
Integrating Module Checking and Deduction in a Formal

Proof for the Perlman Spanning Tree Protocol (STP)

Hossein Hojjat
(University of Tehran, Iran

IPM School of Computer Science, Iran
h.hojjat@ece.ut.ac.ir)

Hootan Nakhost
(Sharif University of Technology, Iran

nokhost@ce.sharif.edu)

Marjan Sirjani
(University of Tehran, Iran

IPM School of Computer Science, Iran
msirjani@ut.ac.ir)

Abstract: In the IEEE 802.1D standard for the Media Access Control layer (MAC
layer) bridges, there is an STP (Spanning Tree Protocol) definition, based on the
algorithm that was proposed by Radia Perlman. In this paper, we give a formal proof
for correctness of the STP algorithm by showing that finally a single node is selected
as the root of the tree and the loops are eliminated correctly. We use formal inductive
reasoning to establish these requirements. In order to ensure that the bridges behave
correctly regardless of the topology of the surrounding bridges and LANs, the Rebeca
modular verification techniques are applied. These techniques are shown to be efficiently
applicable in model checking of open systems.

Key Words: Formal methods, Network protocols, Formal verification, Rebeca, mod-
ular verification

Category: D.2.4, C.2.2

1 Introduction

Formal verification of network protocols has been the subject of a vast research
effort during the last decade. A diverse spectrum of methods and tools are ex-
ploited to formally verify these protocols. Verification mainly aims to achieve
the confidence that the protocols work correctly, i.e., do not have defects. Expe-
rience has shown that protocols have vulnerabilities that may not be found by
manually investigating them. Some recent works include: [Mongiello 2006] which
finds some weaknesses in the definition of ebXML (a set of tools for establishing
electronic business interactions) and [Lai et al. 2007] which unveils deadlocks in
the RAMP protocol (a standard method for reliable point-to-multipoint trans-
mission). There are also various works in which no faults are detected but the

Journal of Universal Computer Science, vol. 13, no. 13 (2007), 2076-2104
submitted: 30/9/06, accepted: 15/11/07, appeared: 28/12/07 © J.UCS

correctness of the protocol is verified and proved. The papers [Talukder et al.
2006, Leen et al. 2006] belong to this class.

Despite the fact that the number of network protocols is quite large, they are
usually classified in the seven-layer OSI networking reference model. IEEE 802 is
the leading group for defining standards for the two lower layers of the network.
802.1D is the IEEE MAC Bridges standard which includes the spanning tree
protocol. The spanning tree protocol was first implemented in the DEC LAN
bridges in the mid 1980s by Perlman [Perlman 1985]. Although the protocol has
been subject to some changes and improvements through the past years, the
basics of the algorithm are mostly unchanged. We have attempted to remain
faithful to the original description of Perlman. There are some minor differences
which are discussed in Section 3.

The protocol mainly removes the undesirable loops in the network. In case
of a single LAN, there is no need to worry about loops since there is only a sin-
gle active path in the network. But in a larger network, a number of LANs are
connected by using devices called bridges [Tanenbaum 2003]. Because this may
generate loops, bridges are equipped with the STP (Spanning Tree Protocol)
algorithm to handle this problem.

In this paper we propose a formal verification method for the STP algo-
rithm. We model the behavior of bridges and LANs using Rebeca, which is an
actor-based modeling language that resembles Java in syntax. Rebeca is a tool-
supported modeling language that utilizes the modular verification techniques.
The language is essentially based on the actor model. A model in Rebeca consists
of a set of concurrent reactive objects, called rebecs. The only means of commu-
nication is to send messages asynchronously. The rebecs are event-driven in a
way that they respond to the received messages by executing the corresponding
message servers. The incoming messages are queued in an internal mail queue.

One may prove the correctness of the behavior of the bridge in a certain
closed environment. However, firstly we soon reach the limits of our current
verification techniques and hardware resources as the number of components
slightly increases. Secondly, our proof of correctness in the restricted closed sys-
tem, has no formal implication as for the correctness of the same bridge in any
other environment. Thus, it makes perfect sense to apply module checking tech-
niques [Kupferman et al. 1996, Kupferman et al. 1997, Kupferman et al. 2001]
to prove the desired properties of a bridge in an arbitrary environment and also
to integrate module checking and induction to prove the overall properties in a
general network (regardless of its topology).

We apply the Rebeca modular verification (module checking) approach pre-
sented for Rebeca in [Sirjani et al. 2005b, Sirjani et al. 2004b] to make sure that
a bridge performs its intended behavior when it is composed with different LANs
and bridges in different environments. The value of this approach was proven

2077Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

during our initial attempts to verify some network topologies with a quite limited
number of nodes. Our series of experiments has revealed that without applying
any abstraction techniques, the state space of the model explodes quickly. Fur-
thermore, studying the problem in some special case is not sufficient to conclude
a general result about the protocol. In the module checking technique the system
is considered in an arbitrary environment so it can help us to move from a set
of specific results in a few examples to general conclusions.

To prove the correctness of the STP algorithm, three major consequences
of the algorithm in the network must be proved. One of these consequences is
that a single bridge is finally elected as the root. To prove this part, we need
inductive reasoning integrated with module checking. The induction is based on
the distance of the bridges to the root. In this manner, a property is proved for
the actual root (induction base), and then it is proved that the property holds
in all distances from the root.

We use the Rebeca verifier toolset [Sirjani et al. 2005a] to translate the
Rebeca models to Promela [Holzmann 1991]. The properties are checked on the
generated Promela code. For model checking we translate the Rebeca code to
Promela using the Rebeca toolset. This translation is straightforward and if we
directly model the system in Promela it would not make a significant difference
in the generated code. The main advantages of using Rebeca, as compared to
Promela, are the following. First, Rebeca enables us to incorporate its modu-
lar verification theory to sketch a general proof. Second, asynchronous message
passing and the object-oriented nature of Rebeca facilitate modeling the net-
work protocols. A computer network is a set of separate endpoints communi-
cating merely by asynchronous message passing, which is well fitted in the fully
asynchronous model of Rebeca. Moreover, the object-oriented nature of Rebeca
facilitates modeling in comparison to Promela. Another alternative is to prove
the correctness of the behavior of each node (bridge) by theorem proving. But,
in our approach we use a more natural way to map the algorithm to (Java-like)
Rebeca models and then automatically model check the model. In addition, the
code can be directly used in the real implementation (by a few refinements).

In an earlier version of this paper [Hojjat et al. 2006], we assumed that the
root election part of the algorithm is correct, and we only examined the algo-
rithm for enabling and disabling the links. Here we give the proof from scratch,
without any previous assumptions. This paper is organized as follows. In the
following section we study similar research areas and related work. The STP
protocol is introduced in Section 3. Section 4 is devoted to an introduction to
Rebeca. The Rebeca model of STP in a typical network is explained in Section
5. The proof is presented in Section 6. We conclude the paper with summarizing
the work in Section 7.

2078 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

2 Related work

There are various works in which network protocols are verified for safety and
liveness properties. Two main approaches in formal verification, model check-
ing (algorithmic) and theorem proving (deductive) [Manna et al. 1995] are both
used for this purpose. In model checking [Clarke et al. 1999], a system is checked
to see if it preserves some specification, usually stated in temporal logic [Clarke
et al. 1986, Manna et al. 1992]. In theorem proving [Gallier 1985], a problem is
formulated as proving a theorem in a mathematical proof system, and the mod-
elers attempt to construct the proof of the theorem, usually using a theorem
prover as an aid. There are also methods which integrate model checking and
deductive approaches. Abstraction and compositional verification are used to
tackle the state space problem of model checking. Our work can be categorized
among the methods which integrate model checking and deductive approaches
and also uses reduction techniques in module checking. Here, we mention some
works on protocol verification using theorem proving, model checking and inte-
grated approaches.

