
The Trade-Offs of Blending Synchronous and 
Asynchronous Communication Services to Support 

Contextual Collaboration  
 
 

Werner Geyer 
(IBM T.J. Watson Research, USA 

werner.geyer@us.ibm.com) 
 

Roberto S. Silva Filho 
(University of California Irvine, USA 

rsilvafi@ics.uci.edu) 
 

Beth Brownholtz 
(IBM T.J. Watson Research, USA 
beth_brownholtz@us.ibm.com) 

 
David F. Redmiles 

(University of California Irvine, USA 
redmiles@ics.uci.edu) 

 
 
 

Abstract: Contextual collaboration seamlessly integrates existing groupware technologies into 
a uniform user experience that combines synchronous and asynchronous interactions. This user 
experience is usually supported by a collaboration infrastructure that needs to efficiently cope 
with the fast switching and integration of different modes of interaction. In this paper, we study 
a model for contextual collaboration that supports multiple modalities of collaboration. Our 
model is based on generic shared objects that provide building blocks for supporting contextual 
collaboration applications. We describe a native implementation of this model and evaluate its 
behavior under different media traffic conditions. We compare the native implementation with 
an alternative implementation that integrates existing notification and meeting servers to deliver 
the same model behavior. We discuss trade-offs and limitations of those two implementations. 

Keywords: Synchronous collaboration, asynchronous collaboration, CSCW, groupware, 
simulation, architecture, notification 
Categories: I.6.0, H.3.4, H.4.3, H.5.3 

1 Introduction 

Contextual collaboration promises new levels of productivity by seamlessly 
integrating content sharing, communication channels, and collaboration tools into a 
unified user experience. One form of contextual collaboration embeds collaborative 
features, such as presence awareness, instant messaging, real-time conferencing, file 
exchange, and virtual workspaces into other business applications (see [Mahowald, 
06], [SearchDomino.com, 06]). For example, through the integration of 
communication channels and office tools, users can easily switch between individual 
and collaborative work. Through a single click of a button, they can start a chat from 

Journal of Universal Computer Science, vol. 14, no. 1 (2008), 4-26
submitted: 6/11/06, accepted: 27/7/07, appeared: 1/1/08 © J.UCS



within their document editors, share a document on their desktops by dragging it on 
their buddy lists, or start a remote presentation by right-clicking on a presentation file 
on their desktop. Contextual collaboration lowers the end user’s barrier to engage in 
collaboration by transparently integrating existing groupware technologies. By doing 
so, it reduces the end users’ cognitive cost of switching between collaboration tools 
and applications, providing contextual points of access to a set of inter-related 
applications and the artefacts they produce. A highly contextualized user experience 
entails frequent changes in work mode and modalities. From an infrastructural 
perspective, this requires the use of different services, for example, meeting servers to 
support synchronous collaboration, notification servers to support timely delivery of 
messages, or document repositories to allow sharing of content.  

While many commercial products today provide those kinds of backend services, 
integrating these services is challenging because they have been designed to support a 
single modality only. Developers of contextual collaboration applications face the 
decision whether or not to reuse and integrate existing single modality backend 
systems or to develop a new infrastructure from the scratch. There are many trade-
offs that need to be considered. For example, reusing existing systems can lower the 
development costs but might lead to increased integration complexity and low 
robustness. Integrating existing systems might increase scalability because of the 
ability of a distributed deployment but might lead to low overall responsiveness of the 
system. In this paper, we focus mainly on performance trade-offs in a client-server 
architecture and on integration complexity. 

We introduce a model for contextual collaboration that supports multiple 
modalities of media collaboration. Designing multiple modalities into a single 
collaboration model addresses the integration complexity for an application developer 
and also allows us to compare different implementations in order to better understand 
the integration trade-offs. Our model is based on generic shared objects that provide 
building blocks for supporting contextual collaboration applications. We present a 
native implementation of this interaction model and study its behavior under different 
interaction patterns, representing different kinds of media collaborations. We compare 
our native service implementation with an alternative integrated implementation 
where existing services such as meeting and notification servers are used. Our goal is 
to characterize and understand the trade-offs and limitations that exist in different 
implementations of services supporting contextual collaboration with respect to the 
responsiveness of the infrastructure and its ability to support the traffic requirements 
of different collaboration tools. 

This work was motivated by previous research on Activity Explorer (AE) (e.g. 
[Geyer, 06] or [Geyer, 03]). AE provides a highly contextualized user experience 
integrating synchronous and asynchronous types of collaboration. AE is built on top 
of our collaboration model using generic shared objects (GSO). Previous works, 
however, did not analyze the limitations of the model in terms of scalability, support 
for different media interaction, and the trade-offs involved in building such an 
infrastructure using existing technologies. Hence, with this work, we expect to 
understand the applicability of the model to different traffic conditions, and to assess 
the use of existing services in supporting this blended collaborative model. The 
lessons learned can be applied to the development or improvement of contextual 
collaboration infrastructures.  

5Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



The remainder of this paper is structured as follows: Section 2 of this paper 
discusses related work. In Section 3 we describe the contextual user experience in AE 
in more detail. Section 4 introduces the contextual collaboration model used as the 
basis for our study. Section 5 describes the two implementations of this model. In 
Section 6 we describe our simulation environment, the experiments performed, and 
the experimental results comparing both implementations. Section 7 discusses general 
trade-offs and lessons learned.  

2 Related Work 

The GSO model described in this paper supports contextual collaboration by blending 
synchronous and asynchronous interaction modes in a single service that supports 
different media interaction modalities. As such, it shares characteristics present in 
existing collaboration infrastructures.  

Notification servers, as defined by Patterson et al. [Patterson, 96], provide a 
simple common service for sharing state in synchronous multi-user applications. They 
address the problem of maintaining consistency in real-time applications and 
supporting awareness. Compared to our shared objects model, state is usually not 
persistent, and the support for application-specific synchronous interaction modes is 
not provided.  

Similar to persistent notification servers, publish/subscribe systems offer general 
purpose event notification functionality based on the observer design pattern 
[Gamma, 95]. Notification servers such as Elvin [Fitzpatrick, 99] or YANCEES 
[Silva, 05b] are usually employed as event routing infrastructure to support the 
development of awareness applications. Elvin provides a relatively simple but 
optimized set of functionalities, efficiently processing large quantities of events based 
on content-based routing of tuple-based events. In such systems, however, event 
persistency is usually not supported, and notification delays are common. Moreover, 
those systems are not usually designed to support synchronous real-time interaction.  

