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Abstract: The topological pressure of dynamical systems theory is examined from
a computability theoretic point of view. It is shown that for sofic shift dynamical
systems, the topological pressure is a computable function. This result is applied to a
certain class of one dimensional spin systems in statistical physics. As a consequence,
the specific free energy of these spin systems is computable. Finally, phase transitions
of these systems are considered. It turns out that the critical temperature is recursively
approximable.
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1 Introduction

The topological pressure [Bowen 1975] is a quantity which belongs to one of the
main concepts in the thermodynamic formalism [Ruelle 1978]. The thermody-
namic formalism itself is a generalization of the concepts of statistical physics
to the area of mathematical dynamical systems theory – to ergodic theory to be
more concrete [Walters 1982]. The topological pressure on the other hand can be
seen as a generalization of the topological entropy. The topological entropy is,
besides the metric entropy, one of the main quantities in ergodic theory. This is
because the topological entropy is an invariant with respect to topological con-
jugacy, that is if two dynamical systems are equivalent from a topological point
of view, then they have the same topological entropy. The same holds for the
metric entropy from a measure theoretic point of view. The topological pressure
finally is related to equilibrium measures for dynamical systems.

In this paper, computability aspects of the topological pressure are inves-
tigated. Since the topological pressure is a generalization of the topological
entropy, as already mentioned, the following elaboration is a continuation of
[Spandl 2007] where computability aspects of the topological entropy were con-
sidered. While in [Spandl 2007], it was possible to show the computability of
the topological entropy for types of shift dynamical systems far beyond the sofic
shifts, the computability of the topological pressure is shown here only for sofic
shifts. However, even for shifts of finite type, a subclass of the sofic shifts, the
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concept is applicable to a wide class of so called one dimensional spin systems,
mainly investigated in theoretical statistical physics. Hence the computability
aspects of the topological pressure can be transferred directly to computability
aspects of these models in statistical physics. Naturally, computability theoretic
aspects are of interest in that area, since there is a broad community of physicists
studying these systems by Monte Carlo simulations [Landau and Binder 2000].

The paper is organized as follows. In the next section, basic notation and
definitions are given. The topological pressure for general dynamical systems is
introduced as well as its form for shift dynamical systems as a specialization.
In Section 3, the transfer operator for shift dynamical systems is defined and
the connection between the transfer operator and the topological pressure (for
shift dynamical systems) is established. It turns out that for shifts of finite type,
the transfer operator can be represented as a matrix of nonnegative reals. So,
Perron-Frobenius theory is applicable showing that the topological pressure is
the logarithm of the corresponding Perron value. This allows a computability
theoretic investigation of the problem. It turns out that for shifts of finite type,
the topological pressure is computable. At last, the computation of the topologi-
cal pressure of a sofic shift can be reduced to the computation of the topological
pressure of a shift of finite type by modifying the input function. Finally in
Section 4 connections to statistical physics are drawn, more precisely to spin
systems on a one dimensional lattice with arbitrary interaction (also long range
interactions). It is shown that the specific free energy is computable for any kind
of computable interaction function with computable modulus of convergence.
Furthermore, phase transitions are examined which occur for long range inter-
actions. It turns out that the critical temperature is recursively approximable in
the sense of [Zheng and Weihrauch 2001].

2 Definition of the Topological Pressure

Let A denote an alphabet, that is a nonempty finite set. Then A∗ denotes the
set of all finite words over A and Aω the set of all infinite sequences over A,
that is Aω = {f : f : N → A}. The set of all bi-infinite sequences over A is
denoted by AZ. Occasionally Aω are denoted as the set of one-sided sequences,
in symbols also AN. The empty word is denoted by λ. For every w ∈ A∗, |w|
denotes the length of w. The concatenation of words u and v of A∗ is denoted
by uv. For any word w ∈ A∗ and i, j ∈ N, w[i,j] := wi . . . wn is the subword of
w with n := min(j, |w| − 1) if i ≤ j and i < |w|, as well as w[i,j] := λ otherwise.
If p ∈ AZ (p ∈ AN) and i, j ∈ Z (i, j ∈ N), then p[i,j] ∈ A∗ denotes the word
p[i,j] = pipi+1 . . . pj if i ≤ j and p[i,j] = λ if i > j. AZ and AN are considered as
metric spaces where the standard Cantor metric is assumed.

A partial function is denoted by f :⊆ X → Y , a total function by f :
X → Y . A (partial) function f :⊆ Z1 × · · · × Zk → Z0 with Z0, Z1 . . . Zk ∈
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{A∗,Aω} is called computable, if it is computable by a Type-2 Turing machine
[Weihrauch 2000]. A function f :⊆ X → Y is called computable, if it has a
computable realization g :⊆ Z1 → Z0, Z0, Z1 ∈ {A∗,Aω}, in some standard
naming systems. To be more precise, f ◦ γ = δ ◦ g holds on the domain of
f ◦ γ where γ :⊆ Z1 → X and δ :⊆ Z0 → Y are naming systems. All concepts
concerning Type-2 computability used here are in the sense of [Weihrauch 2000].
If a computable function AZ → R is considered, the naming system B : Aω → AZ

with

B(x)i :=

{
x2i if i ≥ 0

x2|i|−1 if i < 0

for all x ∈ Aω , i ∈ Z is used.
For the definition of the topological pressure, the approach presented in

[Walters 1982] is followed. Let (X, d) be a compact metric space and T : X → X

a continuous map. Then the pair (X,T ) is called a (discrete-time) dynami-
cal system. Furthermore consider the class C(X) of all real valued, continu-
ous functions f : X → R. For any n ≥ 1, define a new metric dn on X by
dn(x, y) := max0≤i≤n−1 d(T i(x), T i(y)) for all x, y ∈ X .