Among famous theorem provers, there are PVS [Shankar 1996] and Is-
abelle/HOL [Gordon et al. 1993] which have received more attention. In [Rusu
2003], the author has verified the data transfer service of the SSCOP protocol.
The main challenge of the service is to provide a reliable communication between
two endpoints over an unreliable network. In the protocol specification, sender
and receiver are decomposed into five components (three for the sender, two for
the receiver). Instead of composing the components together and study the be-
havior of the whole composition, compositional reasoning [de Roever et al. 2001]
is used. The specification requires many requirements (252), most of which can
be concluded locally for a separate component. The authors of [Rusu 2003] have
used theorem proving for proving the specification of each component, while in
our work we module check each component to verify the required property. Also,
we need to use induction to prove the correctness of the algorithm in an arbitrary
network.

CADP (Construction and Analysis of Distributed Processes, formerly known
as CÆSAR/ALDÉBARAN Development Package) [Fernandez et al. 1996] has
also been used for model checking in many protocols. The CADP toolbox offers
a lot of capabilities, such as translating LOTOS [Bolognesi et al. 1987] specifi-
cations to the C language for further simulation and analysis and analyzing the
low-level protocol descriptions specified as finite state machines. A subsequent
case study illustrates the practical experiences that have benefited from CADP.
In [Tronel 2003] CADP is used to verify the correctness of a protocol for deploy-
ing and configuring a large set of software components over a set of distributed
computers/devices. To cope with the complexity of this protocol, compositional
verification is used. Each component in the specification is translated into a sep-

2079Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

arate process in the generated LOTOS code. This way, an incorrect behavior in
a given process can be immediately tracked back to the corresponding activity.
This work relies on model checking and no proof techniques are applied. The
required properties can be verified by model checking each process.

The model checker SPIN [Holzmann 1997] is a widely distributed software
package that supports the formal verification of distributed systems. SPIN uses a
high level language Promela (Process Meta Language) to specify the description
of the systems, and LTL (Linear Temporal Language) [Manna et al. 1983] is its
specification langauge. The following case studies show examples where SPIN is
used in verifying different protocols. The translation layer of the Wireless Ap-
plication Protocol (WAP) is considered in [He et al. 2004]. WAP is the global
standard for the applications that use wireless communication. It is proved that
the protocol is well formed, for example, it is not underspecified and the exe-
cution has progress. The complete properties of the well-formed protocols are
defined in [Holzmann 1991]. The authors in [He et al. 2004] have translated the
informal description of the protocol for each of the endpoints (initiator and re-
sponder) to a finite state automaton (FSA), and then these two FSAs are coded
in Promela. In this work the focus is on a single transaction between an ini-
tiator and a responder, so there is no reason to worry about the topology of
the network; while in our work we consider an arbitrary network and hence use
induction to prove the protocol. Another difference is the level of modeling, we
use Rebeca which is a high level actor-based language to model the required
nodes of the network instead of FSA.

The NetBill protocol is verified in [Fanjul et al. 1998]. NetBill is an e-
commerce protocol designed to be used in commercial transactions of information
through the Internet. There are three parties involved in a NetBill transaction:
consumer, merchant and the bank. This work abstracts away the cryptographic
details of the protocol and formally proves its high level properties. The ap-
proach is similar to that of [He et al. 2004], i.e., translating the communications
in the protocol to FSA and then coding the results in Promela.

The papers [Bhargavan et al. 2000, Bhargavan et al. 2002] study the loop
freeness of the On-Demand Distance Vector Routing (AODV). AODV is an algo-
rithm for routing data across the wireless ad-hoc networks. The papers discover
the conditions that lead to the formation of routing loops. The problematical
points are considered in the new RFC of the protocol, and the conference paper
is acknowledged [Perkins et al. 2003]. The approach of [Bhargavan et al. 2002]
for proving the loop freeness in the correct version of AODV is very similar
to our work. Some local properties of a node is proved by module checking in
Promela, and then, deduction techniques are exploited to prove the correctness
of the protocol in general. The method for the general proof is theorem proving
using Isabelle/HOL. Only under certain circumstances for a process in Promela

2080 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

one may argue that module checking is sound, where for Rebeca there is a gen-
eral theorem [Sirjani et al. 2004b, Sirjani et al. 2005a] which can be used in any
kind of model. So, the approach we use in this paper can also be used for other
protocols without any reservations.

In this work, we use module checking for compositional verification, and
deduction for generalizing the results from some topology-specific network to
general networks. We use Rebeca as our modeling language, which is natural for
modeling the nodes of a network and is supported by a module checking theorem
[Sirjani et al. 2005b] and a model checking tool set [Sirjani et al. 2005a].

3 The Spanning Tree Protocol

There can be many motives for connecting several LANs together and creating
an extended LAN. One essential reason is the limitation of the length of a typical
LAN. As an example, an Ethernet network cannot be longer than 2.5 kilometers.
So if an organization has buildings in different far locations, a single LAN does
not suffice. Furthermore, partitioning a single big LAN to several smaller LANs
makes the management of the network easier, and localizes the errors. It can
also lighten the loads; the traffic of each LAN is restricted only to that LAN
and does not spread all over the network. It is reasonable and natural to have
a network of LANs. The LANs are connected using devices named bridges, or
alternatively MAC bridges as they work in the second layer of the OSI model
(Media Access Control is a sublayer of the second layer). In a network made out
of LANs and bridges loops may exist. This occurs because the network might be
managed by more than one administrator, or there may be some extra cabling
established between bridges to provide redundancy. This is especially useful in
case of failures.

When a loop exists in a network, some LANs can be reached through more
than one path. This situation is confusing for a bridge that wants to forward a
message to a destination, since it appears that the destination can be reached
through multiple interfaces. With the purpose of sending a message to a single
target, duplicate messages are sent. This floods the network, and may cause
severe problems. The spanning tree protocol sets up a spanning tree in the
network to remove the loops. The spanning tree protocol which is considered in
this paper was initially proposed by Perlman [Perlman 1985]. This protocol is
the basis for the spanning tree protocol definition in the IEEE 802.1D [IEEE
2004] standard. The STP description of the standard has been changed through
its different revisions, but the principles are essentially the same. We use the
original description of Perlman [Perlman 1985] in this paper.

A graph is a tree if and only if all of its nodes, except one which is the
root, has exactly one ancestor. To determine a single root for the graph, the
STP algorithm uses the MAC addresses or identifiers (hereafter, IDs) of the

2081Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

bridges. The bridge that has the smallest ID should become the root of the
tree. Note that the MAC addresses are unique, so each network has only one
root. At the beginning when the network is switched on, the bridges are not
aware of the bridge in the network with the smallest ID, so they exchange their
beliefs about the network state. The messages that are used for this purpose in
this protocol are called Hello messages [Perlman 1985] or Bridge Protocol Data
Units (BPDUs) [Cisco 1997]. After the network reaches its steady state, only the
real root has the permission to make Hello messages, and the other nodes only
forward the Hello messages.

In each Hello message, among other information, these three fields exist: the
ID of the sender bridge, the ID of the bridge that the sender believes it is the
root, and the believed distance of the sender to the root.

Throughout the paper we shall use the following two definitions, which are
essentially based on [Perlman 1985]:

– Designated Bridge of a LAN: the closest bridge from the LAN to the
root. In the tie condition, the bridge with the smallest ID is the designated
bridge. The designated bridge for a LAN is unique.

– Predecessor LAN of a Bridge: the LAN connected to a bridge closest
to the root. In the tie condition, predecessor LAN will be chosen arbitrarily.
The predecessor LAN for a bridge is unique and root has no predecessor
LAN.

The distances are computed as the number of LANs in the shortest path from
one point to another. For example, in Figure 1 the distance of B3 to B1 is 2,
since l3 and l4 are in the shortest path from B3 to B1. In this extended LAN,
B1 has the smallest ID among the bridges so it is the root. B2 is designated for
l2, as it is on a shorter path than B3 to the root. The root distances of B5 and
B6 are both equal to 1. In the tie conditions the bridge with the smallest ID
is the designated bridge, so B5 is selected as the designated bridge for l6. B6 is
not designated for l10 since this LAN is directly connected to the root. However,
since l10 is closer than both l6 and l7 to the root, it is the predecessor LAN for
B6. In the case of B3, the selection of the predecessor LAN is arbitrarily, because
the root distances of both l2 and l3 are equal to 1.