The insufficiency of the publish/subscribe model in supporting different 
groupware applications is also discussed in [Souza, 02] and [Kantor, 01], where new 
services around this model are proposed to address some of the deficiencies such as 
the lack of flexibility in the notification model, or the support for end-user 
subscriptions. 

Tuple Spaces, proposed by Gelernter as part of the Linda coordination language 
[Gelernter, 85] are currently implemented in IBM’s TSpaces system [Wyckoff, 98] 
and SUN’s JavaSpaces [Freeman, 99]. They provide a persistent shared memory 
accessed through an API that allows distributed processes to read, write, and remove 
information represented as tuples. Compared to our shared objects, Tuple Spaces are 
rather a generic programming paradigm that helps developers with concurrency 
control and other issues, while in our approach we focus on offering a shared object 
service that can be used to build collaborative applications. As an application-specific 
implementation, our approach provides a more convenient model natively supporting 
membership, notifications, hierarchical data structures, and application-specific 
synchronous communication. While the construction of a GSO model on top of tuple 
spaces would be feasible, the need for the management of membership, the 

6 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



hierarchical composition of objects and the support for application-specific interaction 
modes would require deeper changes in the tuple-space model. 

As we moved our Activity Explorer research to a commercialized product [Geyer, 
06], we needed to understand the implications of using different backend technologies 
in terms of scalability and performance. While much research has been done on 
specialized collaboration services, such as notification or meeting servers, the 
technical aspects of blending different services to provide contextual collaboration 
experiences have not been addressed thoroughly. Preguiça et al. [Preguiça, 05] 
provide a very good description of the general problem space but focus mainly on 
consistency control issues. Along the same lines, Geyer at al. [Geyer, 03] also focus 
on consistency control aspects. Munkvold and Zigurs [Munkvold, 05] describe 
challenges and opportunities of integrating support for multiple modalities in 
collaborative applications. Since Activity Explorer provides a highly contextualized 
user experience integrating synchronous and asynchronous types of collaboration, we 
decided to use it as the framework for our research. 

3 Activity Explorer 

Activity Explorer (AE) is a contextual collaboration application based on the 
paradigm of activity-centric collaboration [Geyer, 06]. AE runs as a stand-alone 
desktop application that connects to a contextual collaboration server implementing 
our collaboration model. In AE an activity is a set of related, shared objects 
representing a task or project. The set of related objects is structured as a hierarchical 
thread called activity thread, representing the context of the task at hand. Users start 
new activity threads by creating root objects from any type of content or 
communication. Users add items to an activity thread by posting either a response or a 
resource addition to its parent object. Activity threads combine different types of 
objects, membership, and alerts. The context (membership and content of the activity 
thread) is made persistent thought the use of shared objects. AE supports sharing of 
six types of objects: message, chat transcript, file, folder, annotated screen snapshot, 
and to-do item. 

Figure 1 shows the main AE user interface. The Activity List tab (A) is a multi 
column “inbox-like” activity list that supports sorting and filtering of activities and 
shared objects. New activities always bubble up on top of this list per default. The 
Activity Tree view (B) shows an overall tree structure of all your activities and can be 
used in a “Windows Explorer” like fashion. Selecting a shared object in the list or tree 
view populates a read-only info pane (C). The Activity Thread pane (D), maps a 
shared object as a node in a tree representing an entire activity thread. Activity Thread 
and Activity List are synchronized by object selection. Users interact with objects or 
members, as displayed in these views, through right-click context menus. 
Representative icons are highlighted in green or surrounded by green boxes to cue 
users of shared object access and member presence (e.g. (3), (4), (6) and (9) in Figure 
1). 

7Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



Figure 1: Activity Explorer User Interface 

The following scenario illustrates the contextual user experience in which shared 
objects are used as building blocks for an activity that starts from a document. This 
scenario highlights only core features; for a more complete description of Activity 
Explorer’s capabilities see [O’Neil, 05]. Figure 1 is a snapshot of an activity in 
progress, shown from the perspective of one of the actors (Celine). The activity thread 
is built dynamically as the actors collaborate. 

Celine is a designer and she works with Susan on a print promotion flyer for 
Delta Pacific bank. Ming is their project manager. The first review meeting with 
Delta Pacific is approaching. Celine has crafted a draft of the flyer and would like 
Susan’s feedback. Celine glances at her Instant Contacts for Susan’s name, and sees 
that Susan is currently offline. From her desktop, Celine drags the draft image file on 
to Susan’s name, starting a new activity thread named “Delta Pacific Promotion” 
(1). The file is now shared and shows up as a new activity in Celine’s activity list (2). 
She right clicks on the file object to add a message asking Susan for her comments 
(3). 

A few hours later, Susan returns to her desktop. In the system tray, Susan is 
alerted to the new activity by an alert message (whenever an object is changed – 
including the addition of a child object – all people who have access privileges on 
that object receive an alert message about the change). Clicking on the alert, she is 
taken to the activity thread. She opens the message and while she is reading it, Celine 

8 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



notices Susan is looking at the message because the shared object is lit green (3).1 
Celine seizes the opportunity to expedite their progress; she right clicks on the initial 
message and adds a chat to this activity (4). A chat window pops up on Susan’s 
desktop and they chat (5). Celine refers to a detail in the image file; for clarity she 
wants to show Susan what she would like changed. By right clicking on the chat 
object, Celine creates a shared snapshot object (6). A transparent window allows 
Celine to select and “screen scrape” any region on her desktop. She freezes the 
transparent window over the draft image. The snapshot pops up on Susan’s desktop. 
Celine and Susan discuss a few changes by annotating the image in real-time like a 
shared whiteboard (7).  

Aware of the upcoming deadline, Celine wants Ming informed about the status. 
Within the chat, she selects ‘Invite’ to add Ming as a member (8). On his client, Ming 
receives a pop-up invitation to join the chat and he accepts. Note that Ming is now a 
member of the chat and the shared snapshot only and not of the other objects in the 
activity (9). Ming approves the changes and Celine begins to work on the changes. 

This scenario demonstrates how Activity Explorer helps people move seamlessly 
and effortlessly back and forth from private to public information and from 
asynchronous to synchronous real-time collaboration, without manually creating a 
shared workspace or setting up a meeting. Collaboration starts off with a single shared 
object and evolves into a multi-object activity, which is structured by a dynamic 
group of participants as they create and add new shared objects. An activity thread 
provides a persistent activity context aggregating a mix of different object types. 
Alerts provide up-to-the-minute awareness of person-relevant changes, even if 
Activity Explorer is not the top-most application on the user’s computer. 