Definition 1. Let n ∈ N and ε > 0. A subset F ⊆ X is said to (n, ε)-span X

with respect to T if for any x ∈ X there is some y ∈ F such that dn(x, y) ≤ ε

holds.

Definition 2. The topological pressure of (X,T ) is defined as the map P (T, .) :
C(X) → R ∪ {∞}, given by

P (T, f) := lim
ε→0

lim sup
n→∞

1
n

logPn(T, f, ε)

for all f ∈ C(X) with

Pn(T, f, ε) := inf{
∑
x∈F

exp(
n−1∑
i=0

f(T i(x))) : F is a (n, ε)-spanning set for X}.

Here, the natural logarithm is considered. The topological entropy is the pressure
with the null function, that is the constant function with value zero (sometimes,
in the definition of the topological entropy the logarithm of base 2 is used instead
of the natural logarithm).

In the following, special classes of dynamical systems are considered: shifts
over a finite alphabet A. Let σ : AZ → AZ be the (continuous) shift map defined
by σ(x)i := xi+1 for all x ∈ AZ. Then, for a closed, shift invariant subsetX ⊆ AZ,
σ(X) = X , the pair (X,σX) is called a shift dynamical system or a shift and X is
called a shift space. Here, σX : X → X is the restriction of σ to X . Occasionally,
the subscript X in σX is omitted as well as also X is called a shift. For a shift
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space X , A∗(X) denotes the set of all words in A∗ occurring as a subword in
some element in X . A∗(X) is called the language of X . The complement of the
language of a shift space is a set of forbidden words. To be more precise, a set
of forbidden words of some shift space X is any subset F ⊆ A∗ such that X is
the result of deleting all elements of AZ having some word in F as subword. If
a shift space has a finite set of forbidden words, it is called a shift of finite type.
A shift of finite type is called M -step, M ≥ 0, if there is a corresponding set of
forbidden words where the maximal length of the words in this set is M + 1.

Let X and Y be two shift spaces. A function Φ : X → Y is called a homo-
morphism if it is continuous and commutes with the shift map: Φ◦σX = σY ◦Φ.
A homomorphism Φ : X → Y is called a factor map if it is onto. In that case, Y
is called a factor of X . Finally, a shift is called a sofic shift if it is the factor of
a shift of finite type.

Proposition3. Let (X,σ) be a shift over some alphabet A. Then the topological
pressure is given by

P (f) = lim
n→∞

1
n

log
∑

u∈An(X)

exp(Sn(f, u))

with

Sn(f, u) := inf{
n−1∑
i=0

f(σi(x)) : x ∈ X, x[0,n−1] = u}

for all n ∈ N, u ∈ An(X), where An(X) is the set of all words of length n

occurring in elements of X.

This fact is standard to some extent. However, since the tools to prove the
proposition are used in the course of this work, the complete proof is shown here.

Let X be a shift space and f ∈ C(X). Then for any k ∈ N set Vark(f) :=
sup{|f(x) − f(y)| : x, y ∈ X, d(x, y) < 2−k}.

Lemma4. Let (X,σ) be a shift and f ∈ C(X). Then,

1. for any u ∈ A∗(X) of length n,

sup{
n−1∑
i=0

f(σi(x)) : x[0,n−1] = u} ≤ inf{
n−1∑
i=0

f(σi(x)) : x[0,n−1] = u}+

2
n−1∑
i=0

Vari(f)

holds and

2. limn→∞ 1
n

∑n−1
i=0 Vari(f) = 0.
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Proof. First, it is Vark(f) = sup{|f(x) − f(y)| : x, y ∈ X, x[−k,k] = y[−k,k]}.
Thus, for any u ∈ A∗(X) of length n,

sup{
n−1∑
i=0

f(σi(x)) : x[0,n−1] = u}

≤
n−1∑
i=0

sup{f(σi(x)) : x[0,n−1] = u}

≤
n−1∑
i=0

(inf{f(σi(x)) : x[0,n−1] = u}+

sup{|f(x) − f(y)| : x, y ∈ X, x[−i,n−1−i] = y[−i,n−1−i]})

≤ inf{
n−1∑
i=0

f(σi(x)) : x[0,n−1] = u} + 2
�n−1

2 �∑
i=0

Vari(f)

≤ inf{
n−1∑
i=0

f(σi(x)) : x[0,n−1] = u} + 2
n−1∑
i=0

Vari(f)

holds. Here, 
x� for some x ∈ R is the greatest integer n ∈ Z with n ≤ x.
Since f is continuous and X compact, f is uniformly continuous. Therefore,

limn→∞ Varn(f) = 0 holds. Then, also limn→∞ 1
n

∑n−1
i=0 Vari(f) = 0 holds. �

Lemma5. cn := log
∑

u∈An(X) exp(sup{∑n−1
i=0 f(σi(x)) : x ∈ X, x[0,n−1] = u})

is subadditive, that is for all n,m ∈ N, cn+m ≤ cn + cm holds.
Therefore, the proper or improper limit lim

n→∞
cn

n exists and equals infn{ cn

n }.

Proof. For all n,m ∈ N,

cn+m = log
∑

u∈An+m(X)

exp(sup{
n+m−1∑

i=0

f(σi(x)) : x ∈ X, x[0,n+m−1] = u})

≤ log
∑

u∈An(X)

∑
v∈Am(X)

exp(sup{
n−1∑
i=0

f(σi(x)) +
m−1∑
i=0

f(σi(y)) :

x[0,n−1] = u, y[0,m−1] = v})

≤ log
∑

u∈An(X)

∑
v∈Am(X)

exp(sup{
n−1∑
i=0

f(σi(x)) : x[0,n−1] = u}+

sup{
m−1∑
i=0

f(σi(x)) : x[0,m−1] = v})
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= log
∑

u∈An(X)

exp(sup{
n−1∑
i=0

f(σi(x)) : x ∈ X, x[0,n−1] = u})+

log
∑

u∈Am(X)

exp(sup{
m−1∑
i=0

f(σi(x)) : x ∈ X, x[0,m−1] = u})

= cn + cm

holds.
The second statement is a standard argument (see e.g., Lemma 4.1.7 in

[Lind and Marcus 1995]). �
As a direct consequence of Lemma 4 and Lemma 5, it holds the following

Corollary 6. For all f ∈ C(X),

lim
n→∞

1
n

log
∑

u∈An(X)

exp(inf{
n−1∑
i=0

f(σi(x)) : x ∈ X, x[0,n−1] = u}) =

lim
n→∞

1
n

log
∑

u∈An(X)

exp(sup{
n−1∑
i=0

f(σi(x)) : x ∈ X, x[0,n−1] = u})

holds.