Each bridge holds the root ID, the distance to the root, the predecessor LAN
and a flag for each of its links. The flag for a link shows whether the bridge is
designated for the corresponding LAN or not. At the initial state, every bridge
claims to be the root and also designated for all of the LANs connected to it, so
it regularly creates Hello messages and spreads them over the network reporting
itself as the root. Whenever a bridge receives a Hello message having a root ID
better than its believed root ID, the belief of the bridge will be updated regarding
the information in the Hello message. Each bridge computes its distance from

2082 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

1

6

3
2

5 7

1

10

7 86

5

4
23

4

9

Figure 1: An extended LAN with 7 bridges and 10 LANs: circles shows bridges
and rounded rectangles are LANs. The dashed links should be blocked after
running STP

the new believed root by increasing the minimum distance reported by the Hello
messages by one.

If the bridge B receives a Hello message from a “better” neighbor bridge,
it no more claims to be designated for the shared LAN. By “bridge A is better
than B” we mean either that (a) A is closer than B to the root, or (b) if the
distances to the root are equal, the ID of A is smaller than the ID of B. In the
case that the neighbor bridge, A, is closer to the root, from that moment B only
tries to become designated for other connected LANs.

The Hello messages are only created by the bridges believing themselves to
be the root. Other bridges only forward the received traffic to the links which
connect them to those LANs for which they are designated. When the algorithm
finishes, the links to the predecessor LANs and also the links between the bridges
and the LANs for which they are designated are kept enabled. All other links are
blocked, i.e, the bridge does not forward the traffic through them (but listens
for the possible changes in the topology).

After running STP in the network in Figure 1, the links between B3 to l2, B6

to l6 and B7 to l7 will be blocked. This is due to the fact that neither the bridges
are designated for the corresponding LANs nor the LANs are predecessors for
the bridges.

If we consider an extended LAN as a bipartite graph which has solely two
types of nodes: bridge and LAN, we can say the formed graph is a tree because
each node except the root has a unique ancestor; each bridge is connected to
a unique predecessor LAN and each LAN is connected to a unique designated

2083Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

bridge.
Perlman has considered a time-out for each message, so that when a bridge

does not receive the Hello messages from its predecessor LAN it restart the
algorithm. Although we will consider the untimed version of the algorithm, it
can be claimed that this does not weaken the proof. The behavior of a bridge in
the time-out state is exactly the same as what it used to be in the initial state of
the tree construction phase. We can consider the situations in which a number
of bridges are timed-out as some middle stages in the tree construction phase in
which the bridges are acquiring information from their neighbors to make a final
decision for the root selection. Also, Perlman has suggested some extensions
to the algorithm, such as adding priorities to the bridges. As she has stated,
these features are “some facilities to influence the topology that is computed by
the spanning tree algorithm”, and are not essential. We do not consider these
extensions in this paper.

4 A short primer on Rebeca

This section is a short introduction to Rebeca (Reactive Object Language). For
a more elaborate explanation see [Sirjani et al. 2004b, Sirjani 2004c, Sirjani et al.
2005a].

Rebeca is essentially based on the actor model. The actor model was first
explained as a simple functional model [Hewitt et al. 1973, Agha 1986], but
several imperative languages have also been developed based on it [Varela 2001].
Besides its theoretical basis, the actor model and languages provide a very useful
framework for understanding and developing open distributed systems.

Rebeca models the concurrent world by a set of reactive objects, called
rebecs. Rebecs may communicate only by sending and receiving asynchronous
messages, and based on the received messages react to the environment. Each
rebec has an infinite mail queue in which the incoming messages are enqueued.

A typical example and the abstract syntax of a Rebeca model is depicted
in Figure 2 and Figure 3 respectively. Rebeca uses a Java-like syntax. Rebecs
are instances of reactive classes. A Rebeca verifier [Sirjani et al. 2005a] is de-
veloped for model checking Rebeca models. For model checking purposes, the
Rebeca verifier expects modelers to explicitly specify the queue length at mod-
eling time. As illustrated in Figure 2, the queue length is declared in front of the
reactive class definition. There are two main declaration parts in the reactive
class definition: The knownobjects and statevars. The knownobjects part
includes the reactive classes to which this reactive class is allowed to send mes-
sages. The statevars are the variables that have a role in constructing the state
space of the program. The queues of the reactive classes are also included in the
state space. When a message is dequeued, its corresponding method is called. In

2084 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

reactiveclass MyRebec(2)
{ knownobjects { MyRebec d;}
statevars
msgsrv initial()
{ self.msg1();}
msgsrv msg1()
{

/* Handling message 1*/
// ...
d.msg2();
// ...

}
msgsrv msg2()
{ /* Handling message 2*/} }
main
MyRebec r1(r2); MyRebec r2(r1);

Figure 2: A typical Rebeca code

Rebeca, the execution of methods is atomic, so, the execution of the statements
of different methods cannot be interleaved. Every reactive class definition has a
method named initial. In the initial state, each rebec has an initial message
in its queue, thus the first method executed by each rebec is the initial message
server. The allowed statements belong to one of these categories: assignment,
message sending and if-statement. The if-statement and assignment are similar
to Java, so their details are omitted from the grammar. The instantiation of
rebecs and binding of knownobjects are defined in the main body similar to the
main method in Java.

4.1 Model checking in Rebeca

The Rebeca Verifier tool [Sirjani et al. 2005a] is developed for model checking
Rebeca code. Using the Rebeca verifier, Rebeca code is translated to an interme-
diate language, Promela [Holzmann 1991] or SMV [McMillan 1993], and the de-
sired properties are checked using the corresponding model checker, SPIN [Holz-
mann 1997] or SMV. The Rebeca verifier has been used in some successful case
studies such as [Sirjani et al. 2004a, Shahriari et al. 2006]. We use the Promela
translation feature of the tool in this study. The translation is a natural one to
one mapping, and is summarized in Table 1. The SPIN model checker is used
for model checking the Promela code. The resulting state space of the Rebeca
model translated to Promela is not smaller than a directly written piece of
Promela code. As mentioned in Section 1, the main advantages of using Rebeca
as opposed to writing directly in Promela are the natural mapping of the net-

2085Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

〈model〉 ::= 〈reactiveclasses〉 〈main〉
〈reactiveclasses〉 ::= 〈reactiveclass〉+

‘reactiveclass’ 〈reactiveclassName〉‘(’ 〈queueLength〉‘)’
‘{’ 〈knownobjects〉〈statevars〉〈body〉‘}’

〈knownobjects〉 ::= ‘knownobjects’
‘{’ {〈reactiveclassName〉〈varname〉‘;’ }* ‘}’

〈statevars〉 ::= ‘statevars’ ‘{’ {〈var〉‘;’ }* ‘}’
〈body〉 ::= {〈method〉}+
〈method〉 ::= ‘msgsrv’ 〈methodName〉‘(’ {〈parameter〉}* ‘)’

‘{’ {〈statement〉‘;’ }* ‘}’
〈parameter〉 ::= 〈var〉 | 〈var〉 ‘,’ 〈parameter〉
〈var〉 ::= 〈typeName〉 〈varName〉
〈statement〉 ::= 〈mir〉 | 〈assignment〉 | 〈conditional〉 | 〈create〉
〈mir〉 ::= 〈varname〉 ‘.’ 〈methodName〉 ‘(’ {〈varname〉}* ‘)’ ‘;’
〈create〉 ::= 〈varname〉 = ‘new’ 〈reactiveclassName〉

‘(’ 〈knownobjectsBinding〉 ‘)’
〈main〉 ::= ‘main’ ‘{’ {〈rebecinstantiation〉‘;’ }+ ‘}’
〈rebecinstantiation〉 ::=

〈reactiveclassName〉 〈varname〉 ‘(’
〈knownobjectsBinding〉 ‘)’

Figure 3: The abstract syntax of a Rebeca model

work (distributed, asynchronous, event driven) to Rebeca, the object-oriented
paradigm in modeling with Rebeca, and the modular verification theorem es-
tablished for Rebeca.