4 Contextual Collaboration Model 

The contextual collaboration model behind AE is based on the concept of Generic 
Shared Objects (GSO) [Geyer, 03]. GSOs are persistent collaboration objects, in 
programming language terms, that can be used as building blocks for new 
collaborative applications that require a seamless, contextual user experience with 
blended synchronous and asynchronous collaboration. This generic model provides 
both simplicity and uniformity, allowing the extension of the service to new media 
types, and the uniform composition of artifacts into hierarchies such as activity 
threads. GSOs combine various collaborative functions such as group communication, 
content management, notifications, and membership-based access control policies 
into objects that can be hierarchically composed. 

In this paper, we assume a client/server architecture in which many clients 
interact with each other through a collaboration server (or service) implementing the 
concept of GSOs. This architectural style was selected for being currently supported 
in the AE prototype, as well as in existing technologies such as notification servers 
and meeting servers used in our experiments. Note that the GSO model can be also 
implemented in different architectural styles (e.g. see [Geyer, 03]).  

                                                           
1 A fully accessible version of this concept would include a text alternative to the 
green highlighting. 

9Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



The GSO communication protocol is based on three basic primitives: Request, 
Response, and Notification: A client interacts with a GSO by issuing a Request to that 
object (for example, reading an attribute, adding a new member, reorganizing the 
object hierarchy and so on). The object then replies with a Response to the requesting 
client. Depending on the type of request, the object can also send out Notifications to 
currently online clients as illustrated in Figure 2 (b). 

 

Figure 2: Generic Shared Object behaviour 

Our contextual collaboration service manages a collection of GSOs and their 
relationships, i.e. by containment and/or reference. This facilitates the aggregation of 
GSOs into hierarchical structures, thus modelling complex collaborations such as the 
previously mentioned activity threads in AE (see Figure 1 D). 

Each GSO provides a simple content model based on a set of properties. The 
content model describes what kind of data an object shares and stores, for example, 
chat transcripts, e-mails, file contents, streaming media and so on; e.g. each Shared 
Object in AE is represented by a GSO. Jazz [Cheng, 03] and C&BSeen [Moody, 06] 
are other examples of applications that use GSOs in a less direct way. Note that a 
GSO does not provide any means for semantically describing the content. Content is 
associated with a GSO by adding arbitrary numbers of <name, value> pairs. The 
interpretation and use of the <name, value> pairs is left to client applications, which 
provides flexibility to the model. The value field can be of various types, e.g. String, 
Integer, Double, Boolean. For example, the persistent chat object in AE, stores each 
chat message as a String property.  

Every GSO represents a “persistent conferencing session” between its members. 
The distribution of content (synchronous or asynchronous) is performed through the 
use of notifications. Any modification to the set of properties of a GSO is not only 
stored in the underlying data store, but also automatically sent as notifications to all 
the other members of that GSO. Hence, our model provides a different paradigm for 
real-time collaboration based on persistent state and state change notifications. In AE 
for example, for each new chat message (stored as a new property), the system sends 
out a notification informing clients about the new property. 

GSO

persistent:
- structure
- content properties

Client A

(5) setProperty()

(7) content change
notification +
content data

(6) content change
notification

Client B

Client C

Members:
A, B, C

A
P
I

A
P
I

A
P
I

GSO

GSO

GSO

GSO

GSO

GSO

persistent:
- structure
- content properties

Client A

(5) setProperty()

(7) content change
notification +
content data

(6) content change
notification

Client B

Client C

Members:
A, B, C

A
P
I

A
P
I

A
P
I

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

(b) Content Semantics (a) Open Semantics 

GSO

Client A
(1) openSO()

Client B

Client C

(3) openSO()

Members:
A, B, C

A
P
I

A
P
I

A
P
I

(4) openSONotify()

(2) openSONotify()

(4) openSONotify()

(2) openSONotify()

persistent:
- structure
- content properties

GSO

GSO

GSO

GSO

GSO

GSO

Client A
(1) openSO()

Client B

Client C

(3) openSO()

Members:
A, B, C

A
P
I

A
P
I

A
P
I

(4) openSONotify()

(2) openSONotify()

(4) openSONotify()

(2) openSONotify()

persistent:
- structure
- content properties

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

10 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



Each GSO also manages a list of members (e.g. A, B, and C in Fig. 2). The GSO 
member list controls the access to its content and represents a distribution list for 
sending notifications about the creation and modifications of a GSO. The member list 
is dynamic, allowing the addition and removal of existing members at runtime. Since 
the member list is also a property of the GSO, any modification to this list, triggers 
notifications that are sent to all online GSO members. 

Notifications of content change come in two different modalities controlled by 
the use of open and close requests. Change notifications (without the actual content) 
are sent to all online members of the object whose open status for that object is false. 
Notifications with the actual content are sent to all online members whose open status 
for that object is true. Setting open to true basically subscribes a member to receive 
the content together with the content change notification. This semantic is important 
to prevent members that are not interested in certain objects from receiving 
unnecessary information each time a change is made to an object. In the AE user 
interface, the open status is hinted by a green icon if at least one member of the object 
sets the status to true. 

Since all GSO content changes persist, GSO properties are still available when 
clients disconnect and later reconnect to the service. This allows members of an 
object to interact asynchronously. In summary, the described behavior of GSOs 
inherently merges real-time conferencing with content management and asynchronous 
collaboration modes. 

5 Implementation 

In order to study and better understand the implications and trade-offs of combining 
various interaction modes of collaboration in a common model, we have built two 
implementations: (1) a server that implements the GSO collaboration model natively; 
and (2) a server that uses existing collaboration technologies to deliver the same 
functionality offered by our model. 

5.1 Native Implementation 

In our native implementation, the GSO concept is directly mapped to persistent 
objects (using the OO programming paradigm). The implementation of the GSO 
manages every aspect of the model, i.e. content management, membership, access 
control, notifications, data transfer and persistency. The GSO service manages a 
collection of GSOs and their aggregation into hierarchical structures (trees). Clients 
access the GSO service through a client side API (see Figure 2). 