Finally, the proof of Proposition 3 is given.
Proof.Proof of Proposition 3. First, for all n, k ≥ 1, x ∈ X ,

{y : dn(x, y) ≤ 2−k} = {y : y[−k+1,k+n−2] = x[−k+1,k+n−2]}
holds. This gives

inf{
∑
x∈F

exp(
n−1∑
i=0

f(σi(x))) : F is a (n, 2−k)-spanning set for X} =

inf{
∑

u∈A2k+n−2(X)

exp(
n−1∑
i=0

f(σi(x))) : x ∈ X, x[−k+1,k+n−2] = u}

Therefore,

inf{
∑
x∈F

exp(
n−1∑
i=0

f(σi(x))) : F is a (n, 2−k)-spanning set for X}

≥
∑

u∈A2k+n−2(X)

exp(inf{
n−1∑
i=0

f(σi(x)) : x ∈ X, x[−k+1,k+n−2] = u})

≥
∑

u∈An(X)

exp(inf{
n−1∑
i=0

f(σi(x))) : x ∈ X, x[0,n−1] = u})
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and, on the other hand,

inf{
∑
x∈F

exp(
n−1∑
i=0

f(σi(x))) : F is a (n, 2−k)-spanning set for X}

≤
∑

u∈A2k+n−2(X)

exp(sup{
n−1∑
i=0

f(σi(x)) : x ∈ X, x[−k+1,k+n−2] = u})

≤ |A2k+n−2(X)|
|An(X)|

∑
u∈An(X)

exp(sup{
n−1∑
i=0

f(σi(x))) : x ∈ X, x[0,n−1] = u})

≤ |A2k−2(X)|
∑

u∈An(X)

exp(sup{
n−1∑
i=0

f(σi(x))) : x ∈ X, x[0,n−1] = u})

holds. Here, the inequality |A2k+n−2(X)| ≤ |A2k−2(X)| · |An(X)| is used. So,
the estimation

lim sup
n→∞

1
n

log
∑

u∈An(X)

exp(inf{
n−1∑
i=0

f(σi(x)) : x ∈ X, x[0,n−1] = u}) ≤ P (f) ≤

lim sup
n→∞

1
n

log
∑

u∈An(X)

exp(sup{
n−1∑
i=0

f(σi(x)) : x ∈ X, x[0,n−1] = u})

is derived. The assertion follows now with Corollary 6. �

3 Properties of the Topological Pressure

In this section, the transfer operator is introduced and its relation to the topo-
logical pressure is presented. This gives directly a method for computing the
topological pressure.

Now, one-sided shifts are considered. Let A be an alphabet. A one-sided
shift over A is a subset X+ ⊆ AN such that there is a shift X ⊆ AZ with
X+ = {x ∈ AN : ∃y ∈ X x = y[0,∞)}. In X+, there also is a shift map
σ : X+ → X+ given by σ(x)i := xi+1. The one-sided shift map is continuous,
but not injective and therefore no homeomorphism. Furthermore, X+ is closed
in the Cantor topology of AN and is shift invariant, that is σ(X+) = X+. So, the
pair (X+, σ) forms a dynamical system. On the class of all continuous functions
over X+, C(X+), the topological pressure of (X+, σ) is defined analogously to
the two-sided case.

On the one-sided shifts, for any continuous function ϕ ∈ C(X+) the so called
transfer operator can be defined [Bowen 1975, Ruelle 1978].
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Definition 7. Let ϕ ∈ C(X+) be given. The transfer operator with respect to
the one-sided shift (X+, σ), Lϕ : C(X+) → C(X+), is given by

(Lϕf)(x) :=
∑

y∈σ−1(x)

eϕ(y)f(y)

for all f ∈ C(X+).

Definition 8. Let n ∈ N and X+ be a one-sided shift space. The subclass
Cn(X+) ⊆ C(X+) of the class of all continuous functions over X+ with finite
domain of dependence of length n + 1 is defined as follows. If f ∈ Cn(X+),
then the value of f(x) for some x ∈ X+ depends only on x[0,n]. In other words,
f(x) = f(y) for all x, y ∈ X+ with x[0,n] = y[0,n].

Proposition9. Let X+ be a one-sided M -step shift of finite type for some M ∈
N. Then for any n ≥ M and ϕ ∈ Cn(X+), Lϕf ∈ Cn−1(X+) for all f ∈
Cn−1(X+) and Lϕf ∈ Cm−1(X+) for all f ∈ Cm(X+) with m ≥ n.