Another tool [Jaghoori et al. 2006] is developed for direct model checking
of Rebeca models which applies some reduction techniques in model checking
[Jaghoori et al. 2005]. This tool does not yet support some features of Rebeca .

4.2 Modular verification in Rebeca

In model checking it is necessary to distinguish between two types of systems:
closed and open [Harel et al. 1985]. The behavior of a closed system is completely
determined by its state. This is different from an open system which has some
interactions with the environment and these interactions influence the behavior
of the system. Model checking of closed systems is more convenient than that of
open systems since a closed system can be checked for satisfaction of the prop-
erty in isolation. But in open systems the situation is more subtle because of

2086 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

Rebeca construct Promela construct

reactiveclass proctype
rebec process

knownobjects parameters of the process
message queue channel
message server atomic block

state variables of a rebec global variables

Table 1: The mapping between Rebeca and Promela

the external environment. In module checking [Kupferman et al. 1996], (module
stands for an open system) all possible environments are taken into account. For-
mally, given a module C and a temporal-logic formula ψ, in the module-checking
approach, the execution of C in all possible environments Ec are evaluated to
observe whether C satisfies ψ or not.

The authors in [Sirjani et al. 2005b] have proposed a framework for modular
verification in Rebeca. The theory in [Sirjani et al. 2005b] is established for ex-
tended Rebeca which we use here. A component C (an open system) is defined as
a non empty, finite set of rebecs. A component provides a specific set of messages
which have corresponding message servers in the component. A component Ec

is defined as a general environment for C, where Ec nondeterministically sends
all the provided messages of C. A component can be composed with Ec, and
create a closed model M = {C,Ec}. By considering the transition systems of C
and M = {C,Ec}, it is proved that M weakly simulates C [Sirjani et al. 2005b].
As M weakly simulates C, then for every safety property specified by an LTL-X
(LTL without the next operator) formula ψ , with atomic propositions on vari-
ables in M , M |= ψ implies C |= ψ [Clarke et al. 1999]. Moreover, for any model
M ′ containing C, there exits a weak simulation relation between M and M ′. So
if a property of C (in the restricted temporal logic mentioned above) is proved
to be satisfied in model M, it can be concluded that it holds in all models M ′.

Often, the requirement that C satisfies ψ in all compositions is too restric-
tive, and we are really concerned in the satisfaction of ψ in compositions of C
with environments about which some assumptions are known. In the noncircular
assume-guarantee paradigm of verification, we may assume that E′ satisfies φ
and we prove that under this assumption C ‖ E′ satisfies ψ. While we use linear
temporal logic as our specification language, the assume guarantee paradigm
corresponds to usual model checking [Kupferman et al. 1999].

An additional concept in the framework is the queue abstraction, which is
applied for state space reduction. By queue abstraction we mean that the exter-
nal messages arriving from Ec are not put in the message queue of the receiver

2087Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

rebec, only internal messages coming from the constituent rebecs of the compo-
nent go into the queue. In order to take the external messages into account, a
rebec assumes that the external messages are always enabled. Thus, in each step
the rebec can non-deterministically dequeue an internal message and execute it
or consider an external message to be serviced.

5 A Typical Example

In this section we consider a typical example for verifying the properties of
Perlman Protocol in a typical network. We model this simple example in Rebeca,
specify the required properties, and use the Rebeca Verifier tool for its model
checking. In the next section we proceed to give a general proof using modular
verification approach.

5.1 The Problem Specification

The network topology of which we want to find its spanning tree is shown in
Figure 4. In this figure, the circles represent bridges. Each bridge has a unique
ID, which are B1, B2, and B3. The multiple lines that come out of the circles
are the bridge ports. The bars are symbols for LANs. They are labeled with
letters l1, l2 and l3.

Suppose that B1 < B2 < B3. In the final state, bridge B1 is selected as
the root of the tree, because it has the smallest ID of the three bridges. None
of the ports of the root should be blocked, and B1 is the designated bridge for
the LANs l1 and l2. The designated bridge of l3 is B2, because B2 and B3 have
equal root distances and the ID number of bridge B2 is smaller than B3. As a
result, the links that connects bridge B1 to l1 and l2, and bridge B2 to l3 have
to remain enabled. The predecessor LAN of B2 is l1, so the link joining B2 to l1
should stay unblocked. Since B3 is not designated for any LAN, it doesn’t keep
its link to the predecessor LAN. The links that should be blocked are shown in
Figure 4.

In the Rebeca model, we introduce two reactive classes for modeling this
example: a bridge reactive class which encapsulates the bridge behavior and its
ports, and a LAN reactive class. The code of the bridge is shown in Figure 5,
and Figure 6 shows the code of the LAN. The code in these figures is abstracted
in some spots, in order to make it more readable; and they can easily be con-
verted to a valid code (for the complete code see [Rebeca Homepage]). There
are two arbitrary constants in the code: QUEUE LENGTH and PORTS NUMBER ,
they show the queue size of a rebec and the number of ports that are connected
to a bridge, respectively. The statevars declaration contains the information
of a bridge about itself and its environment. This includes the ID of the bridge
(myID), the believed ID of the root (rootID), the believed distance to that root

2088 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

1

2 3

1 2

3

Figure 4: A typical extended LAN

(rootDistance), a flag that indicates if the bridge is a root (IamRoot), an array
of flags specifying whether or not the bridge is designated for each of its ports
(IamDesignated) and another array of flags specifying whether or not the ports
are blocked (isBlocked).

In the initial message server the state variables are initialized and the
config message server is called. In the message server config, the bridge sends
to all of its ports (and hence to all of the connected LANs) a message which
claims that the sender is the root. In the recvInf message server, the bridge
compares the information in the incoming message with its current knowledge
of the network in three steps.

– If the root ID of the incoming message from a LAN l is smaller than the
believed root ID of the bridge, the bridge changes its belief of the root
according to the incoming message. By receiving this message the bridge
is informed that there is a better neighbor bridge connected to l so it no
longer claims to be designated for l. On the other hand, since the belief of
the bridge is derived from l, it is concluded that l is the closest connected
LAN to the root, so it will be chosen as the predecessor LAN. Furthermore,
the bridge claims to be designated for the LANs other than l. The reason is
that the new belief of the bridge is better than the belief of neighbor bridges
reported by these LANs.

– If the root ID of the incoming message from a LAN is equal to the believed
root ID of the bridge and the root distance of the message plus one is smaller
than the believed distance of the bridge, according to the reasons similar to
above the following changes occur. The believed root distance is changed, the
bridge disclaims to be designated for l, l will be chosen as the predecessor
LAN and the bridge claims to be designated for all its connected LANs
except l.

2089Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

reactiveclass Bridge(QUEUE LENGTH) {
knownobjects{Lan lan[PORTS NUMBER];}
statevars {

byte myID;
byte rootID;
byte rootDistance;
boolean IamRoot;
boolean IamDesignated[PORTS NUMBER];
boolean isBlocked[PORTS NUMBER];

}
msgsrv initial(){

for k = 1 to PORTS NUMBER do {
IamDesignated[k] = true;
isBlocked[k] = false;

}
rootID = myID = NODE ID ;
rootDistance = 0;
IamRoot = true;
self.config();

}
msgsrv config(){

if(IamRoot){
for k = 1 to PORTS NUMBER do {

if(k �= myID)
lan[k].recvInf(0,myID,myID);

}
}

}
msgsrv recvInf(byte distance, byte believedRoot, byte sender)
{

if(believedRoot < rootID)
{
rootID = believedRoot;
rootDistance = distance + 1;
IamRoot = false;
IamDesignated[sender] = false;
for k = 1 to PORTS NUMBER do {

if(k �= sender){
IsBlocked[k] = false;
IamDesignated[k] = true;
lan[k].recvInf(rootDistance,rootID,myID);}

}
IsBlocked[sender] = false;

}
else if(believedRoot == rootID && distance + 1 < rootDistance){
rootID = believedRoot;
rootDistance = distance + 1;
IamDesignated[sender] = false;
for k = 1 to PORTS NUMBER do {

if(k �= sender){
IsBlocked[k] = false;
IamDesignated[k] = true;
lan[k].recvInf(rootDistance,rootID,myID);}