In the example of Figure 2 (a), clients A, B, and C are all members of a GSO 
object. Client A and B open the object for real-time interaction by submitting an 
openSO() requests to the server (1, 3). The server GSO then sends open notifications 
to all its members, by iterating over the member list and invoking the registered 
callback interface methods (2, 4). The open state of the GSO is now changed to true 
for clients A and B. Sending notifications to every member of the GSO keeps all 
connected clients in a consistent state (i.e. with the latest view of the GSOs they are 
members of). Client C, for example, knows that A and B are currently working on the 
GSO content. Based on this information, client C can decide to open the GSO object 

11Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



and start receiving the actual new content as it gets changed. In Figure 2 (b), client A 
changes the content of the GSO by submitting a setProperty() request (5); client B 
receives a content change notification including the content data (7). Client C is 
online but receives only a content change notification without the data because its 
open state is false (6). However, knowing that the content has changed, Client C could 
now read the updated content of the object by submitting a getContent() request to the 
server. 

The native server is implemented in Java and communicates via Remote Method 
Invocation (RMI) with its clients. Notifications are sent to clients through RMI also. 
Upon logon, each client registers an RMI callback interface with the server. Since we 
assume storage to be a constant throughout this paper, we did not implement a 
particular storage mechanism in our prototypes. 

5.2 Integrated Implementation 

In our alternative integrated implementation, the initial native implementation was 
modified to perform synchronous interaction through meeting servers and to deliver 
events using a notification service. The integration of the two new backend 
technologies was completely transparent to the end users. Clients interact through the 
same GSO service API (see Figure 3). In the backend, however, the implementation 
complexity increased significantly. 

For example, in order to integrate the meeting server with our model, we 
introduced the concept of a server-side client (SSC) that acts as a connector between 
the synchronous meeting and the persistent aspects of the model. A SSC is a special 
client in a meeting session. A meeting is a session created between two or more 
participants/clients that provides a non-persistent shared space where messages are 
sent to all the meeting members. The SSC is responsible for storing session data in a 
persistent repository by updating the respective GSO when content is changed. For 
example, when a chat message is posted to a meeting session, the SSC for that session 
stores the message in the GSO, which itself triggers a notification. This approach 
provides a generic mechanism that can be used to transparently integrate any meeting 
server.  

Note that using meeting servers to support real-time collaboration entails setting 
up a meeting session with the meeting server every time a client opens a shared object 
for real-time interaction (see Figure 2 (a)). Likewise the meeting session needs to be 
disposed every time the client closes the GSO. For each session, a SSC also needs to 
be created in the beginning and disposed in the end. 

We integrated a notification server into the service to support asynchronous 
change notifications. Whenever a GSO’s property or content is changed, a single 
notification is produced. Differently from the previous native implementation, that 
produced one notification per GSO member, a single message is now relayed to a 
notification server that is responsible for distributing the notification to all the 
members of the object. The subscription style is topic-based: each client 
subscribes/un-subscribes to a global GSO notification topic when logging on and off 
the service. In this approach, the notification server acts as a broadcast channel; a bus 
connecting all online clients. Notifications are subsequently filtered in the client side 
API, i.e. the client API ignores notifications that are not addressed to that particular 
client. 

12 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



Figure 3 illustrates the integration complexity. When client A first opens the GSO 
(1), a new meeting session (2) together with a hidden SSC (3) are created. The GSO 
object is also open (4). Consequently, an open notification is sent to all the members 
of the object (5, 6, 7) through the notification server. The SSC joins the meeting (8) 
and listens to messages on that channel. The openSO() call returns the meeting id to 
client A. Upon receiving the meeting id, client A also joins the meeting and is ready 
to transmit data. Client B decides to open the GSO as well and submits an openSO() 
request to the GSO server (10) (for simplicity notifications are omitted in the picture). 

The open call is propagated to the GSO object (11), which returns the existing 
meeting id. Client B also automatically joins the meeting (12). As content messages 
are exchanged between members A and B and the SSC (14, 15, 16), the SSC makes 
the content persistent by invoking setContent() on the GSO (17). The GSO then 
contacts the notification server to deliver content change notifications (without 
content) to the other members of the object who are not in the open state (18, 19). 

The integrated solution was also completely implemented in Java. We used 
YANCEES [Silva, 05b] as the notification server because of its ability to be 
configured with a simple topic-based core, and for having a simple API, similar to 
Elvin [Fitzpatrick, 99]. Additionally, in our preliminary tests with both servers, 
YANCEES has shown to outperform Elvin in its throughput and ability to handle a 
large number of subscriptions. Since we were running our experiments in a dedicated 
LAN, we decided to run the notification server with client-side filtering of events. 
This approach simplified subscription management and resulted in better performance 
than server-side event filtering (discussed in Section 6.3). We used a simple Java-
based meeting server from the TeamSpace project [Geyer, 01]. We sought to keep the 
two implementations as similar as possible in order to get meaningful results for a 
comparison, e.g. both implementations share the same common GSO model and 
externalize the same GSO API. However, given the number of different existing 
publish/subscribe and real-time collaboration systems, our simulation results may 
vary depending on the backend technologies used. 

13Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



Figure 3: Integrated implementation of the GSO model 

I – Client A opens an object, resulting in the creation of a meeting session and a 
server-side client. Open notifications are sent. 

GSO

persistent:
- content
- properties

Client A

Client B

Client C
Members:

A, B, C

Meeting server

(1) openSO
A
P
I

(2) new

Meeting session

Notification server

(4) openSO

(3) new SSC

A
P
I

A
P
I

(5) openNotifica
tion

(6) openNotification

(7) openNotification

 
II – Client B also opens the object, becoming member of the “meeting”, and the 
SSC updates the model 

GSO

persistent:
- content
- properties

Client A

Client B

Client C
Members:

A, B, C

Meeting server

A
P
I

(9) join
Meeting session

Notification server

(8) join

SSC

(12) join
A
P
I

A
P
I

(10) openSO

(11) openSO

 
III – Client A changes the GSO content; and client B gets the new content 
through the meeting. The SSC updates the data model and notifications are sent 
to the clients 

GSO

persistent:
- content
- properties

(14) Data
message

Client C
Members:

A, B, C

Meeting session

Meeting server

SSC

Client A

(13)
setContent

A
P
I

(17) 
setContent

A
P
I

A
P
I

Notification server

(15)

(16)

(18) content 
change notification

(19) change
notification

Client B

 

14 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



6 Experimental Results 

The model described in Section 4 unifies characteristics of publish/subscribe systems, 
synchronous collaboration servers, and content management in a uniform and flexible 
way. As such, it facilitates the development of collaborative applications that have 
contextual collaboration characteristics. This blending of synchronous and 
asynchronous collaboration, however, requires the compromising of different 
requirements from these two interaction modalities. For example, traditional 
synchronous communication infrastructures, such as meeting servers, are usually 
designed to support the collaboration of small groups, under more strict timing and 
bandwidth conditions such as audio or video. Notification servers, on the other hand, 
generally are employed in applications with less strict timing and real-time 
constraints, focusing on awareness and messaging, where the number of clients is 
potentially large and the data traffic is relatively small. When those two different 
interaction modes are combined in a single collaboration model, different trade-offs 
involving scalability, responsiveness, robustness, and implementation complexity 
have to be considered. We conducted a series of experiments to understand these 
trade-offs and answer the following questions: How well do the two different 
implementations of the model handle the blending of synchronous and asynchronous 
collaboration? What is the impact of different data rates and data sizes depending on 
the type of media interaction? How is the response of the infrastructure to different 
combinations of those factors? 

