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1 Introduction

It is well known that any non-constant holomorphic function is open. Quantita-
tive versions of this fact and with many respects surprising, is given by Bloch’s
theorem (see [Bloch 1929]), stating that for any r > 0 and any holomorphic
function f defined on a disc Dr(z0) := {z ∈ C : |z − z0| < r} with f ′(z0) �= 0
there exists a schlicht disc (see below) of radius |f ′(z0)| · r · c inside the image
f(Dr(z0)), where the constant c does not depend on f ! Obviously c is bounded
from above, thus the supremum, the so called Bloch constant β, exists. The best
upper bound known for β,

β ≤ Γ (1/3)Γ (11/12)
Γ (1/4)(1 +

√
3)1/2

found by Ahlfors and Grunsky [Ahlfors and Grunsky 1937], is at the same time
conjectured to be the exact value of β. However the best lower bound known so
far (quite recently found by Chen and Gauthier [Chen and Gauthier 1996]) is

√
3

4
+ 2 · 10−4 < β.

Putting this in decimal representation gives

0.43321... < β ≤ 0.47186...

i.e. all we know is the constant up to 4 · 10−2.
In this paper we will give an algorithm to compute Bloch’s constant β up to

any precision in the sense that on input ε > 0 we can compute some rational
number q with |q − β| < ε.

To define Bloch’s constant and present our result more formally, we need a
few more prerequisites:
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As above, let Dε(z0) denote the open disc of radius ε with center z0. To
simplify notation we use Dε := Dε(0) and D = D1. Let in the sequel D be some
domain, i.e. an connected and open subset of C. A normed holomorphic function
on D with 0 ∈ D is a holomorphic function f with f(0) = 0 and f ′(0) = 1. The
space of normed functions on D is denoted by N (D). Given f ∈ N (D) let
βf (D, z0) denote the supremum r > 0 so that the disc Dr(z0) is covered by
f(D) and f−1 exists on Dr(z0), i.e. there exists a function f−1 : Dr(z0) → D so
that f−1 ◦ f is the identity function. These discs Dr(z0) are called schlicht (with
respect to D and f). Notice that in this case f−1 is uniquely determined and
again holomorphic. Let βf (D) be the supremum of βf (D, z) for all z ∈ f(D).
Finally let β(D) be the infimum of βf (D) for all f ∈ N (D). Then, by definition,
we have β = β(D).

Concerning computability of functions we use the Type-2-Turing machine,
which is essentially a (classical) Turing machine where the input and output
tapes can in addition contain infinite sequences of symbols. Thus such a Type-
2-Turing machine (”Turing machine”, for short) computes a partial function
(Σ∗)n × (Σω)m → (Σ∗)o × (Σω)p for suitable natural numbers m, n, o, p and
a finite alphabet Σ. We will essentially use the case where either m or n and
either o or p are 0. Furthermore we will assume that the symbol 0 belongs to
Σ. Using representations, i.e. giving each element one or several names in Σω

or Σ∗, Type-2-Turing machines give natural notions of computability on a wide
class of objects, such as C, once we have fixed representations for these objects.
To fix such a representation for complex numbers, let Y denote the set of dyadic
numbers, i.e. numbers y = 2−n · m where m and n are integers. By fixing some
representation for Y (say by their binary representation) we get immediately the
following representation for the complex numbers: A name for some z ∈ C is
simply a sequence ((x0, y0), (x1, y1), ...) of pairs of dyadics xt, yt ∈ Y such that
|(xt + iyt) − z| < 2−t for all t ∈ IN. To be more precise, a name of a complex
number is an encoding of such a sequence, i.e. a word in Σω. In a similar way one
can also construct a representation ν of Cω , which can be easily seen to be open
w.r.t. the standard (product) topology on Cω. For a more detailed discussion of
representations see e.g. [Weihrauch 2000]. With these prerequisites, a (partial)
function f :⊆ C → C is called computable, iff there exists a Turing machine
which for any name of an element z ∈ dom(f) computes a name for f(z).