}
IsBlocked[sender] = false;

}
else if(believedRoot == rootID && distance == rootDistance

&& myID > sender)
{
IamDesignated[sender] = false;
IsBlocked[sender] = true;

}
}

}

Figure 5: A bridge in Rebeca model

2090 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

reactiveclass LAN(QUEUE LENGTH) {
knownobjects{Bridge bridge[PORTS NUMBER];}
statevars{}
msgsrv initial(){}
msgsrv recvInf(byte distance, byte believedRoot, byte sender){

for k = 1 to PORTS NUMBER do {
if(k �= sender)

bridge[k].recvInf(rootDistance,rootID,myID);
}

}
}

Figure 6: The LAN code

Root selection:

♦ (� ((IamRoot[B1]) ∧ (¬ IamRoot[B2])∧ (¬ IamRoot[B3])))

Link status:

(♦ (� ((blocked B3 C) ∧ (blocked B3 B) ∧
(¬blocked B2 C) ∧ (¬blocked B2 A) ∧

(¬blocked B1 A) ∧ (¬blocked B1 B))))

Figure 7: The properties of the example in Figure 4

– If the root ID and the root distance of the incoming message from a LAN
l are equal to the believed root ID and the believed distance of the bridge,
the belief of the bridge remains unchanged. But the ID of the sender is
considered and if it is smaller than the ID of the bridge, the bridge disclaims
to be designated for l. The reason is that a better bridge is connected to l.
Also as the selection of the predecessor LAN is arbitrary, the bridge can alter
its predecessor LAN and choose l (the distance of l to the root is equal to
distance of the current predecessor LAN to the root). In our implementation
the predecessor LAN is not changed so the first LAN that causes the current
belief is chosen as the predecessor LAN.

A careful reader may notice that we do not explicitly keep track of the
predecessor LAN in our code. Instead, we always keep the link to the predecessor
LAN unblocked. We block every link to a LAN if two conditions hold: First, the
bridge is not designated for the LAN. Second, the LAN is not the predecessor
LAN of the bridge.

2091Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

We verified two properties for the model (Figure 7) by model checking the
code. The first property is about root selection, which specifies that finally the
bridge with the smallest ID believes to be the root, i.e., a stable condition should
eventually be established in the network in which only B1 believes that it is the
root. By a stable state we mean when the beliefs of the bridges about their pre-
decessor LANs, and about which LAN they are designated for have reached a
steady state and do not change.

The second property illustrates the status of the links in the stable state.
Some of the links should be blocked, and some of them should remain unblocked.
All ports of the bridge B3 will be blocked in the final network (Figure 4).

6 STP Proof

A graph is a tree if every element has only one single predecessor, except for the
first, which is called the root and has no predecessor. The foremost question that
can be asked about the STP protocol is whether the root is selected correctly or
not. After that, we should make sure that the single predecessor property holds.
As the graph of an extended LAN is bipartite (the nodes are actually LANs and
bridges) this property can be divided into two separate properties: each LAN
should have a single correct predecessor (a bridge) and each bridge (except the
root) should have a single correct predecessor (a LAN). By correct, we mean that
these designated bridges and predecessor LANs build the shortest path between
the root and every node in the graph. So, the STP algorithm has three major
effects in the network [Perlman 1985] and each of them has to be proved:

1. The Root Election The root is elected properly and every bridge calculates
the distance of its shortest path to the root bridge correctly.

2. Unique Designated Bridge Each LAN has a correct unique designated
bridge in the spanning tree.

3. Unique Predecessor LAN Each bridge has a correct unique predecessor
LAN in the spanning tree.

All of the above features are proved in this section. We first formalize our notions
of an extended LAN, a bridge and a Hello message.

Definition 1 Extended LAN. An extended LAN is a tuple E = (VB , VL,

lk, R,D) where:

– VB is the set of bridges (defined below) inside E;

2092 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

– VL is the set of LANs inside E;

– lk is a symmetric Boolean function lk : VB×VL → B which is used to specify
the links in the network. If there is a link between a bridge and a LAN, the
output of the function is true, otherwise it is false;

– R, the actual root ID, is the ID of the bridge that is the root of the spanning
tree (the bridge with the minimum ID).

– D, real distance, is a total function D : VB → N that gets a bridge and
returns its real distance to the actual root in the extended LAN.

Indeed, an extended LAN is a bipartite graph whose nodes are the union of VB

and VL.

Definition 2 Bridge. A bridge b is a tuple b = 〈id, rid, d,H, fl〉 where:

– id represents the ID of b;

– rid is the believed root ID of b;

– d is the believed root distance;

– H is the set of the Hello messages that the bridge has received;

– fl : VL → B is a Boolean function that gets a LAN as input, and returns
true if the current bridge is designated for that LAN and false otherwise.
When a bridge is designated for a LAN, its port to that LAN is unblocked.

Definition 3 Hello message. A Hello message m is a tuple m = 〈sid, rid, brd〉
where:

– sid is the sender ID.

– rid is the believed root ID of the sender.

– brd is the believed root distance of the sender.

In a well-formed Hello message rid is not smaller than the actual root ID, and
brd is not negative.

6.1 Root Election

In this section we present our proof for the correctness of the root election phase
in the STP algorithm. In our main theorem for root election, Theorem 10, we
apply induction on the distance from the root. By the induction assumption we

2093Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

assume that in the stable state the bridges with the real distance a, have the cor-
rect belief about the root, i.e., their believed root ID is correct and their believed
root distance is a. In our induction step, we will prove that in the stable state
bridges with the real distance a + 1 have the correct belief. For this purpose,
we use Lemma 9 and the induction assumption to prove that the bridge b with
real distance a + 1 has received a message with believed root distance a. Using
Lemma 8 (which itself uses Lemma 5), we show that a is the minimum believed
root distance which is reported to b by all the messages received. Finally, using
Lemma 7 we show that by receiving the message containing the minimum be-
lieved root distance a, the bridge b changes its belief correctly and this completes
our proof.

Lemmas 5 and 7 are proved using model checking, Lemma 8 is proved by
induction and Lemma 9 is proved using Lemma 8 and model checking. For this
purpose, we use the modular verification framework of Rebeca.

We use Rebeca for modeling a bridge (Section 5) in order to have a formal
description for the behavior of a bridge in the Perlman protocol. The exact be-
havior of a bridge with respect to an incoming message is not trivially concluded
from the Perlman description of a bridge. One may simplify the matters by as-
suming that the bridges are well-behaved in all situations and abstract away
from the actual activities of a single bridge. In such a simplistic view there is no
need to worry about the functionality inside the bridge, and the proof has to be
focused on the whole structure of the network and the communications between
the bridges. We have added lemmas and proved them by model checking (5, 7,
part of 9) in order to assure the correctness of our description for a single bridge.

We want to prove that the belief of a bridge is not changed unless a message
reporting the new believed root ID and the new believed root distance is received
(Lemma 5), and the belief of the bridge is certainly changed when a message
having the minimum believed root distance is received (Lemma 7).

Definition 4 Neighbors. Consider an extended LAN E = (VB , VL, lk, R,D).
The set of neighbors of a bridge x ∈ VB is defined as:
neigh(x) = {b | b ∈ VB, ∃l ∈ VL • lk(b, l) ∧ lk(x, l)}
Lemma5. When the bridge bk = 〈idk, ridk, dk, Hk, f lk〉 no longer believes itself
to be the root (ridk 	= idk) its believed root distance (dk) is the believed root
distance of one of its neighbors plus one (this value is included in the Hello
message m sent by that neighbor): dk = m.brd+ 1.
(idk 	= ridk) ⇒ ∃m ∈ Hk • (m.brd = dk − 1 ∧m.rid = ridk)

Proof : Module checking.
This lemma is proved by module checking the bridge as a component, using
Rebeca module checking techniques. We compose the bridge component with
an environment which sends arbitrary messages to the bridge. The Rebeca code

2094 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

p ≡ (rootDistance = l) ∧ (rootID = r) ∧ (myID �= rootID)
q ≡ (ms recvInf distance = l − 1) ∧ (ms recvInf believedRoot = r)
Property : (�¬ p) ∨ (¬ p � q)

Figure 8: Property for Lemma 5

for the environment is written according to the theory explained in Section 4.2
and is similar to the code presented in [Hojjat et al. 2006] (not included in this
paper). By using the theorems developed for the module checking of Rebeca
[Sirjani et al. 2005b, Sirjani et al. 2004b] it can be concluded that the property
of Lemma 5 holds for the bridge in all environments.