6.1 Experimental Setup 

Since we wanted to understand the behavior of the model under regular use 
conditions, we decided to model typical user behaviour and use event-based 
simulation to test the different implementations (e.g. [Munkvold, 05], [Preece, 02], or 
[Vogel, 03]). We developed an automated client simulator that interacts with our 
service implementation using different patterns. Those patterns simulate the use of 
different collaborative tools with their traffic conditions, number of users and data 
size. The simulator client exercises the server APIs performing regular actions such 
as: create new object, set properties, open, close, add member and so forth. For the 
purpose of our tests, we defined four different patterns approximating the traffic 
conditions of chat, file sharing, message exchange, and streaming media. The 
streaming media pattern was defined to analyze the server behavior under heavier 
load, testing its scalability limits. Note that these patterns are only approximations of 
actual interaction patterns and some values, such as the number of members involved 
in a pattern represent an estimation of actual usage parameters observed in our 
previous field studies with AE [Millen, 05]. Table 1 describes the different patterns 
with their data characteristics and probabilities used in our experiments. 

The main differences between the four media traffic patterns are in the size of the 
data, the number of messages exchanged by each member, and the frequency (defined 
by the interval between messages). For example, a typical chat session in our 
simulator client corresponds to an interaction with a GSO with two members on 
average. In this interaction, each member exchanges 10 messages on average. Each 
message has an average length of 40 characters. Chat messages are exchanged at 

15Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



every 15 seconds on average. During this interaction, periods of inactivity may also 
occur with an average duration of 15 seconds. 

 
Data Content change  

probabilities 
Media 
Pattern 

no 
Mem
bers Size 

(chars) 
no 

msg 
interval Set Add Del 

Streaming 5 64K  100 50 ms 0.5 0.5 0.0 
Chat 2 40  10 15 sec 0.0 1.0 0.0 
File Sharing 4 100K  10 5 min 0.7 0.1 0.2 
Message 
Exchange 

8 1K  1 1 sec 1.0 0.0 0.0 

Table 1: Media pattern programming used in our experiments 

In our GSO model, a property can be set (overwritten or created), added 
(appended to the end of the current content), or deleted. Table 1 also shows the 
probabilities for these content change actions. In the chat pattern, for example, all chat 
content changes are of type “Add” because chat transcripts are typically not randomly 
modified, but they grow over time as new messages are exchanged.  

For each pattern, we reproduce the actions of a typical work day of 8 hours. We 
programmed our automatic client to perform those actions in a simulation time of 4 
minutes. This setup is similar to [Geyer, 03] and allows us to stress test the 
infrastructures using a reduced number of clients. During one simulated workday, the 
following actions are performed by the client: A total of 15 shared objects are created 
on average with five objects being root objects (representing a new activity thread). 
Each client listens to an average number of 10 objects. 15 open and 15 closed objects 
on average are modified that day. The interaction patterns also differ with respect to 
the time span that each client is working either online or offline. 

All experiments were carried out on three client machines (IBM T30, 1.6GHz, 
512MB) and one server machine (IBM MPro, 3 GHz, 1.5 GB). The client machines 
and the server were connected on an isolated 100Mbps Ethernet local network to 
eliminate interference with other network traffic. Client machines were equally loaded 
with a set of client simulators in steps of one, i.e. the first test starts with 3 clients (one 
in each client machine), then 6 clients (two per client machine) and so forth. Please 
note the number of simulator client processes running on a single client machine 
impacts the overall simulation results. Based on tests, we decided to limit the number 
of automated clients to eight per client machine in order to minimize this effect. 

6.2 Results: Native Implementation 

In order to understand the overall service behavior to the different media patterns, we 
plotted the total average execution times for each one of the four patterns against the 
number of clients interacting with the system. In this experiment, each client process 
executes a typical work day, using a single interaction pattern which includes open 
and closing objects, logging in and out, offline times and content changes. 

Figure 4 shows that the system has a linear response to the increase in the number 
of clients, for low-frequency traffic patterns such as chat, message exchange, and file 
sharing. The graph also shows that the size of the data, as in the case of file sharing, 

16 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



does not impact performance as much as the frequency of the messages. The main 
characteristic of streaming media is its high frequency of relatively large data 
messages. As can be seen in Figure 4, our reference implementation does not scale as 
well for this pattern (it grows in a non-linear fashion). This can be explained by the 
fact that we send out content change notifications (with or without the actual content) 
to every member of the GSO. Given the high data frequency of streaming media, the 
server load increases quickly, since each data message triggers a series of content 
change notifications, typically one for each member of the objects involved. 

 

3.5

3.7

3.9

4.1

4.3

4.5

4.7

4.9

5.1

5.3

0 3 6 9 12 15 18 21 24
Number of clients

A
ve

ra
ge

 to
ta

l e
xe

cu
tio

n 
tim

e 
(m

in
ut

es
)

chat

f ile sharing

message

streaming

Poly. (streaming)

 

Figure 4: Average total execution times of the native implementation under different 
activity patterns for a typical workday 

In another experiment, under the same experimental conditions, we sought to 
understand the responsiveness of our implementation. The responsiveness of a 
collaborative system is defined by its response and notification times. The response 
time describes how fast the system reacts to user input, i.e. how fast actions are 
reflected in the user interface of the clients executing the action and receiving 
responses. The notification time describes how fast a collaborative system updates 
remote clients. In a collaborative setting, it is desirable to keep this number as low as 
possible in order to keep all clients in sync with each other minimizing lag. Response 
time in our model is determined by the execution time of the client API calls. Figure 5 
shows the average method execution times for setting the content property of a GSO 
performed by the setContent() API call. 