Beside computable functions we will also need computable multifunctions
f :⊆ M ⇒ N , where m ∈ M can have many different values f(m). Given repre-
sentations of M and N we call such a multifunction computable if there exists a
computable realization as in the definition of computable functions (here, given
the name of some m, the realization may output any name of any element of
f(m)). This kind of relaxing the classical definition of functions can hughly sim-
plify things in Type-2-theory, which is mainly to the fact that elements usually
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have many names. Asking for functions therefore means that an algorithm com-
puting this function must compute the same value f(m) given any name of the
element m. In many circumstances, it is, however, sufficient to find values with
certain properties (depending on m). To give an example, we will compute in
Lemma 8 below approximations to the values βg up to some precision ε, where
a name of g is given. The exact approximations can vary for different names of
g and the only thing we can guarantee is that any result we produce is indeed
an approximation up to error ε. If we asked to have a unique value, the com-
putational task would be unneccessarily complicated, and in some cases even
impossible.

The main idea of our algorithm is to compute for several normed functions
the corresponding β-values. Following the definition, it seems that we have to
take the infimum for all normed functions, which could not be done in finitely
many steps. Thus the decisive step will be to restrict the space of functions which
we will have to consider in our algorithm. To this end we will first (Section 2)
reduce the problem to a class of functions (β-bounding functions) with certain
properties, which allow to apply compactness arguments later on. In Section 3
we will show, how to compute the β-value for a single function. Finally in Section
4 we will prove that Bloch’s constant is computable.

2 The Set of β-bounding Functions

One problem we have to face in our proof of the computability of Bloch’s constant
is that the involved functions are not bounded. By restricting the domain, how-
ever, we can circumvent this problem quite easily. Thus the following lemma will
come in handy later on. The upper bound is obvious, whereas the lower bound
follows from the fact εβ = β(Dε) (see e.g. [Conway 1978], Corollary XII.1.7).

Lemma1. Let ε with 0 < ε < 1 and a domain D with Dε ⊆ D ⊆ D be given.
Then

εβ ≤ β(D) ≤ β.

Our definition of β-bounding functions will be based on the following lemma.
(Notice that the choice 0.48 in the below lemma is somewhat arbitrary. We could
have chosen any value larger than β.)

Lemma2. For any f ∈ N (D) with βf (D) ≤ 0.48 we have

|f(z)| ≤ c0

∫ |z|

0

1
1 − t2

dt (1)

for c0 = 4√
3
0.48 and all z ∈ D.
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Proof: According to a theorem of Ahlfors (see e.g. [Remmert 1991]), any
holomorphic function f in D fulfills the following property: If |f ′(z)| · (1−|z|2) ≥
M for some z ∈ D then the image f(D) contains schlicht discs of radius

√
3

4 M .
Taking M = c0 = 4√

3
· 0.48 and taking integrals, we see that only functions for

which (1) above holds can fulfill βf (D) ≤ 0.48.
�

To simplify things let c1 := 0.48 · 4√
3
. Furthermore, for ε ∈]0; 1[, let ρ(ε) =∫ ε

0
1

1−t2 dt. Notice that ρ is increasing and computable.
We define the set of β-bounding functions to be the set

T = {f ∈ N (D)||f(z)| ≤ c1 · ρ(ε) for all 0 < ε < 1, |z| ≤ ε}

Thus the above lemma implies the

Corollary 3. For each ε > 0 there exist f ∈ T so that

βf (D) ≤ β + ε.

The following simple application of Cauchy’s formula allows us to replace
functions in T by bounded families of coefficients (the coefficients of the corre-
sponding Taylor series).

Lemma4. Let f ∈ T and ε, 0 < ε < 1, be given. Then for the Taylor series
f(z) =

∑∞
i=0 aiz

i we have

|ai| ≤
c1 · ρ(ε)

εi

Proof: By Lemma 2 we have |f(z)| ≤ c1 · ρ(ε) for all z with |z| = ε. In
addition, by Cauchy formula, we have

|ai| = |f
(i)(0)
i!

| =
1
2π

|
∫
|z|=ε

f(t)
(−t)i+1

dt| ≤ 2πε

2π
sup
|z|=ε

|f(z)|
εi+1

�

Based on Lemma 4 we define a set Aε of sequences (a0, a1, ...) of complex coef-
ficients which essentially is a superset of the Taylor coefficients of the functions
in T . We will identify these sequences with their functions f(z) =

∑∞
i=0 aiz

i

later on without further mentioning. (We will see below that these functions are
indeed defined on the topological closure D 3√ε of D 3√ε.)