The property formula for this lemma using the state variables and message
parameters of the Rebeca model (Figure 5) is shown in Figure 8. This property is
formed from two subformulas, p and q. The subformula p describes the condition
in which the bridge believes another bridge r is the root and its distance to r
is l. The other subformula q states that a message with the believed root r and
the believed distance l − 1 is received. The property ensures that p does not
hold before q. For this purpose, either p should not occur at all or it should not
occur until q becomes true (Weak Until). Only then the root ID will change to r
and the root distance will change to l. The variables that are prefixed with ms

are related to a message server parameter. According to the bridge functionality
(Figure 5), we expect that a bridge works independently from the both values
of l and r, so, we choose two arbitrary values for l and r. The model is model
checked successfully. �

Definition 6 Messages with Minimum rid. For a bridge x, the set of re-
ceived messages with minimum rid is a subset of the received messages which is
characterized as:
mmr(x) = {m ∈ x.H | ∀y ∈ x.H • x.rid ≤ y.rid}

Lemma7. Consider a bridge bk = 〈idk, ridk, dk, Hk, f lk〉. After receiving a mes-
sage m containing the minimum believed root ID (m ∈ mmr(bk)) and the min-
imum believed distance, bk will change its belief about the root according to m:
ridk = m.rid ∧ dk = m.brd+ 1.
∃m ∈ mmr(bk), ∀n ∈ mmr(bk)•m.brd ≤ n.brd⇒ ridk = m.rid∧dk = m.brd+1

Proof : Module checking.
The proof is done by module checking and is similar to Lemma 5. The property
of this part is shown in Figure 9. There is an assumption on the environment,

2095Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

Assumption ≡ ((ms recvInf believedRootID �= globalRootID) ∨
(s recvInf distance ≥ minDistance))

p ≡ (ms recvInf believedRootID = globalRootID) ∧
(ms recvInf distance = minDistance)

q ≡ (rootID = globalRootID) ∧ (rootDistance = minDistance + 1)
Property : � assumption → (� (p → (♦ q))

Figure 9: The model property for Lemma 7

which states that the environment does not send messages with believed distance
to the root smaller than the value minDistance. This requirement is included
in the property using the assumption subformula. �

In the next lemma we prove that a bridge never underestimates its distance
from the root, i.e., the believed distance to the root is never smaller than the
real distance.

Lemma8. Consider a bridge bk = 〈idk, ridk, dk, Hk, f lk〉 in an extended LAN
E = (VB , VL, lk, R,D) with well-formed Hello messages. If bk knows exactly
which bridge is the root, then its believed root distance should be greater than or
equal to its real distance.
ridk = R ⇒ (dk ≥ D(bk))

Proof : Induction on distance from root.
Base: For D(bk) = 0 the condition trivially holds as the consequence of the well-
formedness of the messages.
Induction Step: Assume that the condition holds for D(bi) = a, now consider
D(bj) = a+ 1.
By the induction assumption we assume that if a bridge bi with the real distance
a, believes R is the root (ridi = R), its believed root distance is not smaller than
its real distance (di ≥ a). In our induction step, we prove if a bridge bj with
the real distance a + 1 believes in the actual root (ridj = R), its believed root
distance is not smaller than the real distance (dj ≥ a+ 1). For this purpose, we
use proof by contradiction. We assume that bj believes in the actual root and its
believed root distance is smaller than the real distance (ridj = R ∧ dj < a+ 1).
Then using Lemma 5 we can conclude bj has a neighbor that believes in the
actual root with its believed root distance smaller than a. On the other hand we
know the real distance of a neighbor of bj cannot be smaller than a. So we have
found a bridge with greater real distance than a while it believes in the actual
root and its believed root distance is smaller than a. This clearly contradicts the

2096 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

induction assumption and we are done.

ridj = R ∧ dj < a+ 1 ⇒ (Lemma 5)

∃bx ∈ neigh(bj) • ridx = R ∧ dx < a⇒
∃bx ∈ VB •D(bx) > a ∧ ridx = R ∧ dx < a

�
In Lemma 9, we show that whenever a bridge bk blocks its port to a LAN,

there is another bridge bx that has an unblocked port to the same LAN. We also
prove that bx has a real distance not smaller than the believed distance of bk to
the actual root.

Lemma9. Consider a bridge bk = 〈idk, ridk, dk, Hk, f lk〉 in an extended LAN
E = (VB , VL, lk, R,D). Assume bk believes in the actual root. In this situation,
bk will not block its port to a LAN unless there is another bridge with a real
distance not greater than the believed root distance of bk having an unblocked
port to the shared LAN.
∀l ∈ VL ∧ ¬flk(l) • (ridk = R→ ∃bx ∈ neigh(bk) • (D(x) ≤ dk ∧ flx(l)))

Proof : Module checking and deduction.
In the first step of the proof we use model checking similar to what is done in
Lemma 5 and Lemma 7. In this step we prove that when a bridge bk blocks
its port to a LAN l, there exists another bridge bx on l whose port to l is
unblocked and its believed root distance is equal to or smaller than the believed
root distance of bk. The verified property is illustrated in Figure 10. In the next
step of the proof using Lemma 8 we conclude the real distance of bx is not greater
than the believed root distance of bk.

(Model Checking:)

∀l ∈ VL ∧ ¬flk(l) • (ridk = R →
∃m ∈ Hk •m.rid = ridk ∧m.brd ≤ dk) ⇒
∀l ∈ VL ∧ ¬flk(l) • (ridk = R →
∃bx ∈ neigh(bk) • ridx = ridk ∧ dx ≤ dk ∧ flx(l)) ⇒ (Lemma 8)

∀l ∈ VL ∧ ¬flk(l) • (ridk = R →
∃bx ∈ neigh(bk) •D(bx) ≤ dk ∧ flx(l))

�
Now we prove the correctness of the root election in Theorem 10. We show

that in the stable state every bridge believes in the actual root and the believed
root distance of each bridge is equal to its real distance.

Theorem 10. Consider an extended LAN E = (VB , VL, lk, R,D) with well-
formed Hello messages. In the stable state, each bridge bk = 〈idk, ridk, dk, Hk, f lk〉
has the correct belief about the root: ridk = R ∧ dk = D(bk)

2097Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

p ≡ (ms recvInf believedRoot = r) ∧(ms recvInf distance ≤ l) ∧
(ms recvInf sender = i)

q ≡ (rootID = r) ∧ (rootDistance = l) ∧(¬ IamDesignated[i])
Property : (�¬ q) ∨ (¬ q � p)

Figure 10: Property for Lemma 9

Proof : Induction on distance from root.
Base: For D(bk) = 0 the condition trivially holds, due to the assumption of
well-formedness.
Induction Step: Assume that the condition holds for D(bi) = a, now consider
D(bj) = a+ 1.
First we prove that bj will eventually receive a message m with rid = R and
brd = a.

D(bj) = a+ 1 ⇒
∃bx ∈ neigh(bj) •D(bx) = a⇒ (induction assumption)

∃bx ∈ neigh(bj) • (ridx = R ∧ dx = a) ⇒ (Lemma 9)

∃bx ∈ neigh(bj), ∀l ∈ VL • (flx(l)∨
∃by ∈ neigh(bx) • (fly(l) ∧D(by) = a)) ⇒
(∃m ∈ Hk •m.rid = R ∧m.brd = a) (1)

Where l is the LAN ID of the shared LAN between by and bj.

Next, we show that among the messages with the minimum rid received by
bj , mmr(bj), the message m reports the minimum distance to the actual root.