 

17Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Number of clients

av
er

ag
e 

ex
ec

ut
io

n 
de

la
y 

(m
s)

chat

file sharing

message

streaming

Linear (f ile sharing)

Linear (message)

Poly. (streaming)

Linear (chat)

 

Figure 5: Average execution time of the setContent() call in the native implementation 
with different media patterns 

Figure 5 shows that the execution times for the setContent() API call are 
relatively low (in the order of milliseconds). They grow linearly with the number of 
clients for all interaction patterns, except for the streaming media pattern. For a small 
number of clients, and consequently a small number of method calls on the server, the 
streaming media pattern is comparable to the other patterns but, as the number of 
method calls increases with the number of clients, the response time of the system to 
this pattern grows quadratically. Note that the message pattern initially has a 
relatively high execution time compared to streaming media. The reason is the higher 
number of members in that pattern (eight on average). This demonstrates the low 
impact of notifications (without data) relative to the frequency of interaction with the 
system. 

In the same experiment, we also measured notification times: the period of time 
from calling a method in the client API to the delivery of its notification to the other 
members of a GSO. 

Figure 6 shows the average execution vs. notification times for creating new 
GSOs. In this experiment, the notification times are slightly lower than execution 
times. At an almost constant difference of about 1 ms (in the trend lines), each local 
user interaction is made visible to remote clients at about the same time. Except for 
streaming media setContent() calls, the execution times of the native implementation 
are relatively low (i.e. below 10ms) and the notification delays are extremely low. 

Our experiments indicate that the performance of the system is a function of the 
data frequency of the interaction pattern (number of data messages/second), and the 
number of members of a GSO. For general traffic (low frequency and low bandwidth) 
the model scales very well having good responsiveness. However, for streaming 
media traffic, with a relatively medium number of members, and an average volume 
of information, the system delays increase quadratically. 

 
 
 

18 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



0

1

2

3

4

5

6

7

8

9

3 6 9 12 15 18 21 24
Number of clients

E
xe

cu
tio

n 
an

d 
No

tif
ic

at
io

n 
tim

es
 (m

s)

Execution time

Notif ication time

Linear (Notification time)

Linear (Execution time)

 

Figure 6: Average execution vs. notification times for creating new GSOs in the 
native implementation 

6.3 Results: Integrated Implementation 

Existing real-time collaboration servers are optimized for online meetings with a 
smaller number of participants but relatively high data volume, e.g. audio, video. 
Given the results in the previous section, it seems reasonable to apply real-time 
meeting servers to support frequent and high volume property changes in a GSO. We 
hypothesized that the implementation of the synchronous aspects of our model with a 
meeting server would increase the overall system performance. 

Notifications are another aspect of our model that we believed to be well 
understood today. Publish/subscribe systems provide general-purpose event 
notification services. Notification servers receive anonymous notifications and route 
them to interested parties. This routing is orchestrated by subscriptions. These 
systems are typically optimized for a very large number of subscribers and small to 
medium data volumes for each subscriber. We hypothesized that GSO events such as 
create / delete GSO, add/remove member, or infrequent property changes (e.g. 
changing the presence status of a member on an object) would be well supported by a 
publish/subscribe system. 

Hence, we expected that our integrated implementation of the model using 
meeting and notification servers, would result in better scalability of both the 
notification process (asynchronous mode in our model), and the synchronous 
collaboration through content exchange (the synchronous mode of our model). An 
expected price to be paid, however, would be the extra cost of integration and the 
increased complexity of the architecture. In order to verify this hypothesis, we 
repeated the same set of tests with the integrated service implementation. 

Figure 7 (a) compares the cost of the set/add content calls in both 
implementations for the streaming media pattern. As expected, the integrated 
implementation scales better, in a more linear fashion, than our original native 
implementation. In other words, using a dedicated meeting server seems to pay off for 
this type of traffic. 

The chat and the file sharing media patterns did not expose any significant 
differences in the integrated implementation with regards to the cost of the 

19Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



setContent() call. The message exchange pattern, however, yielded some interesting 
results. Figure 7 (b) shows that the use of our meeting server was more costly, in 
terms of performance, than the native implementation for this pattern. Both 
implementations though seem to expose linear behavior as indicated by the trend 
lines. One of the major differences between the message exchange pattern and the 
other patterns is the number of members per GSO (eight on average for the message 
pattern). While our meeting server seems to handle high bandwidth, high frequency 
traffic well, performance seems to degrade with an increased number of meeting 
participants. 

 

0

2

4

6

8

10

12

14

16

3 6 9 12 15 18 21 24
Number of clients

A
ve

ra
ge

 e
xe

cu
tio

n 
tim

e 
(m

s)

Integrated
Native

Linear (Integrated)
Expon. (Native)

 
(a) Streaming media pattern 

0

2

4

6

8

10

12

14

16

3 6 9 12 15 18 21 24
Number of clients

A
ve

ra
ge

 e
xe

cu
tio

n 
tim

e 
(m

s)

Integrated

Native

Linear (Native)
Linear (Integrated)

 
(b) message exchange pattern 

Figure 7: Comparison of the average execution times for setContent() calls  

Since the use of a meeting server introduces additional complexity (see Section 
5.2), we expected that the price for better scalability during the synchronous 
interaction phase of a GSO would come with additional delays in the start up of the 
shared meeting that handles it. The data in Figure 8 compares the cost for opening 
GSOs in both implementations. The data confirms that the open call, where a new 
meeting session is started, has become one of the most costly calls in the integrated 
implementation. However, it still scales in a linear fashion indicated by the trend line. 

Table 2 shows a summary of the average execution times of GSO API calls. 
Comparing the average execution times of other GSO API calls for both 
implementations, we noticed that the registerMember() and loginMember() calls also 
impose high delays in the integrated implementation. The reason for these delays is 
our notification server. Creating subscriptions when registering members and when 
logging in comes at an additional expense. Note that subscriptions in our native 
implementation were implicit in that model, since becoming a member of the object 
automatically subscribes members to receive change notifications. Another interesting 
observation in Table 2 is that the execution times of most calls in the integrated 
implementation are generally higher. The code executed is the same for most API 
calls (except for open and close, which create SSC objects, and for set and add 
content, that route data through the meeting server). We can only explain this as a 
consequence of higher load on the server machine imposed by three server processes 
running at the same time, in the same host (GSO server, meeting server, notification 
server). 