Let ε′ > 0 be a fixed constant. Then we fix for every ε > 0 and i ∈ IN a
dyadic dε,i with

c0 · ρ(ε1/4)
εi/4

< dε,i ≤
c1 · ρ(ε1/4)

εi/4
.
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Aε is then defined by

Aε := {(0, 1, a2, ...)|ai ∈ C, |ai| ≤ dε,i}

Using the representation ν of Cω defined in the introduction, one can easily
verify that there exists a recursively enumerable set B ⊆ Σ∗ × IN such that (1)
ν(vΣω) intersects the open kernel of A1−1/k for every (v, k) ∈ B and (2) every
element of A1−1/k has a ν-name all of whose prefices v (times k) belong to B.

Next we will prove that the elements of Aε do indeed define bounded, holo-
morphic functions on Dε (and even D 3√ε):

Lemma5. Let ε with 0 < ε < 1 be given. Then for each (ai)i∈IN ∈ Aε we have

1.
∑∞

i=0 aiz
i converges absolutely on D 3√ε,

2. |
∑∞

i=0 aiz
i| ≤ 3

√
ε + (c1 + ε′) · ρ(ε1/4)/(1 − ε1/12) for all z ∈ D 3√ε and

3. for all f ∈ Aε, n ∈ IN and z ∈ D√
ε

|f (n)(z)| ≤ n! · 3
√

ε · ( 3
√

ε + (c1 + ε′) · ρ(ε1/4)/(1 − ε1/12))/( 3
√

ε −
√

ε)n+1.

Proof: The following inequality proves 1. and 2.

|
∑∞

i=0 aiz
i| ≤ 3

√
ε +

∑∞
i=2

(c1+ε′)·ρ(ε1/4)
εi/4

3
√

εi

≤ 3
√

ε + (c1 + ε′) · ρ(ε1/4)
∑∞

i=2 εi/12

for all z ∈ D 3√ε.
By taking derivatives and using Cauchy’s integral formula we finally get 3.

�

Notice that the bounds in 2. and 3. do actually not depend on the elements
of Aε. Thus we can uniformly compute the corresponding function f on D√

ε.
This is the essence of Lemma 5 which we will use later on:

Corollary 6. There exists a computable function f : Q → Q3 so that f(ε) =
(μ, μ′, μ′′) for 0 < ε < 1 implies, that μ, μ′ and μ′′ are upper bounds on |g|(D√

ε),
|g′|(D√

ε) and |g′′|(D√
ε), respectively, for all g ∈ Aε, where |g| denotes the func-

tion with |g|(z) = |g(z)| and g′, g′′ denote the first and second derivative of g.

Finally we will use the standard (product) topology on Cω and thus Aε.
Especially we have that Aε is compact by Tychonoff’s Theorem.

Before proceeding we summarize the decisive properties of Aε by the following
lemma:
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Lemma7. Let ε with 0 < ε < 1 be given. Then

1. T ⊆ Aε ⊆ Aε and

2. Aε is compact.

The second property allows us to approximate β with fixed precision in
finitely many steps. The main point is to prove that we can find, for each f ∈ Aε,
approximations of βf (Dε) so that these approximations are actually approxima-
tions for whole neighborhoods. Afterwards we can use standard compactness
arguments.

3 The β-value of a single Function

In this section we show how to approximate the size of discs in the image of a
given holomorphic β-bounding function.

Assume that a holomorphic function f : D → Dμ, μ > 0, is given and we
want to compute the supremum of the radius of schlicht discs in the image
f(D). Actually, we have to cope with unbounded functions f but switching to
Dε for suitable ε > 0 changes the situation to uniformly bounded families of
functions. We will see below that approximating the image f(Dε) can be done
quite straightforwardly. However, we are faced with the need of quite expensive
injectivity tests, if we proceed naively. To circumvent this problem we will use
homotopic methods, which avoids injectivity tests.

Lemma8. There exists a computable multifunction Fβ which computes for given
rational ε ∈ (0; 1) and f ∈ Aε a pair (γ, v) ∈ Q × Σ∗ so that f ∈ ν(vΣω) and

βg(Dε) − (1 − ε) < γ < βg(D√
ε) + 1 − ε

for all g ∈ ν(vΣω).