D(bj) = a+ 1 ⇒
∀bx ∈ neigh(bj) •D(bx) ≥ a⇒ (Lemma 8)

∀bx ∈ neigh(bj) • (bx.rid = R → bx.d ≥ a) ⇒
∀m ∈ mmr(bx) • (m.brd ≥ a) (2)

According to 1 and 2 and Lemma 7 we conclude the theorem. �

6.2 Unique Designated Bridge

Among the bridges that are connected to a LAN, one of them should be des-
ignated for that LAN. This bridge does not block its port to the LAN. The

2098 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

designated bridge should have the least root distance. If two or more bridges
have the same minimal root distance, the one with the smaller ID is the winner
and is selected as the designated bridge. In order to prove that STP selects a cor-
rect single designated bridge for a LAN, first we prove Lemma 11. In this lemma
we show that when a bridge bi is connected to a “better” bridge bj through a
LAN l, bi eventually disclaims to be designated for l. In the final step (corol-
lary 12) we use Lemma 11 to conclude that in any LAN in the network, each
bridge except the bridge that has the best shortest distance and the smallest ID
disclaims to be designated for the LAN.

Lemma11. Consider an extended LAN E = (VB , VL, lk, R,D), a LAN l ∈ VL,
two bridges bi = 〈idi, ridi, di, Hi, f li〉 and bj = 〈idj , ridj , dj , Hj , f lj〉 (bi, bj ∈
VB) such that lk(bi, l) = lk(bj, l) = true (Figure 11.a). Suppose that bi is “bet-
ter” than bj (D(bi) < D(bj), or D(bi) = D(bj) and idi < idj). Regardless of
messages sent by the environment to l, bi and bj, eventually bj believes that it
cannot be the designated bridge.

Proof : Module Checking.
We choose bridge bj as a component C, and the LAN l and other bridges in-
cluding bi that are connected to the bridge bj will be the environment of C,
EC (Figure 11.b). We consider two assumptions on the messages sent by the
environment. The first assumption is that the messages sent by EC do not cause
the bridge bj to believe that its distance to the actual root is smaller than the
real distance.
Assumption1:

∀m ∈ Hj • (m.rid = R → m.brd+ 1 ≥ D(bj))

As the second assumption, we require that in the stable state, there exists a
message m′ received by the bridge bj from the LAN l with a believed root ID
m′.rid equal to the actual root and the believed root distance m′.brd smaller
than the real distance of the bridge, or in the tie condition, with the sender ID
of the message smaller than bj .
Assumption2:

∃m′ ∈ Hj• m′.rid = R ∧ lk(m′.sid, l) ∧ (m′.brd < D(bj) ∨
(m′.brd = D(bj)) ∧m′.sid < idj))

The first assumption trivially follows from Theorem 8 and the fact that the
maximum difference between the real distances of neighbor bridges is one (the
neighbors distances from the root have to be equal or differs by 1). For the
second assumption, according to Theorem 10 in the stable state, for the bridge
bi we have ridi = R ∧ di = D(bi) and by using Lemma 9 we know either bi or

2099Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

Component C

C
B j

B i

l
B j

Figure 11: a) Closed system, bridge i is better than the bridge j b) Component
C and its environment Ec

a bridge better than bi is designated for the LAN l and its port to the LAN is
unblocked. Therefore we conclude that the bridge bj receives a message with the
properties mentioned in the second assumption.

If the stated assumptions hold for the EC messages, then C should guar-
antee that it eventually does not continue to be the designated bridge for l. In
other words, this is the guarantee specification:

flj(l) = false

The property that is needed to be checked for the system is illustrated in Fig-
ure 12. The assumptions on the environment are included in the property as
assumption1 and assumption2 subformulas, and the bridge component is com-
posed with an environment that generates arbitrary messages.
The Rebeca code is model checked and the property is proved to be true. �

Corollary 12. Using STP each LAN will have exactly one designated bridge,
which is the one with the shortest path to the root and the smallest ID.

Consider every pair of the bridges in a single LAN. Using Lemma 11, and also
the distinctness of the bridge IDs we can conclude that none of the bridges except
the best one will remain designated for the LAN. Also according to Lemma 9 a
bridge will remain designated for a LAN unless there is a better bridge connected
to that LAN, so the best bridge always remains designated for the LAN.

2100 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

assumption1 ≡ (ms recvInf believedRoot �= globalRootID ∨
ms recvInf distance + 1 ≥ dj)

assumption2 ≡ ms recvInf believedRoot = globalRootID ∧
ms recvInf sender = l ∧ (ms recvInf distance < dj ∨
(ms recvInf distance = dj ∧ ms recvInf senderID < idj))

Property : � assumption1 → �(assumption2 → (♦(�(¬ IamDesignated[l]))))

Figure 12: Property for designated bridge

l1 l2 ln

j

Figure 13: The predecessor LAN

6.3 Unique Predecessor LAN

The predecessor LAN of a bridge is the LAN that provides “better” information
for that bridge. Consider Figure 13. We prove that if one of the LANs is closer
to the root (so, provides some “better” messages) then finally it will be selected
as the predecessor LAN of the bridge.

The proof structure is the same as for Lemma 11. We consider a bridge
and two connected LANs one of which is better than the other. Using modular
verification we prove that eventually the bridge believes that the worse LAN
cannot be its predecessor. With a discussion similar to Corollary 12 we can
prove that the selection of the predecessor LAN is correct. The Rebeca code for
this requirement is also model checked.

We showed that a root is elected correctly by Theorem 10, that each LAN
has a unique designated bridge by Corollary 12, and that each bridge has a
unique predecessor LAN.

7 Conclusion

Having analyzed the unique ancestor selection of the STP protocol in a previous
paper [Hojjat et al. 2006] we completed our work by proving all features of a
tree: there is a single root and each node has one ancestor. The proof is based
on induction on the real distance of a bridge to the actual root. For proving
that a bridge has the desired behavior in an arbitrary environment, we apply the

2101Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

module checking framework of Rebeca. The nature of the language, its simplicity
in modeling, the supporting tools, and the provided verification theories make
Rebeca a good means for model checking network protocols.

Acknowledgement

This study was supported by the University of Tehran under the research number
8101915/1/02.

References

[Agha 1986] Agha, G.: “Actors: a model of concurrent computation in distributed sys-
tems”; MIT Press, 1986.

[Bhargavan et al. 2000] Bhargavan, K., Gunter, C.A., Obradovic, D.: “Fault origin ad-
judication”, Proceedings of the third workshop on Formal methods in software prac-
tice (FMSP’00), 2000, 61–71.

[Bhargavan et al. 2002] Bhargavan, K., Gunter, C.A., Obradovic, D.: “Formal verifi-
cation of standards for distance vector routing protocols”; Journal of the ACM 49,
4 (2002), 538-576.

[Bolognesi et al. 1987] Bolognesi, T., Brinksma, E.:“Introduction to the ISO specifi-
cation language LOTOS”; Computer Networks and ISDN Systems 14, 1 (1987),
25-59.

[Cisco 1997] Cisco Systems Inc.: “Understanding Spanning-Tree Protocol”; http://
www.cisco.com/

[Clarke et al. 1986] Clarke, E.M., Emerson, E.A., Sistla, A.P.: “Automatic verification
of finite-state concurrent systems using temporal logic specifications”, ACM Trans-
actions on Programming Languages and Systems (TOPLAS)8, 2(1986), 244-263.

[Clarke et al. 1999] Clarke, E.M., Grumberg, O., Peled, D.A.: “Model checking”; MIT
Press, 1999.

[Fanjul et al. 1998] Fanjul, J.G., Tuya, J., Corrales, J.A.: “Formal Verification and
Simulation of the NetBill Protocol Using SPIN”, Proceedings of the 4th Interna-
tional Workshop on Automata Theoretic Verification with the SPIN Model Checker
(SPIN’98), 1998, 195-210.

[Fernandez et al. 1996] Fernandez, J.C., Garavel, H., Kerbrat, A., Mounier, L., Ma-
teescu, R., Sighireanu, M.: “CADP - A Protocol Validation and Verification Tool-
box”; Proceedings of the 8th International Conference on Computer Aided Verifi-
cation (CAV ’96), 1996, 437-440.