 

20 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



0

10

20

30

40

50

60

3 6 9 12 15 18 21 24
Number of clients

Ex
ec

ut
io

n 
tim

e 
(m

s)

Integrated

Native

Linear (Integrated)

Linear (Native)

 

Figure 8: Comparison of the average execution times for openSO() calls 

 
GSO API CALL NATIVE 

(ms) 
INTEGRATED 

(ms) 
 getIds 9 24 

 addMember 4 17 

 getContent 6 13 

 open 6 52 
 create 8 19 

 setProperty 6 13 

 close 5 14 

 logout 9 20 

 registerMember 178 1699 
 setContent 7 10 

 getGSOs 43 68 

 addContent 6 6 

 login 17 130 

 

Table 2: Average execution times of GSO API calls in milliseconds (24 clients) 

While we expected that subscription management would come at an extra cost, 
we were surprised to see that the notification server introduced high delays in 
delivering notifications. Figure 9 compares execution times for creating GSOs against 
the notification time. The integrated implementation has low response times but does 
not scale well with regards to notifications. On average, under a load of 24 clients, 
remote clients are updated only 0.5 second after the GSO was created locally. The 
notification times seem to grow exponentially according to the trend line. 

 

21Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



0

100

200

300

400

500

600

3 6 9 12 15 18 21 24
Number of clients

Ex
ec

ut
io

n 
an

d 
No

tif
ic

at
io

n 
tim

es
 (m

s)

Execution time

Notif ication time

Expon. (Notif ication time)

 

Figure 9: Average execution times vs. notification times for creating new GSOs in the 
integrated implementation 

One could argue that the use of the notification server as a shared bus (event 
channel) is one of the reasons for the notification server behavior observed in Figure 
9. In another alternative implementation, we tested server-side filtering of events, i.e. 
the configuration of the notification server with more accurate subscriptions that filter 
out events that are not of interest to the client. This approach, however, required 
constant update of the subscriptions to reflect the current object state (each client 
manages one or more subscriptions filtering out events that do not belong to the 
objects they are members of). In the server-side subscription approach, subscriptions 
need to be updated when new objects are created, members log on/off, or members 
are removed/added to objects. Given the high subscription costs impacting the 
registerMember() and login() operations, this solution did not scale well. These 
membership and object life-cycle dynamics resulted in similar or worse delays than 
the ones observed in Figure 9, which led us to choose the client-side filtering option. 

7 Lessons Learned 
7.1 Interference of conflicting requirements 

The support of synchronous and asynchronous interaction in a common and simple 
model is not a trivial task. While the native implementation of the GSO model 
supported well the majority of traffic patterns, it did not scale well for high frequency, 
high-bandwidth data as in our stream media pattern. The use of meeting servers can 
improve the performance of synchronous message exchange under those 
circumstances. However, the notification server in our integrated implementation 
became a bottleneck, impacting the scalability of the entire model. This demonstrates 
how a combination of different services can interfere with one another, limiting the 
performance of the overall infrastructure. 

22 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



7.2 Integration complexity 

Our initial hypothesis, that the integration of existing services to support contextual 
collaboration, would combine the strengths of both services, showed not to be 
completely true. It had shortcomings in the form of extra complexity. Even though an 
integrated solution, that uses specialized services, can perform better than a more 
simple implementation, the integration of those off-the-shelf components usually 
demands special attention to matters such as timing, synchronization, and adequacy to 
the model. It also makes the implementation of the system more complex, requiring 
the combined operation of the notification and meeting servers, an activity prone to 
errors and additional setup delays, such as startup times, as observed in our 
experiments, during member log-in and opening objects. While our work in this paper 
mainly focused on performance and integration complexity, there are also trade-offs 
between developing a collaboration infrastructure from scratch versus using existing 
standardized components, paying the extra cost for integration but saving on the 
development effort.  

7.3 Mismatch of programming models 

Another issue elucidated in our experiments was a mismatch of the programming 
models of the different components used. For example, the extension of the meeting 
server to support persistency was not trivial; our solution was to use a server-side 
client acting as meeting recorder. Another example was the inadequacy of the 
notification server in handling frequent subscription changes. In our experiments, we 
tested the integrated GSO implementation with two subscription models: server-side 
filtering and client-side filtering. Client-side filtering was the approach that better 
scaled in our implementation. Both approaches, however, had their own trade-offs 
and limitations, for example, the balance between processing and network bandwidth: 
Client-side filtering moves part of the processing load to the client side, but requires 
the delivery of extra notifications through the network. Server-side filtering limits the 
amount of traffic to the clients and relieves them from discarding unnecessary 
notifications. Moreover, the latter approach results in an extra burden to the 
notification server, that needs to deal with constantly changing subscriptions in order 
to accommodate changes in the GSO membership. As shown in our experiments, the 
subscription process is usually costly for notification servers, resulting in extra delays 
in the infrastructure. 

8 Conclusion 

In this paper we studied two implementations of a new collaboration model that 
seamlessly integrates different collaboration modalities into a single interaction 
model. Our model facilitates the development of contextual collaboration applications 
such as Activity Explorer. Our experiments show the trade-offs of developing 
contextual collaboration systems based on existing collaboration services such as 
meeting and notification server versus the implementation of the model from scratch.  

The simultaneous support for synchronous and asynchronous interaction in a 
single model tends to work well in a native implementation for the average case, 

23Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



where neither the synchronous nor the asynchronous aspects of the model are put to 
exceeding stress. The low complexity of a native implementation together with high 
responsiveness might satisfy the requirements of the majority of contextual 
collaboration applications today. The integration of meeting servers restricted to only 
media traffic can significantly improve the scalability of the implementation. The use 
of generic notification servers to support the model, however, was problematic 
because mapping GSO behavior onto publish/subscribe semantics caused additional 
overhead.  

While the data presented in this paper provides a good understanding of the trade-
offs involved in building contextual collaboration applications, our work has focused 
on Activity Explorer as an example. More work needs to be done to understand the 
requirements of other contextual collaboration applications. Our results are also 
limited by our choice of notification and meeting servers used to conduct our 
experiments. Additional experiments will be necessary to better understand the impact 
of different backend technologies.  

We started to analyze the impact of distribution of our integrated implementation 
by running notification and meeting servers on different machines, an advantage that 
comes from the use of existing components. Preliminary tests indicate scalability 
advantages with an increased number of clients. A more detailed analysis will be 
required to shed more light on the trade-offs of distributing or clustering various 
services.  

From a model perspective, we would like to better understand the limits of the 
model by schematically varying the size of the data messages, frequency, and the 
number of members per object instead of using traffic patterns. The GSO model was 
designed to support multiple collaboration modalities. However, it currently treats 
asynchronous and synchronous modifications of the content of a GSO in a very 
similar way. We are exploring alternative ways of improving the performance of the 
system by reducing the number of persistent GSO content updates and notifications 
(to members who do not have the object open) during phases of synchronous 
collaboration. 

