
Spatial Queries in Road Networks Based on PINE

Maytham Safar
(Kuwait University, Kuwait

maytham@eng.kuniv.edu.kw)

Abstract: Over the last decade, due to the rapid developments in information technology (IT),
a new breed of information systems has appeared such as geographic information systems that
introduced new challenges for researchers, developers and users. One of its applications is the
car navigation system, which allows drivers to receive navigation instructions without taking
their eyes off the road. Using a Global Positioning System (GPS) in the car navigation system
enables the driver to perform a wide range of queries, from locating the car position, to finding
a route from a source to a destination, or dynamically selecting the best route in real time.
Several types of spatial queries (e.g., nearest neighbour - NN, K nearest neighbours – KNN,
continuous k nearest neighbours – CKNN, reverse nearest neighbour – RNN) have been
proposed and studied in the context of spatial databases. With spatial network databases
(SNDB), objects are restricted to move on pre-defined paths (e.g., roads) that are specified by
an underlying network. In our previous work, we proposed a novel approach, termed
Progressive Incremental Network Expansion (PINE), to efficiently support NN and KNN
queries. In this work, we utilize our developed PINE system to efficiently support other spatial
queries such as CKNN. The continuous K nearest neighbour (CKNN) query is an important
type of query that finds continuously the K nearest objects to a query point on a given path. We
focus on moving queries issued on stationary objects in Spatial Network Database (SNDB)
(e.g., continuously report the five nearest gas stations while I am driving.) The result of this
type of query is a set of intervals (defined by split points) and their corresponding KNNs. This
means that the KNN of an object travelling on one interval of the path remains the same all
through that interval, until it reaches a split point where its KNNs change. Existing methods for
CKNN are based on Euclidean distances. In this paper we propose a new algorithm for
answering CKNN in SNDB where the important measure for the shortest path is network
distances rather than Euclidean distances. Our solution addresses a new type of query that is
plausible to many applications where the answer to the query not only depends on the distances
of the nearest neighbours, but also on the user or application need. By distinguishing between
two types of split points, we reduce the number of computations to retrieve the continuous
KNN of a moving object. We compared our algorithm with CKNN based on VN3 using IE
(Intersection Examination). Our experiments show that our approach has better response time
than approaches that are based on IE, and requires fewer shortest distance computations and
KNN queries.

Keywords: Nearest Neighbor, Continuous Nearest Neighbor, Road Network, Voronoi, PINE.
Categories: E.1, E.2, H.3.3, H.5.1

1 Introduction

Over the last decade, due to the rapid developments in information technology (IT),
particularly communication technologies, a new breed of information systems has
appeared such as mobile information systems. Mobility is perhaps the most important
market and technological trend within information and communication technology.

Journal of Universal Computer Science, vol. 14, no. 4 (2008), 590-611
submitted: 16/10/06, accepted: 18/2/08, appeared: 28/2/08 © J.UCS

Mobile information systems will have to supply and adopt services that go beyond
traditional web-based systems, and hence they come with new challenges for
researchers, developers and users.

One of the well-known applications that depend on mobility is the car navigation
system, which allows drivers to receive navigation instructions without taking their
eyes off the road. Using a Global Positioning System (GPS) in the car navigation
system enables the driver to perform a wide manner of queries, from locating the car
position, to finding a route from A to B, or dynamically selecting the best route in real
time.

Several types of spatial queries (e.g., nearest neighbour - NN, K nearest
neighbours – KNN, continuous nearest neighbour - CNN, continuous k nearest
neighbours – CKNN, reverse nearest neighbour – RNN) have been proposed and
studied in the context of spatial databases. The most common type is the point KNN
query, which is defined as: given a set of spatial objects (or points of interest), and an
input query point, retrieve the (K) nearest neighbours to that query point. The NN is
the target object with the shortest path from the query point on the route. The efficient
implementation of KNN query is of a particular interest in Geographical information
systems (GIS). For example, a GPS device in a vehicle gives information of an
object’s location, which, once located onto a map, serves as a basis to find the K
closest restaurants or gas stations with the shortest path to them.

Different variations of KNN queries have been introduced. One variation is the
continuous KNNs of any point on a given path. As an example when the GPS device
of the vehicle initiates a query to continuously find the 3 nearest gas stations to the
vehicle at any point of a path from source to destination. The result is a set of
intervals or split points where the KNNs of a moving object on a path will be the
same up to these points. The versatility of K nearest neighbours search increases
substantially if we consider other variations of it such as the Continuous KNN
(CKNN.) CKNN query is defined as the K nearest point of interest to every point on a
path, and has found applications in the GISs. For example, in Figure 1, for Car2 find
the nearest 3 restaurants at any point during its route from its location to reach P12.
The result of this type of query is a set of tuples <result, interval> such that the result
is the KNN of all points in the corresponding interval ordered by distances to the
query point. The interval is defined by two end-points, called split points, which
specify where on the path the KNNs of a moving object will change. This means that
the KNNs of an object travelling on one interval of the path remain the same all
through that interval, until it reaches a split point where its KNNs change.

With spatial network databases (SNDB), objects are restricted to move on pre-
defined paths (e.g., roads) that are specified by an underlying network. This means
that the shortest network distance between objects (e.g., the vehicle and the
restaurants) depend on the connectivity of the network rather than the objects’
location. Taken also into consideration that Mobile devices are usually limited on
memory resources and have lower computational power, efficient algorithms for
distance computation are critical for query processing in such real time systems.

In [Safar, 05] we proposed a novel approach (PINE) that reduces the problem of
distance computation in a very large network, into the problem of distance
computation in a number of much smaller networks plus some online “local” network
expansion. In this work, we use PINE to efficiently address CKNN and RNN queries

591Safar M.: Spatial Queries in Road Networks Based on PINE

in SNDBs. With RNN, given a set of spatial objects (or points of interest, e.g.,
restaurants), and a query point (e.g., vehicles’ location), find the restaurants that
consider that vehicle as their nearest neighbour. For example, in Figure 1, the
restaurant P2 has Car3 as its RNN.

Q

P1
P2

P3

P4

P5

P6

P7

P8

P9
P10

P11

P12

P13

P14

P15

b
1

b
2

b
8

b
7

b
6

b
5

b
4

b
3

b
9

b1
0 b1

1

b1
2

b1
3

b1
4

b1
5

b1
6

b1
7

b1
8

b1
9

b2
0

b2
1

b2
2

b2
3

b2
4

b2
5

b2
6

b2
7

b2
8

Car1

Car2

Car3

Car4

Car5

Car6

Figure 1: CKNN and RNN Queries

In solving CKNN queries, it is important to note that issuing a traditional nearest
neighbour query at every point of the line segment is infeasible due to the large
number of queries generated and the large overhead. The challenge for this type of
query is to efficiently find the location of the split point(s) on the path. Or in other
words, where in the path does the KNN change. The main idea behind our approach is
that the KNNs of any object on a path between two adjacent nodes (e.g., intersection
in road network) can be a subset of any points of interest (e.g., gas stations) on the
path. Hence, the solution is based on breaking the entire path to smaller segments
(sub-paths), where each segment is surrounded by two adjacent nodes. Our approach
is then based on finding the minimum distances between two subsequent nearest
neighbours of an object, only when the two neighbours can have a split point between
them. This distance specifies the minimum distance that the object can move without
requiring a new KNN query to be issued.