Proof: Let ε with 0 < ε < 1 and f ∈ Aε be given and μ′ and μ′′ be upper
bounds on supz∈D√

ε
(|f ′(z)|) and supz∈D√

ε
(|f ′′(z)|), respectively, which can be

computed by Corollary 6. W.l.o.g. we can assume that ε > 3/4 and μ′, μ′′ > 1.
The main idea of the algorithm given below is as follows: Assume we want

to compute βf (Dε, f(z)) for some z ∈ Dε with f ′(z) �= 0. To do so we use the
fact that a branch g of f−1 exists locally at f(z) so that g(f(z)) = z. Thus there
exists some small d > 0 so that g exists on Dd(f(z)). Once we have found such
a d we can try to enlarge Dd(f(z)) by finding small discs Dy for every boundary
point y ∈ ∂Dd(f(z)), so that some branch of f−1 exists on these discs which
coincide with g on Dd(f(z)). This guarantees that a branch h of f−1 exists on
the union of the discs Dy with Dd(f(z)), so that still h(f(z)) = z. Replacing g

by h and Dd(f(z)) by the largest disc in the union of the Dy and Dd(f(z)), we
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can proceed in the same way untill we find some boundary point y so that f−1

cannot be extended to some neighborhood of y. In this case we know that we
have found the largest schlicht disc around f(z) for this branch of f−1. Repeating
this procedure for all z ∈ Dε with f ′(z) �= 0 will finally determine βf (Dε).

The implementation of this idea has to cope with several problems: We have
to take into account that we can compute things only with finite precision. There-
fore we will consider the domain D√

ε rather than Dε to avoid sharp decisions
whether some point belongs to Dε or not. Furthermore we can neither find the
discs for all z ∈ Dε nor consider all boundary points of the considered discs
above. The solution to this problem is to apply the above idea on grids rather
than the whole plane. To this end we will use the following simple observation:

Let z ∈ D√
ε and δ > 0 with d(z, ∂D√

ε) > δ be given. Then

|f ′(z)| − μ′′ · δ ≤ |f ′(z′)| ≤ |f ′(z)| + μ′′ · δ

for all z′ ∈ Dδ(z). Furthermore if |f ′(z) − f ′(z′)| < |f ′(z)| for all z′ ∈ Dδ(z)
then f maps the disc Dδ(z) one-to-one onto some neighborhood of f(z) (see
e.g. [Conway 1978], Lemma XII.1.3]). Applying Koebe’s 1/4 Theorem (see e.g.
[Henrici 1986]) we thus get

Lemma9. Let z ∈ D√
ε with f ′(z) �= 0 and δ < |f ′(z)|/μ′′ with Dδ(z) ⊆ D√

ε be
given. Then a neighborhood of z is mapped one-to-one onto D|f ′(z)|·δ/4(f(z)) by
f .

The formal implementation of the above idea now looks as follows, where we
proceed in 4 steps:

Step 1: Find finite sequences D0, ..., Dn and E0, ..., Em, m, n ∈ IN, of discs
with complex dyadic center and dyadic radius and furthermore Δ > 0 with
Δ < (

√
ε − ε)/2 so that

–
⋃n

i=0 Di �
⋃m

i=0 Ei ⊆ D√
ε,

– for all z ∈ D(ε+
√

ε)/2 with |f ′(z)| < (1 − ε)/10 there exist some i with
z ∈ Di,

– |f ′(z)| < (1 − ε)/9 for all z ∈
⋃m

j=0 Ej and

– for all z ∈ D(ε+
√

ε)/2 \
⋃m

j=0 Ej we have d(z,
⋃n

i=0 Di) > Δ.

This can be done by approximate computations on a grid. To be more precise
take G = ( 1−ε

900μ′′ ZZ+i 1−ε
900μ′′ ZZ)∩D(

√
ε+ε)/2 and compute for each grid point z ∈ G

the value f ′(z) up to an error of at most 1−ε
900 (we denote this value by f̂(z) for

the time beeing). Then label each grid point z by ”d”, ”e” or ”n” according
to the following rules: if |f̂(z)| < 1−ε

10 + 2 · 1−ε
900 label z by ”d”. If otherwise
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|f̂(z)| < 1−ε
9 −2 · 1−ε

900 label z by ”e”. In all other cases label z by ”n”. Finally fix
D1,...,Dn to be the sets D 1−ε

900μ′′
(z) of those grid points labeled by ”d”. Similarly

let E1,...,Em be the sets D 1−ε
900μ′′

(z) of those grid points labeled by ”e” or ”d”.