[Gallier 1985] Gallier, J.H.:“Logic for computer science: foundations of automatic the-
orem proving”; Harper & Row Publishers, 1985.

[Gordon et al. 1993] Gordon, M.J.C., Melham, T.F.:“Introduction to HOL: a theorem
proving environment for higher order logic”; Cambridge University Press, 1993.

[Harel et al. 1985] Harel, D., Pnueli, A.:“On the development of reactive systems”;
Logics and models of concurrent systems, 1985, 477-498.

[He et al. 2004] He, Y., Janicki, R.: “Verifying protocols by model checking: a case
study of the wireless application protocol and the model checker SPIN”; Proceedings
of the conference of the Centre for Advanced Studies on Collaborative research
(CASCON’04), 2004, 174-188.

[Hewitt et al. 1973] Hewitt, C., Bishop, P., Steiger, R.: “A universal modular actor for-
malism for artificial intelligence”; Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI’73), 1973, 235-245.

2102 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

[Hojjat et al. 2006] Hojjat, H., Nakhost, H., Sirjani, M.:“Formal Verification of the
IEEE 802.1D Spanning Tree Protocol Using Extended Rebeca”; Proceedings of
the First IPM International Workshop on Foundations of Software Engineering
(FSEN’05), 2005, 139-154.

[Holzmann 1991] Holzmann, G. J.:“Design and Validation of Computer Protocols”;
Prentice-Hall , 1991.

[Holzmann 1997] Holzmann, G. J.:“The Model Checker SPIN”; IEEE Transaction on
Software Engineering 23, 5 (1997), 279-295.

[IEEE 2004] IEEE Standard for Local and metropolitan area networks: Media Access
Control (MAC) Bridges, IEEE Std 802.1D-2004 (Revision of IEEE Std 802.1D-
1998), IEEE Computer Society, 2004.

[Jaghoori et al. 2005] Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Movaghar, A.: “Ef-
ficient Symmetry Reduction for an Actor-Based Model”; Proceedings of the 2nd
International Conference on Distributed Computing and Internet Technology (ICD-
CIT’05), 2005, 494-507.

[Jaghoori et al. 2006] Jaghoori, M.M., Movaghar, A., Sirjani, M.: “Modere: the model-
checking engine of Rebeca”; Proceedings of the ACM symposium on Applied com-
puting (SAC’06), 2006, 1810-1815.

[Kupferman et al. 1996] Kupferman, O., Vardi, M.Y., Wolper, P.: “Module Checking”;
Proceedings of the 8th International Conference on Computer Aided Verification
(CAV ’96), 1996, 75-86.

[Kupferman et al. 1997] Kupferman, O., Vardi, M.Y.: “Module Checking Revisited”,
Proceedings of the 9th International Conference on Computer Aided Verification
(CAV’97), 1997, 36-47.

[Kupferman et al. 1999] Kupferman, O., Vardi, M.Y.: “Robust Satisfaction”; Proceed-
ings of the 10th International Conference on Concurrency Theory (CONCUR’99),
1999, 383-398.

[Kupferman et al. 2001] Kupferman, O., Vardi, M.Y., Wolper, P.: “Module Checking”;
Information and Computation 164, 2(2001), 322-344.

[Lai et al. 2007] Lai, R., Tsang, T.:“Timed verification of the reliable adaptive multi-
cast protocol”; Journal of Systems and Software 80, 2(2007), 224-239.

[Leen et al. 2006] Leen, G., Heffernan, D.: “Modeling and Verification of a Time-
triggered Networking Protocol”; Proceedings of the International Conference on
Systems and International Conference on Mobile Communications and Learning
Technologies (ICN/ICONS/MCL’06), 2006, 178.

[Manna et al. 1983] Manna, Z., Pnueli, A.: “How to cook a temporal proof system for
your pet language”; Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL’83), 1983, 141-154.

[Manna et al. 1992] Manna, Z., Pnueli, A.: “The temporal logic of reactive and con-
current systems”; Springer-Verlag New York, 1992.

[Manna et al. 1995] Manna, Z., Pnueli, A.: “Temporal verification of reactive systems:
safety”; Springer-Verlag New York, 1995.

[McMillan 1993] McMillan, K.: “Symbolic Model Checking”; Kluwer Academic Pub-
lishers, 1993.

[Mongiello 2006] Mongiello, M.: “Finite-state verification of the ebXML protocol”;
Electronic Commerce Research and Applications 5, 2 (2006) 147-169.

[Perkins et al. 2003] Perkins, C., Belding-Royer, E., Das, S.; “Ad hoc On-Demand
Distance Vector (AODV) Routing”, RFC 3561, Internet Engineering Task Force
(IETF), 2003.

[Perlman 1985] Perlman, R.: “An algorithm for distributed computation of a spanning
tree in an extended LAN”; Proceedings of the ninth symposium on Data communi-
cations (SIGCOMM ’85), 1985, 44-53.

[Rebeca Homepage] http://khorshid.ece.ut.ac.ir/~rebeca/
[de Roever et al. 2001] de Roever, W.-P., de Boer, F., Hannemann, U., Hooman, J.,

Lakhnech, Y., Poel, M., Zwiers, J.: “Concurrency Verification: Introduction to Com-

2103Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

positional and Noncompositional Methods”, Cambridge Tracts in Theoretical Com-
puter Science 54, Cambridge University Press, 2001.

[Rusu 2003] Rusu, V.: “Compositional Verification of an ATM Protocol”; Proceedings
of the 12th International Symposium of Formal Methods Europe (FME’03), 2003,
223-243.

[Shankar 1996] Shankar, N.: “PVS: Combining Specification, Proof Checking, and
Model Checking”; Proceedings of the First International Conference on Formal
Methods in Computer-Aided Design (FMCAD’96), 1996, 257-264.

[Shahriari et al. 2006] Shahriari, H.R., Makarem, M.S., Sirjani, M., Jalili, R.,
Movaghar, A.: “Modeling and Verification of Complex Network Attacks Using an
Actor-Based Language”; Proceedings of 11th Annual International CSI Computer
Conference (CSICC’06), 2006, 152-158.

[Sirjani et al. 2004a] Sirjani, M., Razi, S.H., Movaghar, A., Jaghoori, M.M., Forgha-
nizadeh, S., Mojdeh, M.: “Model Checking CSMA/CD Protocol Using an Actor-
Based Language”; WSEAS Transactions on Circuit and Systems 4, 6(2004), 1052-
1057.

[Sirjani et al. 2004b] Sirjani, M., Movaghar, A., Shali, A., de Boer F.S.: “Modeling
and Verification of Reactive Systems using Rebeca”; Fundamenta Informaticae 63,
4 (2004) 385 - 410.

[Sirjani 2004c] Sirjani, M.: “Formal Specification and Verification of Concurrent and
Reactive Systems”; PHD Thesis, Sharif University of Technology, 2004.

[Sirjani et al. 2005a] Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: “Model Check-
ing, Automated Abstraction, and Compositional Verification of Rebeca Models”;
Journal of Universal Computer Science 11, 6(2005), 1054-1082.

[Sirjani et al. 2005b] Sirjani, M., de Boer, F.S., Movaghar, A.: “Modular Verification
of a Component-Based Actor Language”, Journal of Universal Computer Science
11, 10(2005), 1695-1717.

[Talukder et al. 2006] Talukder, K.H., Harada, K.: “Modeling and verification of some
communication protocols”; Proceedings of the 8th International Conference on Ad-
vanced Communication Technology (ICACT 2006), 2006, 6.

[Tanenbaum 2003] Tanenbaum, A. S.: “Computer Networks”; Fourth Edition, Prentice
Hall, 2003.

[Tronel 2003] Tronel, F., Lang, F., Garavel, H.: “Compositional Verification Using
CADP of the ScalAgent Deployment Protocol for Software Components”; 6th IFIP
WG 6.1 International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS 2003), 2003, 244-260.

[Varela 2001] Varela, C., Agha, G.: “Programming dynamically reconfigurable open
systems with SALSA”; ACM SIGPLAN Notices 36, 12(2001), 20-34.

2104 Hojjat H., Nakhost H., Sirjani M.: Integrating Module Checking ...