Proof. Let ϕ ∈ Cn(X+), n ≥ M and m ≥ n − 1. Consider some function
f ∈ Cm(X+). Define a function fm+1 : Am+1 → R by fm+1(u) := f(ux)
for some x ∈ X+ such that ux ∈ X+ if u ∈ Am+1(X) and fm+1(u) := 0
if u ∈ Am+1(X). Additionally, define ϕn+1 : An+1 → R analogously for ϕ.
Next let χX+ : AN → {0, 1} be the characteristic function of X+ and χA∗(X) :
A∗ → {0, 1} the characteristic function of A∗(X). Then, since X+ is a shift of
finite type, according to Theorem 2.1.8 in [Lind and Marcus 1995], χX+(uvx) =
χA∗(X)(uv) for all u, v ∈ A∗(X), x ∈ X+ such that uvx ∈ X+ and |v| ≥ M .
Then for all u ∈ Am+1(X), x ∈ X+ such that ux ∈ X+,

(Lϕf)(ux) =
∑

y∈σ−1(ux)

eϕ(y)f(y)

=
∑
a∈A

χX+(aux)eϕn+1(au[0,n−1])fm+1(au[0,m−1])

=
∑
a∈A

χA∗(X)(au[0,M−1])eϕn+1(au[0,n−1])fm+1(au[0,m−1])

is independent of x. Furthermore, Lϕf ∈ Cm−1(X+) for all m ≥ n and Lϕf ∈
Cn−1(X+) for m = n− 1. �

So, for the eigenvalue problem of the transfer operator, the following corollary
is a direct consequence.

Corollary 10. Let X+ be a one-sided M -step shift of finite type for some M ∈ N

and ϕ ∈ Cn(X+) for some n ≥ M . Let f ∈ C(X+) be an eigenfunction of the
transfer operator Lϕ. Then either f ∈ Cn−1(X+) or f ∈ Cm(X+) for all m ∈ N.
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The functions in Cn−1(X+) can be interpreted as vectors in R|A|n . Then the
transfer operator can be written as an |A|n by |A|n transfer matrix T = (Tu,v)
with (Lϕfn)(v) =

∑
u∈An fn(u)Tu,v. The transfer matrix has the explicit form

Tu,v = δv[0,n−2],u[1,n−1]χA∗(X)(uvn−1)eϕn+1(uvn−1), where δ. is Kronecker’s delta.
So, the eigenvalue problem of the transfer operator is in part reduced to the

eigenvalue problem of Tfn = λfn of the transfer matrix T . Since T is a non-
negative matrix, the Perron-Frobenius theory is applicable [Gantmacher 1959,
Seneta 1981]. In the following, it will be shown that the transfer matrix com-
pletely determines the topological pressure of (X,σ) if X is a shift of finite type.

Definition 11. Let n ∈ N and X be a two-sided shift space. The subclass
Cn(X) ⊆ C(X) of the class of all continuous functions overX with finite domain
of dependence of length 2n+1 is defined as follows. If f ∈ Cn(X), then the value
of f(x) for any x ∈ X depends only on x[−n,n]. In other words, f(x) = f(y) for
all x, y ∈ X with x[−n,n] = y[−n,n].

Lemma12. Let X+ be a one-sided shift space and ϕ ∈ C(X+). Then for m ≥ 1,
the m-th iterate of the transfer operator Lϕ : C(X+) → C(X+), Lm

ϕ , is given by

(Lm
ϕ f)(x) =

∑
y∈σ−m(x)

exp(
m−1∑
i=0

ϕ(σi(y)))f(y). (1)

Furthermore, let X+ be M -step and ϕ ∈ Cn(X+) for some n ≥M , n ≥ 1. Then
for m ≥ n, the m-th iterate of the transfer matrix T , corresponding to Lϕ has
the form

Tm
v,u =

∑
w∈Am−n

χA∗(X)(vwu) exp(
m−1∑
i=0

ϕn+1((vwu)[i,i+n])) (2)

Proof. Equation (1) is easily seen by induction over m. Then if ϕ ∈ Cn(X+),
n ≥M , m ≥ n and f ∈ Cn−1(X+), analogously to the proof of Proposition 9 it
can be shown that for all u ∈ An(X),

(Lm
ϕ f)n(u) =

∑
v∈Am

χA∗(X)(vu) exp(
m−1∑
i=0

ϕn+1((vu)[i,i+n]))fn(v[0,n−1])

=
∑

v∈An

∑
w∈Am−n

χA∗(X)(vwu) exp(
m−1∑
i=0

ϕn+1((vwu)[i,i+n]))fn(v)

holds. Hence, Tm
v,u =

∑
w∈Am−n χA∗(X)(vwu) exp(

∑m−1
i=0 ϕn+1((vwu)[i,i+n])) fol-

lows. �
Theorem 13 is a generalization of Theorem B in [Gurevich 1984] if the cor-

responding transfer matrix is not irreducible.
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Theorem 13. Let X be an M -step shift of finite type, n ≥M and ϕ ∈ Cn(X).
Then the topological pressure of ϕ, P (ϕ), is given by P (ϕ) = logλ where λ is the
Perron value of the transfer matrix corresponding to Lϕ+ . Here, ϕ+ ∈ Cn(X+)
is some function with ϕ+(x) = ϕ(y) for all x ∈ X+ and some y ∈ X with
x = y[0,∞).

Proof. Since X is an M -step shift of finite type and ϕ+ ∈ Cn(X+) with n ≥M ,
consider the eigenvalue problem of the corresponding transfer matrix T . First
assume that T is irreducible. Then there is an eigenfunction ψ ∈ Cn−1(X+) of
Lϕ+ corresponding to the Perron vector of T , with eigenvalue λ > 0 correspond-
ing to the Perron value of T such that ψ is strictly positive: max(ψ) > 0 and
min(ψ) > 0.