We divide the problem into two cases, depending on the number of neighbours
requested by a CNN query. When only the first nearest neighbour is requested (e.g.,
finding only the closest restaurant to a vehicle while it is travelling), our solution
relies entirely on the PINE model. We show that the split points on the path are
simply the intersections of the path with the network Voronoi polygons (NVPs) of the
network, which are a subset of the border points of the NVPs. In the case when more
than one neighbour is requested by CNN query (i.e., CKNN) the main idea behind our
approach is that the KNN of any object on a path between two adjacent nodes (e.g.,
intersection in road system) can only be a subset of any point of interest (e.g.,
restaurants) on the path, plus the KNNs of the end nodes. Therefore, we need to first
find the KNNs of the intersections on the path using PINE, and then find the location
of the split points between two adjacent nodes and their associated KNN.

To efficiently find the location of the split point(s) on the path we use a modified
version of the IE algorithm proposed by [Kolahdouzan, 04b]. The solution is based on

592 Safar M.: Spatial Queries in Road Networks Based on PINE

breaking the entire path into smaller segments, where each segment has two end-
points (e.g., adjacent intersections in road network), and finding the KNNs of all
nodes in each segment. There is a split point between two adjacent nodes with
different KNNs. The location of the split points can be found by first specifying
whether each NN is increasing or decreasing, depending on the distances from a
query object to the KNNs of the nodes as the objects move, then calculating a split
point for each increasing member of the candidate set with every decreasing NN, or
vice versa.

In addition, we distinguish between different split points. One type of split points
where we replace the element(s) of the KNN list with (a) different one(s) compared to
the KNN list of the starting node of a segment is called “Element- SplitPoint” (ESP).
The other type of split points at which we change the order of the elements of the
KNN is called “Order- SplitPoint” (OSP). In some applications, we only care about
the k nearest neighbours and not their ordered distances (i.e., being the first nearest
neighbour or the second.) For example, suppose that as we are travelling by a car, we
issue a query to find the five nearest restaurants to us, however, we would choose to
go to the one that serves our favourite cuisine and not necessarily the closest one. The
query may return the following five nearest restaurants in ascending order: Indian,
Italian, American, Chinese, and Indonesian. Although the Indian restaurant is the
closest, we could go to the American restaurant if we like the American cuisine. Here,
the choice was not based on pure distances. If the application does not require the
order of the KNNs, then we only have to save the ESP points and ignore the OSP. The
intuition is that the total count of all ESP is less than OSP.

Contrasting it with [Kolahdouzan, 04b], our method reduces the number of KNNs
queries performed and eliminates the need to update the directions (increasing,
decreasing) of the NN as the object moves. We just generate one table to provide the
information on where the ESP/ OSP are going to occur, and the hints for the KNN
elements at each breakpoint. Hence, reducing the number of computations to retrieve
the continuous KNN of a moving object.

Our experimental results in [Safar, 05] showed that VN3 failed in answering some
CKNN queries and provided invalid results. Our analysis of the algorithm identified
some flaws in the algorithm, especially in the cases where both end points of a line
segment (road link) have a common nearest neighbour. In this case, the algorithm
assumes that while moving from one end point to the other, the distance to that
common nearest neighbour either increases or decreases throughout the link.
However, our investigation and analysis showed that this is not the case. Usually the
distance increases until you reach a virtual split point (not real). At this point, the
distance gets decreased because the shortest path to the common nearest neighbour
would pass through the second end point. Hence, in this paper we provide a modified
algorithm to resolve that problem.

The remainder of this paper is organized as follows. Section 2 provides a related

work study. Section 3 provides a background on some definitions and algorithms used
in this work. Then, we describe how to answer KNN queries using PINE in section 4.
In sections 5 and 6 we discuss our approaches to solve CKNN using PINE,
respectively. Section 7 provides our experimental results. Finally, we conclude our
work in section 8.

593Safar M.: Spatial Queries in Road Networks Based on PINE

2 Related work

The most common type of query encountered in spatial databases is the point k
nearest neighbour (KNN) query, which is defined as: given a point query in a
multidimensional space, find the k closest objects in the database to the query point.
This type of query is extensively used in geographical information systems (GIS) and
thus was the focus of many researches. There are two groups of algorithms proposed
to address the KNN query. Some of the algorithms are based on utilizing the
Euclidean distances; other algorithms are based on network distances. The regular
KNN queries are the basis for several query variations such as the Continuous KNN
and the Reverse NN. In this section, we overview previous work related to KNN
query, and its variations.

Most of the existing work [Roussopoulos, 95][Korn, 96][Seidl, 98] consider
Cartesian (typically, Euclidean) spaces, where the distance between two objects is
determined by their relative position in space. The current algorithms for computing
the distance between a query object q and an object O in a network will automatically
lead to the computation of the distance between q and the objects that are (relatively)
closer to q than O. The advantage of these approaches is that they explore the objects
that are closer to q and compute their distances to q progressively. The major
disadvantage with the approaches is that the shortest path calculations are performed
based on Euclidean distances while in practice, objects usually move only on pre-
defined roads. This makes the distance calculations depend on the connectivity among
these objects. Hence, they perform poorly when the objects are not densely distributed
in the network since then they require a large portion of the network to be retrieved
for distance computation. In this work, the important measure is the network distance,
which renders the algorithms in the first group impractical for SNDB.

The other group of research focuses on solving the KNN for spatial network
databases. In these databases, the underlying network connections are captured and
the distance between two objects is the length of the shortest path connecting them.
The approaches in [Papadias, 03][Kolahdouzan, 04][Safar, 05] support the exact KNN
queries on spatial network databases.

The solution in [Papadias, 03], called the Incremental Network Expansion (INE),
introduces an architecture that integrates network and Euclidean information. It is
based on creating a search region for the query point that expands from the query that
is similar to Dijkstra’s algorithm. The advantages of this approach are: 1) it offers a
method for finding the exact distance in networks, and 2) the architecture can support
other spatial queries like range search and closest pairs. However, this approach
suffers from poor performance when the objects (e.g., restaurants) are not densely
distributed in the network because this will lead to large portions of the database to be
retrieved. This problem happens for large values of k as well.