Choose Δ to be 1−ε
900μ′′ . (Notice that by the remarks above |f ′| can vary on fixed

Ei or Di by at most 1−ε
900 and furthermore we have 1−ε

900μ′′ < (
√

ε − ε)/2.)
In preparation to the next step let ρ be defined by ρ = min{(

√
ε−ε)/3, (1/4)·

(1 − ε)2/(202 · μ′′)}.

Step 2: Compute a grid GD ⊆ ρ·(1−ε)
16·μ′ ZZ+i ρ·(1−ε)

16·μ′ ZZ so that for all z ∈ ρ·(1−ε)
16·μ′ ZZ+

i ρ·(1−ε)
16·μ′ ZZ

– if d(z, Dε \
⋃m

j=0 Ej) < min{Δ/4, (1 − ε)/(4μ′)} then z belongs to GD

and

– if z ∈ GD then d(z, Dε \
⋃m

j=0 Ej) < min{Δ/2, (1 − ε)/(2μ′)}.

Following our main idea, this domain grid GD will give the z’s (grid nodes)
for which we approximate the radius of a disc D with center f(z) on which a
branch g of f−1 with g(f(z)) = z exists.

Similarly we define an image grid GI by GI = ρ·(1−ε)
16 ZZ + i ρ·(1−ε)

16 ZZ.
We will see below that for all z ∈ D(ε+

√
ε)/2 \

⋃n
i=0 Di the disc Dρ(f(z)) is

schlicht (and a neighborhood of z is mapped one to one onto this disc by f).
Thus we can compute the branch of f−1 on Dρ/2(f(z)) with f−1(f(z)) = z

for example by computing its Taylor series by samples (see e.g. [Müller 1993]),
where the samples can be computed by evaluations of f at different points.

We proceed as follows:

Step 3: For all z ∈ GD do

Step 3a: Compute some y ∈ GI so that |f(z) − y| ≤ ρ·(1−ε)
8 , set G := {y}

and d(z) = ρ·(1−ε)
8

Step 3b: For each point y′ ∈ GI \ G with |y − y′| < d(z) do

Step i: Compute a sequence y0 = y, y1, ..., yn = y′ for suitable n ∈ IN
and yi ∈ GI , so that |yi+1 − yi| ≤

√
2 · ρ·(1−ε)

16 and yi ∈ G for all
i = 0, ..., n − 1.

Step ii: Compute for i = 0, ..., n− 1 the branches gi of f−1 on Dρ/2(yi)
so that z ∈ g0(Dρ/2(y0)) and gi+1(yi) = gi(yi) for all i = 0, ..., n− 2.

Step iii: If d(gn−1(yn), Dε \
⋃m

j=0 Ej) < Δ/4 so G := G ∪ {y′}
if d(gn−1(yn), Dε \

⋃m
j=0 Ej)) > Δ/2 proceed with the next z

otherwise set G := G ∪ {y′} or proceed with the next z

Step 3c: increase d(z) by ρ·(1−ε)
16 and proceed with step 3b
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Notice that Step 3 will end after a finite number of steps because f(D√
ε) is

bounded.

Step 4 Set d = maxz∈GD d(z)

Notice that the above construction does only use finitely many symbols, say
t, of an input w ∈ Σω (a ν-name of f). Thus the construction works identically
for all g ∈ ν(vΣ∗, where v is the prefix of length t of w.

Thus it remains to show that d is a suitable approximation of βf (Dε), i.e.
that |d − βf (Dε)| < 1 − ε, because then (d, v) is a correct value for Fβ(f).

Before we will show that d is a suitable approximation to βf (Dε) we will first
give the proof that Step 3 can be realized as described, i.e. that f−1 does indeed
locally exist.

Claim 1 For each z ∈ C with d(z, Dε \
⋃m

j=1 Ej) < Δ we have that Dρ(f(z)) is
schlicht in f(D√

ε). Furthermore a neighborhood of z is mapped one to one onto
Dρ(f(z)).