Acknowledgements 

We would like to thank John Patterson, Juergen Vogel, the Pesto team in Haifa, and 
the Activity Explorer product and research teams for their inspiring discussions and 
support. Some aspects of this work were supported by the U.S. National Science 
Foundation under grant numbers 0534775, 0205724 and 0326105, and an IBM 
Eclipse Technology Exchange Grant. 

References 

[Cheng, 03] Cheng, L.-T., Hupfer, S., Ross, S. and Patterson, J., Jazzing up Eclipse with 
collaborative tools In Proc OOPSLA'03, Workshop on Eclipse Technology eXchange, 
Anaheim, CA, 2003, 45-49. 

[Fitzpatrick, 99] Fitzpatrick, G., Mansfield, T., Arnold, D., Phelps, T., Segall, B. and Kaplan, 
S., Instrumenting and Augmenting the Workaday World with a Generic Notification Service 
called Elvin, In  Proc. ECSCW '99, Copenhagen, Denmark, 1999, Kluwer, 431-451. 

24 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



[Freeman, 99] Freeman, E., Hupfer, S. and Arnold, K., JavaSpaces Principles, Patterns, and 
Practice., Book News, Inc, 1999. 

[Gamma, 95] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns: Elements of 
Reusable Object-Oriented Software, Addison-Wesley Publishing Company, 1995. 

[Gelernter, 85] Gelernter, D., Generative communication in Linda, ACM Transactions on 
Programming Languages and Systems (TOPLAS), 7 (1), January 1985, 80-112. 

[Geyer, 01] Geyer, W., Richter, H., Fuchs, L., Frauenhofer, T., Daijavad, S. and Poltrock, S., A 
Team Collaboration Space Supporting Capture and Access of Virtual Meetings, In Proc ACM 
Group 2001, International Conference on Supporting Group Work, Boulder, CO, 2001. 

[Geyer, 03] Geyer, W., Vogel, J., Cheng, L. and Muller, M., Supporting Activity-Centric 
Collaboration through Peer-to-Peer Shared Objects, In Proc ACM Group 2003, Sanibel Island, 
FL, 2003, 115-124. 

[Geyer, 06] Geyer, W., Muller, M.J., Moore, M., Wilcox, E., Cheng, L., Brownholtz, B., Hill, 
C.R., Millen, D.R., ActivityExplorer:  Activity-Centric Collaboration from Research to 
Product, IBM Systems Journal – Special Issue on Business Collaboration, Vol. 45, No. 4, 2006, 
713-738. 

[Kantor, 01] Kantor, M. and Redmiles, D., Creating an Infrastructure for Ubiquitous 
Awareness, In Proc. Eighth IFIP TC 13 Conference on Human-Computer Interaction, 
INTERACT 2001, Tokyo, Japan, 2001, 431-438. 

[Law, 00] Law, A.M., Kelton, W.D., Simulation Modeling and Analysis, McGraw-Hill, 3rd 
edition, 2000. 

[Mahowald , 06] Mahowald, R, From ICE Age To Contextual Collaboration, IDC, 
http://www.cio.com/analyst/062901_idc.html, retrieved June 29, 2006. 

[Millen, 05] D. Millen, M. Muller, W. Geyer, E. Wilcox, and B. Brownholtz, Patterns of Media 
Use in an Activity-Centric Collaborative Environment, In Proc. ACM SIGCHI, Portland, 
Oregon, WA, 2005. 

[Moody, 06] Moody, P. and Feinberg, J., C+B Seen Project, retrieved at 
http://domino.research.ibm.com/cambridge/research.nsf/pages/projects.html, 2006. 

[Munkvold, 05] Munkvold, B.E., and Zigurs, I., Integration of E-Collaboration Technologies: 
Research Opportunities and Challenges, International Journal of e-Collaboration, 1(2), 2005, 1-
24. 

[O’Neil, 05] A. O’Neil, Discovering Activity Explorer in the IBM Workplace Managed Client, 
http://www-128.ibm.com/developerworks/lotus/library/ae/, retrieved July 26, 2005. 

[Patterson, 96] Patterson, J.F., Day, M. and Kucan, J., Notification servers for synchronous 
groupware, In Proc. ACM Conference on Computer Supported Cooperative Work, CSCW'96, 
Boston, Massachusetts, 1996, 122-129. 

[Preece, 02] Preece, J., Rogers, Y., Sharp, H.,  Interaction Design, John Wiley & Sons, 
Hoboken, NJ, USA, 2002 

[Preguiça, 05] Preguiça, N., Martins, J.L., Domingos, H. and Duarte, S., Integrating 
Synchronous and Asynchronous Interactions in Groupware Applications, In Proc. 11th 
International Workshop on Groupware, CRIWG 2005, Porto de Galinhas, Brazil, 2005. 

25Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...



[SearchDomino.com, 06] SearchDomino.com. Contextual Collaboration, 
http://searchdomino.techtarget.com/sDefinition/0,,sid4_gci934929,00.html, retrieved June 26, 
2006. 

[Silva, 05a] Silva Filho, R.S., Geyer, W., Brownholtz, B, Redmiles, D.F., Understanding the 
Trade-offs of Blending Collaboration Services in Support of Contextual Collaboration, In Proc. 
12th International Workshop on Groupware, CRIWG 2006, Medina del Campo, Valladolid, 
Spain, Sept. 17-21, 2006. 

[Silva , 05b] Silva Filho, R.S. and Redmiles, D., Striving for Versatility in Publish/Subscribe 
Infrastructures, In Proc. 5th International Workshop on Software Engineering and Middleware, 
SEM'2005, Lisbon, Portugal, ACM Press, 2005, 17 - 24. 

[Souza, 02] Souza, C.R.B.d., Basaveswara, S.D. and Redmiles, D.F., Using Event Notification 
Servers to Support Application Awareness, In Proc. IASTED International Conference on 
Software Engineering and Applications, Cambridge, MA, 2002, 691-697. 

[Vogel, 03] Vogel, J., Mauve, M., Hilt, V., and Effelsberg, W, Late Join Algorithms for 
Distributed Interactive Applications, ACM/Springer Multimedia Systems, Vol. 9, No. 4, pages 
327–336, 2003. 

[Wyckoff , 98] P. Wyckoff , S. W. McLaughry , T. J. Lehman , D. A. Ford, T Spaces, IBM 
Systems Journal, 37 (3), 1998, 454-474. 

26 Geyer W., Silva Filho R.S., Brownholtz B., Redmiles D.F.: The Trade-Offs ...