The Voronoi-based Network Nearest Neighbor (VN3) approach proposed in
[Kolahdouzan, 04] is based on the properties of the Network Voronoi Diagrams
(NVD). It uses localized pre-computations of the network distances for a very small
percentage of neighboring nodes in the network to enhance query response time and
reduce disk accesses. In addition, Network Voronoi Polygons (NVPs) of a NVD can
directly be used to find the first nearest neighbor q. Subsequently, NVP’s adjacency
information provides a candidate set for other nearest neighbors of q. Finally the pre-

594 Safar M.: Spatial Queries in Road Networks Based on PINE

computed distances are used to refine the set. The filter/ refinement process in VN3 is
iterative: at each step, first a new set of candidates is generated from the VNPs, then
the pre-computed distances are used to select “only the next” nearest neighbor of q.
The advantages of this approach are: 1) it offers a method that finds the exact
distances in networks, 2) fast query response time, and 3) progressively returns the k
nearest neighbors and their distances from the query point. The main disadvantage of
this approach is its need for pre-computing and maintaining two different sets of data:
1) query to border computation: computing the network distances from q to the border
points of its enclosing network Voronoi polygon, and 2) border to border
computation: computing the network distances from the border points of NVP of q to
the border points of any of the other NVPs. Furthermore, this approach suffers in
performance with lower density data sets.

We proposed in [Safar, 05] a novel approach, termed PINE, to efficiently address
KNN queries in SNDBs. The main idea behind this approach is to first partition a
large network into smaller more manageable regions, then pre-compute distances
across the regions. Those two steps can be easily and efficiently implemented using a
first order Voronoi diagram, then a computation similar to the INE can be used for the
computation of intra-distances. The advantage of PINE is that it has less disk access
time and less CPU time than VN3. In addition, PINE’s performance is independent of
the density and distribution of the points of interest, and the location of the query
object. By performing across-the-network computation for only the border points of
the neighboring regions, we avoid global computations later on.

The solutions proposed for regular KNN queries are either directly used or have
been adapted to address the variations of KNN queries such as CKNN and RNN
queries. Given a predefined route, a continuous query retrieves tuples of the form
<result, interval> where each result is accompanied by a future interval, during which
it is valid. Despite the importance of continuous queries in SNDBs, the scarce studies
in the literature are designed for Euclidean spaces (e.g., [Tao, 02]), which are not
applicable to SNDBs.

For example, the approach proposed in [Tao, 02] uses the R-tree as the
underlying data-partition access method. Their algorithm traverses the tree and prunes
unnecessary node accesses based on some heuristics that use Euclidean distances.
Their goal is to perform one single query of the entire path. The algorithm starts with
an initial list of split points (SL) containing only the path starting and ending nodes,
and an empty initial list of NNs, and then it incrementally updates the SL during
query processing. After, each step, the SL contains the current result with respect to
all the data points processed so far. The final result contains each split point that
remains in SL after the termination together with its nearest neighbor. The advantage
of [Tao, 02] is the avoidance of multiple database scans by reporting the result with a
single traversal of the database. Yet, it still has the major disadvantage of using
Euclidean distances that are not applicable to network distances.

Finally, [Kolahdouzan, 04b] address the problem of CKNN queries in road
networks. They proposed two techniques termed: Intersection Examination (IE) and
Upper Bound Algorithm (UBA) to find the location and KNN of split point(s) on the
path. The first solution, IE, finds KNNs of all the nodes on a path by breaking the
path into segments and only examining the KNNs of intersection nodes. There is a
split point on the shortest path between two adjacent nodes with different KNNs and

595Safar M.: Spatial Queries in Road Networks Based on PINE

the location of that point is calculated. The second approach, UBA, improves the
performance of IE by reducing the number of KNN computations by eliminating the
computation of KNNs for the nodes that cannot have any split points in between. The
intuition of UBA is that when a query object is moved slightly, it is very likely that its
KNNs remain the same. UBA proposes a method to find the minimum distance that
the object can move without requiring a new KNN to be issued.
There are three shortcomings of [Kolahdouzan, 04]: 1) the total number of split points
computed using this algorithm is sometimes redundant or useless for some kinds of
applications as we explained in section 1, 2) The distance to all the KNN of both end
nodes (i.e., the distance to the candidate list of each segment) are updated and ordered
at each split point which incurs unnecessary overhead, and 3) The PINE algorithm is
more efficient than VN3 in finding the KNN of a point. (For experimental results see
[Safar, 05]). To the best of our knowledge, [Kolahdouzan, 04b] is the only approach
that uses network distances to find CKNN.

3 Background

Our proposed approaches to address the spatial queries are based on PINE algorithm,
network Voronoi diagram and Dijkstra's algorithm. A Voronoi diagram divides a
space into disjoint polygons where the nearest neighbor of any point inside a polygon
is the generator of the polygon. Dijkstra's algorithm provides one of the most efficient
algorithms that finds shortest paths from the source node to all the other nodes. In
[Papadias, 03][Safar, 05] Dijkstra’s was preferred over the other famous shortest path
algorithm (A*) [Kung, 86] because of the way that it computes the shortest path
distance by expanding from the source towards destination. In addition, it uses a
queue to store a sorted list of the recently visited nodes instead of applying a
heuristics to prune the search space and direct the graph expansion like in A*
algorithm.

In this section, we review the principles of the Voronoi diagrams. We start
with the Voronoi diagram for 2-dimensional Euclidean space and present only the
properties that are used in our approach. We then discuss the network Voronoi
diagram where the distance between two objects in space is their shortest path in the
network rather than their Euclidean distance and hence can be used for spatial
networks. Then, we talk about PINE algorithm. A thorough discussion on Voronoi
diagrams is presented in [Okabe, 00][Safar, 05].

3.1 Voronoi diagrams

Imagine you are looking for a school for your kid. Among the criteria to be
considered will be the length of the way to school. If you formulate this as a spatial
analysis problem, you are looking for the school that is closest to your home, among
all schools in your city. The classical approach to solve this spatial analysis problem
is the Voronoi diagram. The Voronoi diagram isolates the area that is closest to each
school. The Voronoi diagram of a point set P, VD(P), is a unique diagram that
consists of a set of collectively exhaustive and mutually exclusive Voronoi polygons
(Voronoi cells), VPs. Each Voronoi polygon is associated with a point in P (called
generator point) and contains all the locations in the Euclidean plane that are closer to

596 Safar M.: Spatial Queries in Road Networks Based on PINE

the generator point of the Voronoi cell than any other generator point in P. The
boundaries of the polygons, called Voronoi edges, are the set of locations that can be
assigned to more than one generator. The Voronoi polygons that share the same edges
are called adjacent polygons and their generators are called adjacent generators. The
following property holds for any Voronoi diagram and is used to answer KNN
queries: “ The nearest generator point of pi (e.g., pj) is among the generator points
whose Voronoi polygons share similar Voronoi edges with VP(pi).” (see [Okabe, 00][
Kolahdouzan, 04a] for further details). In general, a Voronoi diagram of a set of
"sites" (points) is a collection of regions that divide up the plane. Each region
corresponds to one of the sites, and all the points in one region are closer to the
corresponding site than to any other site.