The eigenvalue problem directly gives∑
v∈An

Tm
v,uψn(v) = λmψn(u)

for all m ≥ 1 and hence∑
v,u∈An

Tm
v,uψn(v) = λm

∑
u∈An

ψn(u). (3)

Set ψ+ := max(ψ) > 0 and ψ− := min(ψ) > 0. Then according to the previous
lemma,

λmψ−|An(X)|

≤ ψ+
∑

v∈An(X)

∑
w∈Am(X)

χA∗(X)(vw) exp(sup{
m−1∑
i=0

ϕ+(σi(x)) : x[0,n+m−1] = vw})

≤ ψ+|An(X)|
∑

w∈Am(X)

exp(sup{
m−1∑
i=0

ϕ+(σi(x)) : x[0,m−1] = w})

holds, and on the other hand

λmψ+|An(X)|

≥ ψ− ∑
v∈An(X)

∑
w∈Am(X)

χA∗(X)(vw) exp(inf{
m−1∑
i=0

ϕ+(σi(x)) : x[0,n+m−1] = vw})

≥ ψ− ∑
w∈Am(X)

exp(inf{
m−1∑
i=0

ϕ+(σi(x)) : x[0,m−1] = w}).

By definition of ϕ+, one has

sup{
m−1∑
i=0

ϕ+(σi(x)) : x[0,m−1] = w} ≤ sup{
m−1∑
i=0

ϕ(σi(x)) : x[0,m−1] = w}
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and

inf{
m−1∑
i=0

ϕ+(σi(x)) : x[0,m−1] = w} ≥ inf{
m−1∑
i=0

ϕ(σi(x)) : x[0,m−1] = w}

for all w ∈ Am(X), m ∈ N.
So,

P (ϕ) ≤ lim
m→∞

1
m

logλm ≤ P (ϕ) + lim
m→∞

2
m

m−1∑
i=0

Vari(ϕ)

follows by Lemma 4 and finally P (ϕ) = logλ.
Eventually assume that the transfer matrix T is not irreducible. Then T can

be decomposed in K > 0 irreducible components each having an eigenfunction
ψi ∈ Cni−1(X+) with eigenvalue λi corresponding to the Perron vectors and
Perron values of the submatrices. Then Equation (3) has to be replaced by

K∑
i=1

∑
v,u∈Ani

Tm
v,uψni(v) =

K∑
i=1

λm
i

∑
u∈Ani

ψni(u)

and the further analysis is done as above. In that case, the estimation

P (ϕ) ≤ lim
m→∞

1
m

log
K∑

i=1

λm
i ≤ P (ϕ)

is derived. So, P (ϕ) = logλ follows where λ = maxi λi is the Perron value of the
transfer matrix T . �

In order to generalize this result to sofic shifts, some more tools are needed.

Lemma14. Let X and Y be shift spaces and Φ : X → Y a homomorphism. If
ϕ ∈ Cn(Y ) holds for some function ϕ : Y → R, then there exists some m ≥ n

with ϕ ◦ Φ ∈ Cm(X).

Proof. This is a consequence of Theorem 6.2.9 in [Lind and Marcus 1995]. �

Lemma15. Let X be a sofic shift. Then there is some shift of finite type Y , a
factor map Φ : Y → X and a constant C ≥ 1 such that |Φ−1({x})| ≤ C holds
for all x ∈ X.

Proof. See Theorem 3.3.2 and Example 8.1.6 in [Lind and Marcus 1995]. �
It turns out that the pressure of a sofic shift X can be calculated via some

shift of finite type Y such that X is a factor of Y .

Theorem 16. Let X be a sofic shift and ϕ ∈ Cn(X). Furthermore let Y be a
shift of finite type and Φ : Y → X a factor map according to Lemma 15. Then the
topological pressure of ϕ with respect to X, PX(ϕ), is given by PX(ϕ) = PY (ϕ◦Φ)
where PY (.) is the topological pressure with respect to Y .
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Proof. For ϕ ∈ Cn(X) one has

PX(ϕ) = lim
n→∞

1
n

log
∑

u∈An(X)

exp(inf{
n−1∑
i=0

ϕ(σi(x)) : x ∈ X, x[0,n−1] = u})

= lim
n→∞

1
n

log
∑

u∈An(X)

exp(inf{
n−1∑
i=0

ϕ(σi(Φ(y))) : y ∈ Y, Φ(y)[0,n−1] = u})

= lim
n→∞

1
n

log
∑

u∈An(X)

exp(inf{
n−1∑
i=0

(ϕ ◦ Φ)(σi(y)) : y ∈ Y,

Φ(y)[0,n−1] = u})

= lim
n→∞

1
n

log
∑

u∈An(X)

inf{exp(inf{
n−1∑
i=0

(ϕ ◦ Φ)(σi(y)) : y ∈ Y,

y[0,n−1] = v}) : v ∈ An(Y ), ∃ y ∈ Y y[0,n−1] = v ∧ Φ(y)[0,n−1] = u}.

Therefore, the following bounds can be derived. First,

PX(ϕ) ≤ lim
n→∞

1
n

log
∑

v∈An(Y )

exp(inf{
n−1∑
i=0

(ϕ ◦ Φ)(σi(y)) : y ∈ Y, y[0,n−1] = v})

= PY (ϕ ◦ Φ)

and second

PX(ϕ) ≥ lim
n→∞

1
n

log
∑

u∈An(X)

1
N(u)

∑
v∈An(Y )

δ(u, v) exp(inf{
n−1∑
i=0

(ϕ ◦ Φ)(σi(y)) :

y ∈ Y, y[0,n−1] = v} − V ar(ϕ ◦ Φ))

≥ lim
n→∞

1
n

log(
1
C

exp(−V ar(ϕ ◦ Φ))
∑

v∈An(Y )

exp(inf{
n−1∑
i=0

(ϕ ◦ Φ)(σi(y)) :

y ∈ Y, y[0,n−1] = v}))
= PY (ϕ ◦ Φ).