Proof: Every z ∈ D(ε+
√

ε)/2 with d(z, Dε \
⋃m

j=1 Ej) < Δ belongs to
D(ε+

√
ε)/2 \

⋃n
i=0 Di and fulfills therefore |f ′(z)| ≥ (1 − ε)/10. The statement

therefore follows from Lemma 9 and the definition of ρ above.
�

In Step 3 we essentially use the Kreiskettenverfahren to continue f−1 along
a path in G. This step very much follows the main idea given in the introduction
of this proof: For given y = f(z) we try to find large d(z) so that a branch
g of f−1 with g(f(z)) = z exists on Dd(z)(y). By Claim 1 such a branch of
f−1 exists for the first value of d(z) given by Step 3 b i. Assume now that
we have already computed some d(z) so that g exists on Dd(z)(y). In Step 3
b ii we then essentially try to find for each grid point y′ in D

d(z)+ ρ·(1−ε)
16

(y) a
continuation of g to Dd(z) ∪ Dρ/2(y′). (Actually we update d(z) first and test
then for d(z) instead of d(z) + ρ·(1−ε)

16 , but to simplify things we ignore this for
the moment.) If the continuation to all such discs is possible, we can continue g

also to D
d(z)+ ρ·(1−ε)

16
(y): For any pairs of such discs Dρ/2(y′) and Dρ/2(y′′) with

Dρ/2(y′) ∩ Dρ/2(y′′) �= ∅ we have that Dd(z)(y) ∩ Dρ/2(y′) ∩ Dρ/2(y′′) �= ∅ is a
subset of the connected domain Dρ/2(y′) ∩ Dρ/2(y′′). Thus the continuation of
g to the first and second disc coincide on Dρ/2(y′) ∩ Dρ/2(y′′) by the identity
theorem (see e.g. [Ahlfors 1966]).

As we actually update d(z) before testing, we get d(z) ≤ βf (D(
√

ε+ε)/2) +
ρ·(1−ε)

16 and thus

d ≤ βf (D(
√

ε+ε)/2) +
ρ · (1 − ε)

16
< βf (D√

ε) + (1 − ε)
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To show that also βf (Dε) − (1 − ε) < d holds, let Dr(f(z)) be some schlicht
disc in f(Dε) with r > (1 − ε)/4 so that a neighborhood N ⊆ Dε of z ∈ Dε is
mapped one to one onto Dr(f(z)). Furthermore let g denote the branch of f−1

on Dr(f(z)) with g(f(z)) = z.
According to the following claim we have z �∈

⋃m
j=0 Ej :

Claim 2 Let z ∈ Dε and U ⊆ Dε be a simply connected neighborhood of z, which
maps one to one onto D(1−ε)/4(f(z)) via f . Then z �∈

⋃m
j=0 Ej.

Proof: Assume to the contrary that z ∈
⋃m

j=0 Ej . Then by choice of
the sequence E0, ..., Em we have |f ′(z)| < (1 − ε)/9 and thus |(f−1)′(f(z))| >

9/(1 − ε). By applying Landau’s theorem we thus get that f−1(D(1−ε)/4(f(z)))
contains a disc of radius ((1 − ε)/8) · (9/(1 − ε)) > 1 in contradiction to the
definition of U .

�

Thus, and because of the definition of the grid GD, there exists some z′ ∈ GD

so that |z − z′| ≤
√

2 · ρ·(1−ε)
16·μ′ . In the computation of d(z′) (in Step 3) then first

some y ∈ GI is chosen, so that |f(z′) − y| ≤ ρ·(1−ε)
8 and thus |f(z) − y| ≤

|f(z) − f(z′)| + ρ·(1−ε)
8 ≤ ρ·(1−ε)

4 . This means that there exists a schlicht disc
D

r− ρ·(1−ε)
4

(y) so that a neighborhood of z′ maps bijectively onto this disc via f .
Notice that this then also holds for Dr− 1−ε

4
(y) ⊆ D

r− ρ·(1−ε)
4

(y).
We will now show that d(z′) ≥ r−(1−ε)/2 which means that indeed βf (Dε)−

(1− ε) < d. Assume otherwise that there exists some ŷ ∈ GI ∩Dr− 1−ε
2

(y) which
is never added to G during Step 3. W.l.o.g. we can assume that all points in
D|y−ŷ|(y)∩GI are added to G at some time. Thus there exists a sequence y0 = y,
y1, ..., yn = ŷ and the corresponding g0, ..., gn−1 computed by Step 3 b i and 3 b
ii. As ŷ is not added to G we have d(gn−1(ŷ), Dε \

⋃m
j=0 Ej) ≥ Δ/4. Furthermore

as gn−1 coincide with g on Dρ/2(yn−1) we have gn−1(ŷ) ∈ Dε (notice, that
Dr(f(z) ⊆ f(Dε) and gn−1(ŷ) ∈

⋃m
j=0 Ej . But then by Claim 2 above there

cannot exist a schlicht disc of radius (1 − ε)/4 around ŷ in contradiction to the
fact that Dr− 1−ε

4
(y) is schlicht and ŷ ∈ Dr− 1−ε

2
(y), i.e. D(1−ε)/4(ŷ) ⊆ Dr− 1−ε

4
(y).