3.2 Network voronoi diagrams

Sometimes the approach is of limited value, especially if the possibilities to move in
space are limited to one or several networks. In this case, the above described method
gives only rough estimates and might even be significantly wrong. Several
assumptions of the Voronoi diagram are violated in urban areas; distances between
two addresses are not Euclidean; they have to be measured along the travel
network(s). If your son has to walk around a block of buildings, the way to school can
be significantly longer than the Euclidean distance. Thus, we use the Network
Voronoi diagram [Okabe, 00]. "A network Voronoi diagram, termed NVD, is defined
for graphs and is a specialization of Voronoi diagrams where the location of objects is
restricted to the links that connect the nodes of the graph and the distance between
objects is defined as their shortest path in the network rather than their Euclidean
distance.” [Kolahdouzan, 04b][Roussopoulos, 95]. Spatial networks (e.g., road
networks) can be modeled as weighted planar graphs where nodes of the graph
represent the intersections and roads are represented by the links connecting the
nodes.

The Network Voronoi diagram considers distances only in networks, not in the
plane. It divides the network, not the space, into Voronoi cells. A Voronoi cell in a
network is the set of nodes and edges that are closer to one Voronoi generator (here, a
school) than to any other. For the construction of the Network Voronoi diagram an
algorithm is used based on the shortest path algorithm of Dijkstra. Dijkstra’s
algorithm calculates in a connected network the shortest path from a selected start
node to any other node in the network (see [Kolahdouzan, 04b][Roussopoulos, 95] for
further details).

4 K nearest neighbor (knn) queries using pine

Taken into consideration that Mobile devices are usually limited on memory
resources and have lower computational power, in [Safar, 05] we proposed a novel
approach that reduces the problem of distance computation in a very large network,
into the problem of distance computation in a number of much smaller networks plus
some online “local” network expansion. The main idea behind that approach, termed
Progressive Incremental Network Expansion (PINE), is to first partition a large
network into smaller/more manageable regions. We achieved this by generating a

597Safar M.: Spatial Queries in Road Networks Based on PINE

network Voronoi diagram over the points of interest. Each cell of this Voronoi
diagram is centred by one object (e.g., a restaurant) and contains the nodes (e.g.,
vehicles) that are closest to that object in network distance (and not the Euclidian
distance). Next, we pre-compute the inter distances for each cell. That is, for each
cell, we pre-compute the distances across the border points of the adjacent cells. This
will reduce the pre-computation time and space by localizing the computation to cells
and a handful of neighbour-cell node-pairs. Now, to find the k nearest-neighbours of a
query object q, we first find the first nearest neighbour by simply locating the Voronoi
cell that contains q. This can be easily achieved by utilizing a spatial index (e.g., R-
tree) that is generated for the Voronoi cells. Then, starting from the query point q we
perform network expansion on two different scales simultaneously to: 1) compute the
distance from q to its first nearest neighbour (its Voronoi cell centre point), and 2)
explore the objects that are close to q (centres of surrounding Voronoi cells) and
compute their distances to q during the expansion.

At the first scale, a network expansion similar to Incremental Network Expansion
(INE) [Papadias, 03] is performed inside the Voronoi cell that contains q (VC(q))
starting from q. To this end, we utilize the actual network links (e.g., roads) and nodes
(e.g., restaurants, hospitals) to compute the distance from q (e.g., vehicle) to its first
nearest neighbour (the generator point of VC(q)) and the border points of VC(q).
When we reach a border point of VC(q), we start a second network expansion at the
Voronoi polygons scale. Unlike INE and similar to Voronoi-based Network Nearest
Neighbour (VN3) [Kolahdouzan, 04], the second expansion utilizes the inter-cell pre-
computed distances to find the actual network distance from q to the objects in the
other Voronoi cells surrounding VC(q). Note that both expansions are performed
simultaneously. The first expansion continues until all border points of VC(q) are
explored or all KNN are found.

5 Continuous k nearest neighbor (cknn) queries using pine

Continuous nearest neighbor queries are defined as determining the k nearest
neighbors of any object on a given path. An example of this type of query is shown in
Figure 2. In this example, a moving object (e.g., a car) is traveling along the path (L1,
L2, L3, L4) (specified by the dashed lines) and we are interested in finding the first 3
closest neighbors (neighbors are specified in the figure by {n1, …, n8}) to the object at
any given point on the path. The result of a continuous KNN query is a set of split
points and their associated KNNs. The split points specify the locations on the path
where the KNNs of the object change. The challenge for this type of query is to
efficiently find the location of the split point(s) on the path.

In this section we discuss our solution for CKNN queries in spatial network
databases. We first present our approach for the scenarios when only the first NN is
desired (i.e., CNN), and then for the cases where the CKNN of any point on a given
path is requested.

598 Safar M.: Spatial Queries in Road Networks Based on PINE

Figure 2: Example of Continuous K Nearest Neighbour Query

5.1 Continuous 1nn queries using pine

Our solution for C-NN queries is based on our previous work PINE that partitions the
network into disjoint first order network Voronoi polygons (NVP) [Safar, 05] in such
a way that the first nearest neighbor of any point inside a polygon is the generator of
that polygon. To find the CNN of a given path, we first find the split points on the
path at which the NN changes. By intersecting the path with the NVPs of the network,
the points of intersections specify the split points, which in turn, define the path
segments inside each polygon. As a result, the first continuous NN for every point in a
segment inside a polygon is the generator of that polygon. However, this approach
cannot be extended to CKNN queries because the NVD is a first order network
diagram that can only specify the first NN.

5.2 Continuous knn queries using pine

Our algorithm for finding the continuous KNN of any point on a path, starts by
breaking the path into smaller segments according to some properties, then finding the
continuous KNN for each segment, and finally, generating the result set for the entire
path by joining the results for all segments. It has been shown that there must be a
split point on the shortest path between the segments’ nodes if the end- nodes have
different KNNs [Kolahdouzan, 04b]. Otherwise, the set of continuous KNN would
remain fixed on that segment. To efficiently find the location of split points, our
algorithm performs the following steps:

Step 1: The first step is to break the original path into smaller segments using the
technique proposed by [Kolahdouzan, 04b] such that the end-points of every segment
are either an intersection or an interest point.

Step 2: Then, we find the KNNs of the end-nodes of each segment using our
KNNs algorithm (PINE) [Safar, 05]. It has been shown that the continuous KNNs of

n6 n7

n1

n5

n2

n3 n4

n8

L1

L2

L3
L4

3 5

6

4
1

5

6

4

12

9

599Safar M.: Spatial Queries in Road Networks Based on PINE

each segment are a subset of the union of KNNs of the end-points of that segment; we
call this union the candidate list. From this list, we generate a new ordered list of the
nearest neighbors for the starting point of the segment. In other words, the list is
sorted according to distances to the segment’s starting node (Ly). Similar to
[Kolahdouzan, 04b], we also specify the direction of each neighbor
(increase/decrease) according to whether the distance to that neighbor is increasing or
decreasing as the query object moves from the starting point of the segment to a split
point.