Here δ(u, v) is given by

δ(u, v) :=

{
1 if ∃ y ∈ Y y[0,n−1] = v ∧ Φ(y)[0,n−1] = u

0 otherwise

and N(u) :=
∑

v∈An(Y ) δ(u, v) for all u ∈ An(X), v ∈ An(Y ). According to
Lemma 15, N(u) ≤ C holds for some constant C ≥ 1 for all n ∈ N and u ∈
An(X). Furthermore, V ar(f) := sup{|f(x) − f(y)| : x, y ∈ Y } is finite for
f ∈ Cn(Y ). �
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Proposition17. Let ϕ ∈ C(X) and X be a shift space. Then there are functions
ϕ−

n , ϕ
+
n ∈ Cn(X) for all n ∈ N with P (ϕ−

n ) ≤ P (ϕ−
n+1) ≤ P (ϕ) ≤ P (ϕ+

n+1) ≤
P (ϕ+

n ) for all n ∈ N and limn→∞ P (ϕ−
n ) = limn→∞ P (ϕ+

n ) = P (ϕ).

Proof. Define ϕ−
n , ϕ

+
n ∈ Cn(X) by ϕ−

n (x) := inf{ϕ(y) : y ∈ X, y[−n,n] = x[−n,n]}
and ϕ+

n (x) := sup{ϕ(y) : y ∈ X, y[−n,n] = x[−n,n]}. Since ϕ is continuous and X
compact, both functions are well defined. For all n ∈ N, ϕ−

n ≤ ϕ ≤ ϕ+
n holds, as

well as ϕ−
n ≤ ϕ−

n+1 and ϕ+
n+1 ≤ ϕ+

n . Since the topological pressure is monotone
(see [Walters 1982], Theorem 9.7(ii)), it holds P (ϕ−

n ) ≤ P (ϕ−
n+1) ≤ P (ϕ) ≤

P (ϕ+
n+1) ≤ P (ϕ+

n ) for all n ∈ N.
Next, since ϕ is continuous, that is for any ε > 0 there is some n ∈ N such

that |ϕ(x) − ϕ(y)| < ε for all x, y ∈ X with x[−n,n] = y[−n,n], for any ε > 0
there is some n ∈ N with ||ϕ−

n − ϕ|| < ε. Here, ||.|| denotes the supremum
norm. So, limn→∞ ||ϕ− − ϕ|| = 0. The same holds for ϕ+ instead of ϕ−. Since
|P (ψ)−P (ϕ)| ≤ ||ψ−ϕ|| (see [Walters 1982], Theorem 9.7(iv)), limn→∞ P (ϕ−

n ) =
limn→∞ P (ϕ+

n ) = P (ϕ) follows. �
The section is closed now with the following computability result:

Theorem 18. Let X be a sofic shift. Then the topological pressure P : C(X) →
R is a computable function when C(X) is represented by some effective standard
naming system.

Proof. Let Y be a shift of finite type according to Lemma 15. Then, by Theorem
16 and Lemma 14, the computation of the pressure with respect to X can be
computed via the pressure with respect to Y by modifying the input function.
Theorem 6.2.9 in [Lind and Marcus 1995] guarantees, that the corresponding
factor map Φ : Y → X has a finite description and hence is computable. Fur-
thermore, since Y has a description by a finite set of words, the characteristic
function χA∗(Y ) of A∗(Y ) also is computable. Then, according to Lemma 5.2.6 in
[Weihrauch 2000], there is a computable function assigning each u ∈ A2n+1(Y )
for any n ∈ N and a name of ϕ ∈ C(Y ) the value sup{ϕ(y) : y ∈ Y, y[−n,n] = u}
since {y : y ∈ Y, y[−n,n] = u} is compact. The same holds for inf{ϕ(y) : y ∈
Y, y[−n,n] = u} instead of sup{ϕ(y) : y ∈ Y, y[−n,n] = u}.

Let Y be M -step, ϕ ∈ C(Y ) given and ϕ−
n , ϕ

+
n ∈ Cn(Y ) for all n ∈ N ac-

cording to Proposition 17. By Theorem 13, if n ≥ M , P (ϕ−
n ) = log λ−n and

P (ϕ+
n ) = logλ+

n where λ−n , λ
+
n are the Perron values of the transfer matrices

corresponding to Lϕ−
n

and Lϕ+
n
. λ−n and λ+

n are computable. To see this, first
observe that there exists a computable function assigning to a standard name of
ϕ a standard name of the corresponding transfer matrix. This is clear since Y
has a finite description and due to the definition of the matrix. Next, Equation
(2) gives T n

v,u > 0 iff χA∗(Y )(vu) = 1. Hence there is an algorithm computing
the irreducible components of the transfer matrix, as shown in [Spandl 2007].
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Furthermore, the characteristic polynomial of a matrix is computable with re-
spect to a name of the matrix as input. According to the computable version of
the fundamental theorem of algebra [Weihrauch 2000], a list of the roots of the
characteristic polynomial is computable. Since the Perron value is the maximum
of the absolute values of these roots and since the absolute value of a real as well
as the maximum of a finite set of reals is computable, also the Perron value of
each irreducible component of the transfer matrix is computable. The pressure
finally is determined by the maximum of the Perron values of the irreducible
components, which is clearly computable. Therefore, the pressures P (ϕ−

n ) and
P (ϕ−

n ) are computable uniformly in ϕ and n for n ≥ M . Then by Proposition
17, the assertion follows directly. �

Remark. The above theorem holds even uniformly in X . For naming systems of
shift spaces, especially for sofic shifts spaces, see [Spandl 2007].

If no restriction on the type of shift is made, the above theorem does not
hold in the following sense: There is no Type-2 machine computing a name
of the value of the topological pressure of some continuous function over some
shift space, where the input is a name of that shift space and a name of the
function. In [Spandl 2007] it was shown that a corresponding machine does not
exist computing the topological entropy. Since the topological entropy is the
topological pressure for the null function, there is no such machine computing
the topological pressure.

