite since SN has a finite number of vertices. Consequently,
tk ∈ B and c(P ) = v(P ). By Definition 11, it follows that t0 ∈ R+

s (B),
hence: R+

s (B) = V .

The unicity of B+
s follows from Proposition 21(i), since B contains only those

vertices in V that have no positive direct ascendants.

(ii) The proof is analogue.

(iii) By replacing the hypothesis in+(u) = ∅ with the hypothesis in+(u) =
in−(u) = ∅ and the condition c(P ) = v(P ) with the condition v(P ) > 0, respec-
tively v(P ) < 0, we obtain similar proofs for the last three situations.

4 An application: Communication in social or professional
groups

Let us suppose that we study a group of seven persons, engaged in some profes-
sional collaboration, in order to improve communication between them and thus
their work performance.
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First, by means of interviews, questionnaires, direct observation etc. we es-
tablish pairs of people that like/dislike working together to a higher or lower
degree.

Then, we represent these working relationships by means of a signed network
with seven vertices, SN = (V,X,Q), connected by edges whenever a person i

likes/dislikes to work with a person j, 1 ≤ i �= j ≤ 7. To each vertex (i, j) we
assign the value 2 or 1, depending on the fact that the worker i strongly likes
to collaborate with worker j or only prefers to work with him; on the contrary,
we assign the value -2 or -1 to vertex (i, j) if the worker i strongly dislikes to
collaborate with worker j or only avoids working with him. The working rela-
tionships in this professional group can be described by the following adjacency
table (see Definition 1):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 (0, 0) ∞ ∞ ∞ ∞ ∞ ∞
2 (1, 1) (0, 0) ∞ (2,−2) (1,−1) ∞ ∞
3 (1, 1) (2,−2) (0, 0) (1,−1) (1,−1) ∞ ∞
4 (1, 1) (2,−2) ∞ (0, 0) (1, 1) ∞ ∞
5 (2, 2) (2, 2) (1, 1) ∞ (0, 0) ∞ ∞
6 (2, 2) ∞ ∞ ∞ ∞ (0, 0) ∞
7 (2, 2) (1, 1) (1, 1) (1, 1) (2, 2) (2, 2) (0, 0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By means of this adjacency table we now can point out:

– the shortest communication channels that exist in the group (by using Propo-
sition 5 that computes all the geodesics that exist in this signed network);

– the working subgroups that should obtain best, good, poor, respectively
worst results by working together (by determining the (absolutely) positive
or negative strong components).

Since the number of vertices in this signed network is very small, one does not
need to apply in this aim graph-theoretic algorithms: a simple, direct computa-
tion shows that, for instance: there are no absolutely positive or negative strong
components but there are absolutely positive, respectively negative unilateral
components: the set of vertices {1, 6, 7} forms an absolutely positive unilateral
component (showing that workers 1, 6, and 7 can have a very good working
relationship), while the set of vertices {2, 3, 4} forms an absolutely negative
unilateral component (showing that workers 2, 3, and 4 should not be asked to
work together!)

If we need to coordinate communication among the members of the group
so that the messages reach their addressees without any distortions, we should
apply Proposition 5 and Definitions 11 and 12 in order to compute - for each
member of the group - the reachability sets; then, we can be sure that each
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member t in R+
s (u), respectively R+

w(u), will receive the messages sent by member
u completely, respectively partially correct, while the members z in R−

w(u) or
R−

s (u) will receive the messages sent by member u with flaws or - even worst -
with errors. For instance, the messages sent by member number 5 will be received
in best conditions by members number 1, 2, 3 and only in quite good conditions
by member number 4, since R+

s (5) = {1, 2, 3} and R+
w(5) = {1, 2, 3, 4}. The

messages sent by member number 2 will reach member number 1 quite late or
with distortions, while the same messages may arrive at members number 4 and
5 with significant errors, since R+

w(2) = {4, 5} and R−
w(2) = {1, 4, 5} .

Finally, let us suppose that we have to choose a leader that can best co-
ordinate the work of each member of the group. In this case, we should apply
Theorem 23 and determine the absolutely positive basis B+

s of the signed net-
work that describes the group. In our example, member number 7 best qualifies
for group leader, since B+

s = {7}.

5 Conclusions

Signed networks seem to be a powerful modeling tool and, at the same time,
an intriguing topic of theoretical investigation. For instance, one can study the
concept of condensation in signed networks and use it to investigate the intensity
and the polarity of indirect relationships existing in very large groups of individ-
uals. Or, one can study the concept of equilibrium and use it to appreciate the
dynamics of direct and indirect relationships with respect to both their intensity
and polarity.

The last topic of study has been proposed by Professor Gheorghe Stefanescu.
The author of this paper is in debt to him, as well as to the other two editors
and to the referees, for their valuable remarks and suggestions.
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