Step 3: In this step, we try to find the locations of split points, since we know that
if the end-nodes have different KNNs, then there must be one or more split point(s)
on the shortest path between the segments’ nodes [Kolahdouzan, 04b]. For each
member of the set with increasing direction, compare it with each decreasing direction
neighbor to find the location (relative to the starting node of a segment Ly) of all split
points in a segment using the following method: Split Point (P) generated from
↑(ni, dn i

) and ↓(nj, dn j
) which is at a distance of (dn j

+ dni
) 2- dn i

 from location Ly
(note: dn i

 and dn j
 are the distances from location Ly.) The total number of split points

is always equal to the number of increasing distance neighbors multiplied by the
number of decreasing distance neighbors and all must be generated. We will later
distinguish between two types of split points.

Step 4: We save the results of the previous step for segment (Ly, Ly+1) in a table
format sorted incrementally according to distances to Ly. Each row has three entries:
(1) split point (Pi), (2) distance between Pi and Ly (dpi), (3) and split-NN which is a tuple
(ni, nj) such that the split points are generated from these two neighbors ni and nj. For
complete pseudo code of the algorithm see Figure 3.

Algorithm modified IE (Path P)

1. Break P to segments such that the end-points of every segment
is either an intersection or interest point: P={L1, L2, …….Ln}

2. For each segment, start from Ly (y=1):
• Find kNN (Ly) and kNN(Ly+1) using PINE
• Find the directions of kNNs of the start of the segment (Ly)
• Find the location of the split points for the segment (Ly, Ly+1)

Figure 3: Pseudo code for modified IE algorithm

Given the table, one can easily find the continuous KNN for a moving object in
interval Ly, Ly+1. Starting with the list of KNN of the beginning node Ly, the KNN stay
the same as the object moves until it reaches the first split point where the KNN might
change according to one of three cases interpreted from the third column entries of the
saved table (e.g., Table 1.) At a split point (P), the split-NN(ni, nj) could mean (i)
neighbor ni and nj will change their order in the KNN list if both of them are already
in the list (we call these split points OSP), (ii) nj will replace ni in the KNN list if nj is

600 Safar M.: Spatial Queries in Road Networks Based on PINE

not already in the list (we call these split points ESP), or (iii) nothing is going to
change in the KNN list if both ni and nj are not in the list. Note that the table lookup
process is progressive; each iteration (step), as the query object travels between split
points, depends on the result of its previous step.

In [Kolahdouzan, 04b], the algorithm keeps track of the candidate list elements
and updates their distances to the corresponding split point at each step. We are not
updating the distances at all between the split points and the candidate KNN because
this incurs unnecessary calculations and wastes storage. In other words, these
distances are not valid when the query object is moving between split points, and if
required, the distances to the KNNs need to be calculated on-line depending on the
current location of the query object.

Table 1 shows the results of an example of applying the above algorithm for the
segment (L1, L2), where the first split point for this segment is P4. Hence, the KNNs of
any point on (L1, P4) interval is equal to the KNNs of L1 (and P4), for any point on (P4,
P1) segment is equal to KNNs of P4 (and P1), and so on. Note that the distances from a
query object, which is between two split points, to its KNNs can be similarly
computed. The results for segments (L2, n3), (n3, L3) and (L3, L4) can be similarly
found.

Split Point Distance to L1 Split-NN

P4 1 (2, 3)

P1 2 (1, 3)

P5 2.5 (2, 5)

P6 3 (2, 4)

P2 3.5 (1, 5)

P3 4 (1, 4)

Table 1: Split points and Split-NN for segment (L1, L2) of Figure 2

To illustrate our technique, we use the following example: suppose that in Figure
2, we are interested to find the three closest neighbors to any point on the path (L1, L2,
L3, L4). We focus on the first segment (L1, L2), the other subsequent segments can be
treated similarly.

 Step 1: The first step is to break the original path (L1, L2, L3, L4) to smaller
segments such that the end- points of every segment are either an intersection or
interest points. For the given example, the resulting segments will be (L1, L2), (L2, n3),
(n3, L3), (L3, L4).

 Step 2: Then we determine the KNNs of the two end-nodes of each segment.
The three nearest restaurants of L1 and L2 with their distances are {(n1, 3), (n2, 5), (n3,
7)} and {(n3, 1), (n5, 4), (n4, 5)}, respectively. Since both end-points of the segments
have different (or overlapping) set of KNN, then we know that there must be (a) split
point(s) between L1 and L2 and that the KNNs of any point on segment (L1, L2) is a
subset of the candidate list {n1 , n2 , n3 , n4, n5}. Next, we generate a new sorted list for

601Safar M.: Spatial Queries in Road Networks Based on PINE

L1 KNNs, specifying whether the NN is increasing or decreasing using ↑ and
↓symbols, respectively. The result of this step is {↑ (n1, 3), ↑ (n2, 5), ↓ (n3, 7), ↓ (n5,
10), ↓ (n4, 11)}. Note that the distances for the NN are calculated form L1.

 Step 3: for each increasing↑ member of the set, we compare it with each
decreasing↓ one to find the location of the split points. In this example, we have 2
increasing elements (↑ (n1, 3), ↑ (n2, 5)) and 3 decreasing elements (↓ (n3, 7), ↓ (n5,
10), ↓ (n4, 11)). Therefore, we have to generate a total of 2 * 3 = 6 split points. The
first split point (P1) is generated from ↑ (n1, 3) and ↓ (n3, 7) and is at a distance of
(7+3)/2 - 3 = 2 from L1. The second split point (P2) is generated from ↑ (n1, 3) and ↓
(n5, 10) and is at a distance of (10+3)/2-3 = 3.5 from L1. Similarly, we calculate the
rest of the split points.

 Step 4: The split points generated from step 2 are sorted incrementally
according to their distances to L1. In this example, P4 has the shortest distance to L1,
which is equal to 1, thus it is at the top of Table 1 and first in Figure 4. The third
column entries represent the NNs from which the corresponding split point is
generated. For example, when we generated P1 in step 3, we compared n1 with n3
hence (1, 3) in the column. Similarly, to generate P2, we compared n1 with n5, hence
(1, 5) in the column. Table 1 shows the results of this step for the segment (L1, L2).

Figure 4: Split points for segment (L1, L2) placed on the path ordered according to
their distances to L1

Using this table we can solve the problem of our example. The problem was to
find the continuous three nearest neighbors of a query point moving from L1 to L4. To
solve that, we started with step 1 to get Table 1. Our (modified IE) says starting from
L1 to the first split point (P4) the 3 NNs are [n1, n2, n3] sorted according to distances to
L1, from the list in step 2. Once we reach P4, then moving toward P1 my 3NN will
change as follows:
• Look at P4 entry in Table 1 [P4 | 1 | (2,3)] the third column entry indicates a

change in n1 and n3. If these neighbors where already in the list of L1 3NN, then
we change the order of elements only. My new 3NN from P4 P1 are the same
as 3NN form L1 P4 except for the change of positions n2 with n3. The resulting
3 NN for the path P4 P1 are [n1, n3, n2] sorted according to distances to P4.