4 Applications to Statistical Physics

First consider an example. Let the shift space X be {−1, 1}Z, the full shift over
two symbols. The function ϕ ∈ C(X) for which the topological pressure will be
determined has the form

ϕ(x) =
∞∑

i=1

aix0(xi + x−i) + bx0. (4)

Furthermore, (an)n is a sequence of nonnegative real numbers such that
∑∞

n=1 an

exists and b ∈ R.
Then, for all n ∈ N, u ∈ {−1, 1}n,

Sn(ϕ, u) = inf{
n−1∑
i=0

ϕ(σi(x)) : x ∈ X, x[0,n−1] = u}

= inf{
n−1∑
i=0

(
∞∑

j=1

ajui(xi+j + xi−j) + bui) : x ∈ X, x[0,n−1] = u}
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=
n−1∑
i=0

ui(
n−1−i∑

j=1

ajui+j +
i∑

j=1

ajui−j + b)+

inf{
n−1∑
i=0

ui(
∞∑

j=n−i

ajxi+j +
∞∑

j=i+1

ajxi−j) : xi ∈ {−1, 1} ∀i ≥ n, i < 0}

= Φn(u) + dn(u)

with the so called potential term

Φn(u) :=
n−1∑
i=0

n−1∑
j=i+1

aj−iuiuj +
n−1∑
i=0

i−1∑
j=0

ai−juiuj + b

n−1∑
i=0

ui (5)

=
n−1∑
i,j=0
i	=j

a|i−j|uiuj + b

n−1∑
i=0

ui (6)

and a correction term given by

dn(u) := inf{
n−1∑
i=0

ui(
∞∑

j=n

aj−ixj +
∞∑

j=1

ai+jx−j) : xi ∈ {−1, 1} ∀i ≥ n, i < 0}.

The correction term can be estimated by

|dn(u)| ≤ 2
n−1∑
i=0

∞∑
j=i+1

aj =
n−1∑
i=0

ci

with cn := 2
∑∞

i=n+1 ai. Since limn→∞ cn = 0, also limn→∞ 1
n

∑n−1
i=0 ci = 0 holds.

Therefore,

P (ϕ) = lim
n→∞

1
n

log
∑

u∈{−1,1}n

exp(Φn(u) + dn(u))

≤ lim
n→∞

1
n

log
∑

u∈{−1,1}n

exp(Φn(u) +
n−1∑
i=0

ci)

= lim
n→∞

1
n

log
∑

u∈{−1,1}n

exp(Φn(u))

On the other hand,

P (ϕ) ≥ lim
n→∞

1
n

log
∑

u∈{−1,1}n

exp(Φn(u) − |dn(u)|)

holds, which finally gives

P (ϕ) = lim
n→∞

1
n

log
∑

u∈{−1,1}n

exp(Φn(u)). (7)
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Now the connection to statistical mechanics can be drawn. For more details
on the concepts of statistical mechanics see [Ellis 1985, Ruelle 1969]. Consider
the model of a ferromagnet in one dimension. Let Λ be a finite interval of the
lattice Z. On each site of the finite lattice Λ, a magnetic dipole is placed. The
magnetic moment of each dipole is assumed to have two configurations: it can
point up (value 1) or down (value -1). So the considered state space is S =
{−1, 1}. The whole magnet can be described by a configuration s ∈ SΛ where
si ∈ S gives the magnetic moment of the dipole at site i ∈ Λ. The Hamiltonian
of the system, that is the interaction energy, is now given by

HΛ,B(s) = −1
2

∑
i,j∈Λ
i	=j

J(|i− j|)sisj −B
∑
i∈Λ

si, (8)

where J : N → [0,∞) is the dipole-dipole interaction function depending only
on the distance of the two dipoles and B ∈ R is the external magnetic field.
In thermodynamic equilibrium at temperature T > 0, a specific state s of the
magnet has probability

πΛ,β,B(s) =
1

ZΛ,β,B
e−βHΛ,B(s),

where β = 1/T is the inverse temperature and ZΛ,β,B is the normalization factor
given by

ZΛ,β,B =
∑

s∈SΛ

e−βHΛ,B(s),

which is called the partition function. πΛ,β,B defines a probability measure on
(SΛ,B), where B is the set of all subsets of SΛ. πΛ,β,B is called a Gibbs state or
an equilibrium state. Closely related to the partition function is the free energy,
given by

FΛ(β,B) = − 1
β

logZΛ,β,B. (9)

for all β > 0, B ∈ R. The free energy is the fundamental quantity of the system
because is allows the determination of all physical quantities of the system which
are of interest.

Now consider the limiting behavior as Λ tends to Z, called the thermodynamic
limit. It will be denoted by Λ ↑ Z. Since the Hamiltonian, and also some other
quantities, becomes undefined in the thermodynamic limit, only quantities per
site can be investigated. The specific free energy of the infinite magnet is defined
by

f(β,B) = lim
Λ↑Z

1
|Λ|FΛ(β,B). (10)

If the interaction J is summable, it can be shown that the limit exists (see
[Ellis 1985], Appendix D.1). The specific free energy will be crucial for the de-
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velopment of phase transitions, the main theme in the rest of this paper. But
first let’s look at f(β,B) from the viewpoint of computability theory.

The connection between the specific free energy and the topological pressure
in the above example is now evident (see also the treatment in [Mayer 1991]).
Just compare the Equations (5) and (8) as well as the Equations (7) and (9), (10).
For the second comparison note that, since the Hamiltonian is translationally
invariant, the limit Λ → Z can be replaced by the limit Λ → N and Λ ⊆ N.
Therefore:

f(β,B) = − 1
β
P (ϕ)

where ϕ is according to Equation (4) with ai = β
2 J(i) for all i ≥ 1 and b = βB.

According to Theorem 18, there is the

Theorem 19. Let J : N → [0,∞) be a summable and computable interaction
function with a computable modulus of convergence. Then the specific free en-
ergy f : (0,∞) × R → R corresponding to the Hamiltonian (8) is a computable
function.