• Then from P1 P5, we look at P1 entry in the same table and see (n1, n3) in the
third column. If the two elements in the tuple were already in the sorted list of

L1 L2

P4 P1 P5 P6 P2 P3
0.5 0.5 0.5 0.5 0.5

1
2

2.5
3

3.5
4

0.5

602 Safar M.: Spatial Queries in Road Networks Based on PINE

P4’s 3NNs, then we change their order as what happened for split point P4 above.
The resulting 3NN are the same as 3NN from L1 P4 with a change in positions
of n1 and n3 to get this 3NNs [n3, n1, n2].

• Then from P5 P6,we look at P5 entry in the same table and see (2, 5) in the third
column. If one of the neighbors in the tuple is in the ordered list of P1’s 3NNs,
and the other one is not, then we take out one and replace it with the other
element. The resulting 3NN are the same as 3NN from P1 P4 with replacement
of a neighbor n5 with n2 to get this 3NN [n3, n1, n5], sorted according to distances
to P5.

• Continuing the trip to reach P6 from P5, the table entry for P6 has (n2, n4) that are
neither in P5’s 3NN list. This means that at this split point there is no change in
the nearest neighbors from the ones at the pervious split point and it stays [n3, n1,
n5] for the interval]P1 P5 P6[. From P2 P3, we find (1, 5) in Table 1, so the
new 3NN are [n3, n5, n1]. Finally, we reach the segment’s end L2 from P3. Looking
at (1, 4) in the table, the new 3NNs for the interval P3 L2 are [n3, n5, n4].
As you notice, at split points P5 and P3, we replaced the elements of the 3NN with

other elements according to the entries in Table1, thus these points are called (ESP).
Furthermore, at split points P4, P1, P6, and P2 we only changed the order of neighbors
as we progressed through the steps, thus these are called (OSP). Figure 5 illustrates
these types of split points for the interval (L1, L2).

Figure 5: Two types of split points: ESP (P5 and P3) and OSP (P4, P1, P6, and P2)

for the interval (L1, L2)

5.3 Cknn extensions and enhancement

Our experimental results in [Safar, 05] showed that VN3 failed in answering some
CKNN queries and provided invalid results. Our analysis of the algorithm identified
some flaws in the algorithm, especially in the cases where both end points of a line
segment (road link) have a common nearest neighbour. In this case, the algorithm
assumes that while moving from one end point to the other, the distance to that
common nearest neighbour either increases or decreases through out the link.
However, our investigation and analysis showed that this is not the case. Usually the
distance increases until you reach a virtual split point (not real). At this point, the
distance gets decreased because the shortest path to the common nearest neighbour
would pass through the second end point. Hence, in this section we provide a
modified algorithm to resolve that problem.

An example of this type of situation is shown in Figure 6, where a moving object
(e.g., a car) is travelling along the path (A,B) and we are interested in finding the first
4 closest restaurants to the object at any given point on the path. The result of a
continuous NN query is a set of split points and their associated KNN. The split
points specify the locations on the path where the KNN of the object change. In other

L1 L2

P4 P1 P5 P6 P2 P3

603Safar M.: Spatial Queries in Road Networks Based on PINE

words, the KNN of any object on the segment (or interval) between two adjacent split
points is the same as the KNN of the split points. The challenge for this type of query
is to efficiently find the location of the split point(s) on the path.

Figure 6: Example with both end point (A,B) having a common NN (r4)

In Figure 6 we have a car that travels from A to B and we want to find the 4
nearest neighbours while it is moving toward B. According to [Kolahdouzan, 04a] the
4 NN for the car will be a subset of the 4 NN of A and 4 NN of B. Therefore, we
follow the following algorithm:

Step 1: First we find the 4 NN for A and for B. 4NN for A =
{(r1,2),(r5,3),(r4,4),(r2,8)}, 4NN for B = {(r2,3),(r3,4),(r4,5),(r1,7)}

Step 2: Decide which neighbours are common and which are not: Common
Neighbours: r1, r4, r2, Uncommon Neighbours: r5 , r3

Step 3: For uncommon points:
• r5 (one of A 4 nearest neighbours) distance will always increase ↑ as the

car moves from A to B
• r3 (one of B 4 nearest neighbours) distance will always decrease ↓ as the

car moves from A to B
Step 4: For common points:

• If the shortest path goes through one of the nodes (A or B) all the time
o r2 (shortest path will always go through B) distance will

always decrease ↓ as the car moves from A to B
o r1 (shortest path will always go through A) distance will

always increase ↑ as the car moves from A to B
• If the shortest path doesn’t go through one of the Nodes (A or B) all the

time (e.g., at the beginning the shortest path goes through A then the
shortest path goes through B). For r4 at the start the distance from the
car to r4 will start with an increase ↑ since the shortest path goes through
A but at some point the distance from the car to the r4 will ↓ decrease
since the shortest path will go through B. This point will be the middle
of (r4, A, B, r4) path. To find this point we use the following equation:
X=(AC + AB + BC)/2. Hence, the distance from the start point (switch
point) = X-AC

604 Safar M.: Spatial Queries in Road Networks Based on PINE

Step 5: Form a list that contains A and B 4 NN (add the distance between A and
B to the B’s neighbours) and add the increase, decrease and switch
indicators:{(r1,2)↑, (r5,3)↑, (r4,4)↑3* or 7* ,(r2,8)↓, (r3,9)↓}. 3* means that we will
switch the indicator after the car crosses 3 units from A towards B (or when the
distance from r4 to the car equals 7 through A).

Step 6: Find the split point and compare it with the switch value. If it is greater
than it, then do the switching and then recalculate the split point. For each split point
decide whether it is an Order-Split point (OSP) (where only the order of the 4 NN
changed), or it is an Element-Split point (ESP)

• Find the split point: the split points will be found when ever we have ↑
followed by ↓

• First split point between r4 and r2 and it will be at 6 and after the car
crosses 2 units (which is < switch point). This split point called OSP (the
first 4 nearest neighbours wont change)

Step 7: Update the list add 2 unit to pairs that have ↑ indicator and subtract 2
from pairs that have ↓ indicator, The new list will be as follows: {(r1,4)↑, (r5,5)↑
,(r2,6)↓, (r4,6)↑3*, (r3,7)↓}

Step 8: Go to Step 6 and 7 again
• Between r2,r5 after .5 unit (2.5 from A)
• Between r4,r3 after .5 unit (2.5 from A)
• The same split point in this split point one of the 4 nearest neighbours

will be changed so this is ESP: {(r1,4.5)↑, (r2,5.5)↓, (r5,5.5)↑, (r3,6.5)↓,
(r4,6.5)↑3*}

Step 9: Go to Step 6 and 7 again
• Between r1,r2 after .5 unit (3 from A which = switch point).
• Between r5,r3 after .5 unit (3 from A which = switch point).
• This split point called OSP (the first 4 nearest neighbours will not

change)
• But its also called switch point where the shortest path of the common

point r4 will go through B rather than going through A and the distance
of the car will decrease as the car moves toward B: {(r2,5)↓, (r1,5)↑,
,(r3,6)↓, (r5,5.5)↑, (r4,7) ↓}

Step 10: Repeat 6 and 7 until the first 4 pairs in the list = 4NN for B =
{(r2,3),(r3,4),(r4,5),(r1,7)}, which are r2, r3, r4, r1

6 Experimental results

We conducted several experiments to compare the performance of our enhanced
algorithms using PINE to solve Continuous KNN queries to that of continuous KNN
on VN3 (IE). We used real-world data sets obtained from NavTech Inc., used for
navigation and GPS devices installed in cars, and represent a network of
approximately 110,000 links and 79,800 nodes of the road system in downtown Los
Angeles. The experiments were using Oracle 9 as the database server. We present the
average results of 100 runs of continuous K nearest neighbor queries where K varied
from 1 to 20.

605Safar M.: Spatial Queries in Road Networks Based on PINE

6.1 Continuous knn using pine

We conducted several experiments to evaluate the performance of the enhanced
Continuous KNN queries with PINE structure using different sets of points of interest
(e.g., restaurants, shopping centers, …etc.). We calculated the number of times that
the KNN query must be issued and the execution time in seconds, for different values
of K and assumed that the length of the travelling paths are equal to 4 km. The
traveling paths were generated randomly, however, we made sure that we do not visit
any node more than once (to avoid cycles).

In Table 2, we present the average results of 100 runs of the enhanced continuous
K nearest neighbor queries using PINE. For example, in the table below we show the
query response time when the length of the traveling path is 4 km and the value of K
varies from 1 to 20. The first and second columns specify the entities (or points of
interest) and their population and cardinality ratio (i.e., the number of entities over the
number of links in the network), respectively. From the third column and forward,
each table entry has two values (averaged over 100 runs): 1) Number of KNN queries
that were issued and 2) Execution time in seconds.

Travelling Path = 4Km
Averaged over 100

queries
K=1 K=3 K=5 K=10 K=20

#KNN
Queries

#KNN
Queries

#KNN
Queries

#KNN
Queries

#KNN
Queries Entities Qty

(density) Execution
Time

Execution
Time

Execution
Time

Execution
Time

Execution
Time

27 26 26 25 24
Hospital 46

(0.0004) 16 39 58 102 198
26 26 25 25 25 Shopping

Centre
173

(0.0016) 9 27 34 75 142

26 25 25 24 24
Parks 561

(0.0053) 4 9 17 26 49
23 24 23 23 23

Schools 1230
(0.015) 2 5 6 14 23

23 24 23 23 23 Auto
Services

2093
(0.0326) 2 5 6 14 23

21 22 21 23 22
Restaurants 2944

(0.0580) 1 2 3 6 9

Table 2: Performance of our enhanced algorithm on PINE to solve CKNN queries.

606 Safar M.: Spatial Queries in Road Networks Based on PINE

6.2 Continuous knn using vn3 (IE)

We conducted several experiments to evaluate the performance of the Continuous
KNN queries with VN3 structure (IE) using different sets of points of interest (e.g.,
restaurants, shopping centers, …etc.) and for different values of K (values of {1, 3, 5,
10, 20}). We used traveling paths of length 4 km. In Table 3, we present the average
results of 100 runs of IE for different values of K varying from 1 to 20.

Travelling Path =
4Km

Averaged over 100
queries

K=1 K=3 K=5 K=10 K=20

Entities Qty
(density)

#KNN
Queries

#KNN
Queries

#KNN
Queries

#KNN
Queries

#KNN
Queries

 Execution
Time

Execution
Time

Execution
Time

Execution
Time

Execution
Time

25.9 31.95 33.03 43.0 -
Hospital 46

(0.0004) 2.27 197.72 595.35 1939.88 -
26.51 32.47 42.22 51.93 61.54 Shopping

Centre
173

(0.0016) 2 26.93 77.16 418.77 1729.39
29.44 39.75 48.16 60.39 70.06

Parks 561
(0.0053) 2.36 16.69 32.51 87.48 226.11

30.96 44.58 50.18 64.61 64.73
Schools 1230

(0.015) 3.55 14.43 26.33 66.72 161.87
34.64 45.72 50.54 64.99 65.7 Auto

Services
2093

(0.0326) 6.56 36.73 73.98 182.23 386.11
35.44 47.19 54.2 58.9 -

Restaurants 2944
(0.0580) 11.58 54.57 106.14 241.58 -

Table 3: Performance of Continuous KNN queries using VN3.

6.3 Analysis

From Table 2, Table 3, and Figure 7, we conclude that the total query response time
of CKNN (based on PINE) is better than the query response time of CKNN (based on
VN3). On average CKNN-PINE is 9 times faster than CKNN-VN3. This is because
PINE requires less expensive shortest path computations, and as shown in (Safar,
2005) VN3 requires 8.5 times the number of computations required by PINE to
compute any required KNN. As the number of K increases the difference in
performance gets even larger. For example, for K = 10, CKNN-VN3 is almost 40
times slower than CKNN-PINE. In general, as the density increases, the performance
of CKNN-VN3 degrades more relative to PINE. This is because, as the density
increases, the number of interest points compared to the total number of links in the
network increases. Hence, more intersection points are created and more split points

607Safar M.: Spatial Queries in Road Networks Based on PINE

are expected to appear on the path. From Figure 8, we can conclude that the number
of KNN queries issued by CKNN-VN3 is on average twice more than that of CKNN-
PINE (slightly increased by increasing K), and that as the density increases, the
number of KNN queries increases also but by a small factor.

Figure 7: Relative execution time of CKNN using VN3 vs. PINE.

Figure 8: Relative number of KNN queries issued to solve CKNN using VN3 vs. PINE.

0

5

10

15

20

25

30

35

40

45

1 3 5 10 20

K

Hospital
Shopping Center
Parks
Schools
Auto Services
Restaurants

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 10 20

K

Hospital
Shopping Center
Parks
Schools
Auto Services
Restaurants

608 Safar M.: Spatial Queries in Road Networks Based on PINE

7 Conclusion and future work

In this paper we presented the support of different spatial queries using our PINE
structure. We presented a novel approach for continuous k nearest neighbor queries
(CKNN) in spatial network databases. Our approach, based on PINE, focused on
moving queries issued on stationary objects in Spatial Network Database (SNDB).
Our solution addressed a new type of query that is plausible to many applications
where the answer to the query not only depends on the distances of the nearest
neighbors, but also on the user or application need. This was accomplished by
distinguishing between two types of split points (ESP, OSP), which reduced the
number of computations to retrieve the continuous KNN of a moving object. In
addition, we enhanced the CKNN query support using VN3 by identifying its short
comes, especially in the existence of common nearest neighbours between the two
end points of a road link.