The concept of phase transitions is now introduced via the so called sponta-
neous magnetization. The magnetic moment of the system is defined by

MΛ(β,B) =
∑

s∈SΛ

σΛ(s)πΛ,β,B(s)

where σΛ(s) =
∑

i∈Λ si is the total magnetic moment of the configuration s ∈
SΛ. The magnetization is the magnetic moment per site in the infinite volume
limit, defined by

m(β,B) = lim
Λ↑Z

1
|Λ|MΛ(β,B).

Finally, the magnetic susceptibility is defined by

χ(β,B) =
∂m(β,B)

∂B
.

If the interaction J is summable, the magnetization exists for all β > 0, B ∈ R

and the magnetic susceptibility exists for all β > 0, B = 0 (see [Ellis 1985],
Theorem IV.5.1, IV.5.2, IV.5.3 and Lemma V.7.4). Furthermore, the specific
free energy, the magnetization and the magnetic susceptibility have the following
properties:

(a.1) f(β,B) is a concave and even function in B and two times continuously
differentiable in B for B = 0.

(a.2) m(β,B) = −∂f(β,B)
∂B for all β > 0, B = 0.

(a.3) 0 ≤ m(β,B) ≤ 1 for all β > 0, B ≥ 0.
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(a.4) For β > 0 fixed, m(β,B) is an increasing and concave function in B ≥ 0
and for B ≥ 0 fixed, m(β,B) is an increasing function of β > 0.

Note that, according to the Items (a.1) to (a.4), f(β,B) is decreasing in B for
all B ≥ 0, m(β,B) is an odd function in B for all B ∈ R and χ(β,B) is an even,
nonnegative function in B for all β > 0, B = 0.

According to the Items (a.1) and (a.2), continuity of the magnetization may
break down for certain values of β only for B = 0. Then there are still the
following properties

(b.1) The limits m+(β) := limB→0+ m(β,B) and m−(β) := limB→0− m(β,B)
exist for all β > 0.

(b.2) m+(β) = ∂f(β,0)
∂B+ and m−(β) = ∂f(β,0)

∂B− .

(b.3) m+(β) ≥ m(β, 0) ≥ 0 for all β > 0 and m+ is an increasing function.

(b.4) m−(β) = −m+(β) for all β > 0.

Now let βc := sup{β > 0 : m+(β) = 0}. First consider the case that βc = ∞.
Then for all β > 0, the magnetization m(β,B) is continuous for all B ∈ R.
Second consider the case that βc is finite. Then by the above items, only for
0 ≤ β ≤ βc, m(β,B) is continuous for all B ∈ R. Continuity fails for β > βc

at B = 0 and m+(β) > 0 follows. Then it is said that the systems shows
a spontaneous magnetization at inverse temperature βc and a phase transition
occurs.

If the interaction function J : N\{0} → [0,∞) has the form J(n) = n−α, α >
1 is was shown that βc <∞ iff α ≤ 2 [Dyson 1969, Fröhlich and Spencer 1982].

It was already shown that the specific free energy is computable if J is
summable and computable. The final question is now which of the above de-
fined quantities are computable as well. Especially, is βc computable, if it is
finite? To answer these questions, some more tools are needed.

Lemma20. Let f : (0,∞) → R be a differentiable and computable function.
If f is increasing and concave, then also the derivative f ′ : (0,∞) → R is
computable. The same holds if f is increasing and convex, decreasing and concave
or decreasing and convex instead of increasing and concave.

Note that, if f : (0,∞) → R is differentiable and concave or convex, f ′ : (0,∞) →
R is continuous.

Proof. Let x ∈ (0,∞) be given. Then there are numbers x+, x− ∈ Q∩ (0,∞)
with x− < x < x+ and x+, x− are computable uniformly in x. Consider now the
sequences (a+

i )i and (a−i )i of real numbers, defined by

a+
i :=

f(x) − f(x− (x− x−)/(i+ 1))
(x− x−)/(i+ 1)
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and

a−i :=
f(x+ (x+ − x)/(i+ 1)) − f(x)

(x+ − x)/(i+ 1)

for all i ∈ N. Then (a+
i )i is computable and decreasing, (a−i )i is computable

and increasing. Furthermore limi→∞ a+
i = limi→∞ a−i = f ′(x). Hence f ′(x) is

computable. The other cases are shown similarly. �
Now it is not too hard to show the following properties:

Proposition21. Let J : N → [0,∞) be a summable and computable interaction
function with a computable modulus of convergence. Then the following proper-
ties hold.

1. The functions m,χ : (0,∞) × R \ {0} → R are computable.

2. The function m+ : (0,∞) → [0, 1] defined in Item (b.1) is right-computable.

3. There exists a computable sequence (bn)n of rational numbers with limn→∞ =
βc.

Proof. Item 1 follows directly with Theorem 19, Lemma 20, the Items (a.1) to
(a.4) and the definition of χ. Item 2 is a direct consequence of Item 1 and the
fact that m is increasing in B for B ≥ 0. Item 3: This is a direct consequence
of Item 2. Fix some ε > 0. Then, by Item 2 and exhaustive search, there exists
some computable, increasing and converging sequence (b(ε)n )n of rational numbers
with limit b(ε) := limn→∞ b

(ε)
n ≥ βc and m+(b(ε)) = ε. Now let b : N2 → R be

defined by b(n,m) := b
(2−n)
m . It is clear that b is a computable function and

limn→∞ b(n, n) = βc holds. Hence, set bn := b(n, n) for all n ∈ N. �
The above proposition shows that the inverse critical temperature βc is only

recursively approximable in the sense of [Zheng and Weihrauch 2001]. Indeed,
it seems that, without any further information about the system, the inverse
critical temperature is not computable. However, this result is in accordance
with typical computer simulations of such systems since data obtained by Monte
Carlo simulations also lack of any error bound.
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