Our algorithm for continuous K nearest neighbor queries in spatial network
databases based on a Progressive incremental network expansion algorithm (PINE),
finds the location of split points and the corresponding KNNs on a path. The main
features of our algorithm are as follows: 1) CKNN using PINE outperforms CKNN
based on VN3 (in terms of CPU time), one of the few and recently proposed
algorithms for CKNN queries in spatial network databases. It outperforms CKNN-
VN3 with a factor of 9 depending on the value of K and the density of the points of
interest, 2) CKNN using PINE requires fewer KNN computations as compared to
both CKNN using VN3. CKNN using VN3 requires a factor of 2 more computations
depending on the value of K and the density of the points of interest.

This paper shows the road to several interesting and practical directions for future
work on different spatial queries using PINE structure. Many works are redirecting
the use of such queries from a scientific method to a real commercial application in
several fields like telecommunication and location based services. We plan to extend
our algorithms and structures to address group KNN, constraint KNN, reverse KNN,
continuous RNN and group RNN queries.

Acknowledgements

This research was funded by Research Administration at Kuwait University (Project
No EO02/04). I would like to thank Fatemah Al-Wazzan, Ahmad Al-Saleh, Ahmad
Hammad, Bashar Abdullah, Dariush Ibrahimi, and Khalid Saaifan for their valuable
help, feedback, and support.

References

[Berchtold, 97] S. Berchtold, B. Ertl, D.A. Keim, H.P. Kriegel, T. Seidl, Fast Nearest Neighbor
Search in High-Dimensional Space, Proceedings of ICDE, 1997, Orlando, Florida, USA.

[Bozkaya, 97] T. Bozkaya, M. Ozsoyoglu, Distance-Based Indexing for High-Dimensional
Metric Spaces, Proceedings of SIGMOD, 1997, Tucson, Arizona, USA.

[Chiueh, 94] T. Chiueh, Content-Based Image Indexing, Proceedings of VLDB, 1994, Santiago
de Chile, Chile.

609Safar M.: Spatial Queries in Road Networks Based on PINE

[Ciaccia, 97] P. Ciaccia, M. Patella, P. Zezula, M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces, Proceedings of the VLDB Journal, 1997, pp. 426-435.

[Corral, 00] A. Corral, Y. Manolopoulos, Y. Theodoridis, M. Vassilakopoulos, Closest pair
queries in spatial databases, Proceedings of ACM SIGMOD International Conference on
Management of Data, 2000, Dallas, USA.

[Hjaltason, 99] G.R. Hjaltason, H. Samet, Distance Browsing in Spatial Databases, Proceedings
of TODS, 1999, No. 2, pp. 265-318, vol. 24.

Jung, S. et al. (2002), ‘An Efficient Path Computation Model for Hierarchically Structured
Topological Road Maps’, IEEE Transaction on Knowledge and Data Engineering.

[Kolahdouzan, 04a] M. Kolahdouzan, C. Shahabi, Voronoi-Based K Nearest Neighbor Search
for Spatial Network Databases, Proceedings of VLDB, 2004.

[Kolahdouzan, 04b] M. Kolahdouzan, C. Shahabi, Continuous K Nearest Neighbor Queries in
Spatial Network Databases, Proceedings of the Second Workshop on SpatioTemporal Database
Management STDBM, 2004.

[Kollios, 99] G. Kollios, D. Gunopulos, V.J. Tsotras,Nearest Neighbor Queries in a Mobile
Environment, Proceedings of the International Workshop on Spatio-Temporal Database
Management, 1999, pp. 119–134.

[Korn, 96] F. Korn, N. Sidirapoulos, C. Faloutsos, E. Siegel, Z. Protopapas, Fast Nearest
Neighbor Search in Medical Image Databases, Proceedings of VLDB, 1996, Mumbai, India.

[Kung, 86] R. Kung, E. Hanson, Y. Ioannidis, T. Sellis, L. Shapiro, M. Stonebraker, Heuristic
Search in Data Base Systems, Proceedings of the first international workshop on Expert
Database systems, pp. 537 – 548, 1986, South Carolina, United States.

[Okabe, 00] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tessellations, Concepts and
Applications of Voronoi Diagrams, John Wiley and Sons Ltd., 2nd edition, 2000, ISBN 0-471-
98635-6.

[Papadias, 03] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao, Query Processing in Spatial
Network Databases, Proceedings of VLDB, 2003, pp. 802-813.

[Rigaux, 02] P. Rigaux, M. Scholl, A. Vorsard, Spatial Databases with Applications to GIS,
Morgan Kaufmann, 2002.

[Roussopoulos, 95] N. Roussopoulos, S. Kelley, F. Vincent, Nearest Neighbor Queries’,
Proceedings of SIGMOD, 1995, San Jose, California.

[Safar, 05] M. Safar, K Nearest Neighbor Search in Navigation Systems, Journal of Mobile
Information Systems (MIS), 2005, IOS Press.

[Saltenis, 00] S. Saltenis, C.S. Jensen, S.T. Leutenegger, M.A. Lopez, Indexing the Positions of
Continuously Moving Objects, Proceedings of ACM SIGMOD, 2000.

[Seidl, 98] T. Seidl, H.P. Kriegel, Optimal Multi-Step k-Nearest Neighbor Search, Proceedings
of SIGMOD, 1998, Seattle, Washington, USA.

[Shahabi, 02] C. Shahabi, M. Kolahdouzan, M. Sharifzadeh, A Road Network Embedding
Technique for k-Nearest Neighbor Search in Moving Object Databases, Proceedings of
ACMGIS, 2002, McLean, VA, USA.

[Song, 01] Z. Song, N. Roussopoulos, K-Nearest Neighbor Search for Moving Query Point,
Proceedings of the 7th International Symposium on Advances in Spatial and Temporal
Databases, 2001.

610 Safar M.: Spatial Queries in Road Networks Based on PINE

[Tao, 02a] Y. Tao, D. Papadias, Q. Shen, Continuous Nearest Neighbor Search, Proceedings of
VLDB, 2002, Hong Kong, China.

[Tao, 02b] Y. Tao, D. Papadias, X. Lian, Reverse kNN Search in Arbitrary Dimensionality,
Proceedings of 30th Very Large Data Bases (VLDB), 2002, pp. 744-755, Toronto, Canada.

[Yiu, 05] M.L. Yiu, N. Mamoulis, D. Papadias, Y. Tao, Reverse Nearest Neighbor in Large
Graphs, Proceedings of ICDE, 2005, pp. 186-187.

[YU, 01] C. Yu, B.C. Ooi, K.L. Tan, H.V. Jagadish, Indexing the Distance: An Efficient
Method to KNN Processing, Proceedings of the Very Large Data Bases Conference (VLDB),
2001.

611Safar M.: Spatial Queries in Road Networks Based on PINE