�

4 The Main Theorem

The proof of our main theorem can now be simply done by covering Aε by
neighborhoods given by the algorithm of the previous section.

Theorem 10. Bloch’s constant is computable.
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Proof: We have to show that β can be approximated to arbitrary preci-
sion. Let thus the precision d > 0 be given.

We will try to find a finite sequence f0,...,fn of functions in Aε for some
1 > ε ≥ 1 − d/2 so that with Fβ(fi) = (γi, vi) we have

⋃n
i=0 ν(viΣ

ω) covers Aε.
By the definition of Fβ (Lemma 8) we can then approximate β by the minimum
of the γi.

According to our remarks on the representations ν of Aε the set B is r.e.
Let now k0 be some integer with k0 ≥ 2/d and ε := 1 − 1/k0. Then we can
enumerate all w ∈ Σ∗ so that (w, k0) ∈ B. Let w0, w1, ... be this enumeration.
Furthermore let Mβ be a Turing machine computing Fβ . To simplify things we
will still say that Mβ computes on input w ∈ Σω a pair (γ, v) although only the
names of these are computed. Furthermore the pairs computed by Mβ on wi0ω

are denoted by (γi, vi), for short.
We will now proceed in steps maintaining a variable β′, which holds the

currently best approximation to β, and a list L=U0, U1,... of open sets in Cω.
At the beginning let β′ be some known upper bound on β and L be an empty
list. In step i we then compute (γi, vi) by simulating Mβ on wi0ω. We add the
neighborhood ν(viΣ

ω) to L and choose the new value of β′ to be the minimum
of γi and the old value of β′. Finally we test whether the elements in L cover
Aε. If this is the case then |β′ − β| < d and we can stop. Otherwise we continue
with step i + 1.

The correctness of this construction follows immediately by Lemma 8: In this
case for each f ∈ Aε there exists some Ui ∈ L with f ∈ Ui and thus

β′ ≤ βf (D√
ε) + (1 − ε)

and thus

β′ ≤ inf
f∈Aε

βf (D√
ε) + (1 − ε) ≤ inf

f∈Aε

βf (D) + (1 − ε) < β + d.

On the other hand we have for each i:

β′ ≥ βν(wi0ω)(Dε) − (1 − ε) ≥ β(Dε) − (1 − ε) ≥ ε · β − (1 − ε) > β − d.

Thus it remains to show, that the construction stops at some step. To this
end notice that the sequence (ν(viΣ

ω))i∈IN is an open covering of Aε: By what
we have said about B every function f ∈ Aε has some ν-name w so that for any
prefix w′ of w the pair (k0, w

′) belongs to B. Thus Mβ must stop on some w′0ω

without having used any symbol outside w′. Therefore for every f ∈ Aε there
exists some vi so that f ∈ ν(viΣ

ω). By Lemma 7 (2) there must therefore exist
a finite subsequence vi0 ,...,vil

of (vi)i∈IN so that
⋃l

j=0 ν(vij Σ
ω) covers already

Aε. This means that with m = max(i0, ..., il) our construction must stop at step
m or before.

�
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5 Discussion

In this paper we have given the first algorithm to approximate Bloch’s constant
up to arbitrary precision. We can furthermore adopt this algorithm to other
constants of this type as for example Landau’s constant.

The most interesting open problem is, whether the conjecture on β given in
the introduction holds. If so, the constant can clearly be computed in polynomial
time. To this end, our algorithm can present in addition holomorphic functions
which are very near the optimum concerning β-values, thus giving possibly new
insights on the kind of functions involved.

Concerning our algorithm the main intriguing problem is to improve the
complexity bound, which, by a more careful analysis can be seen to be roughly
double exponential, to an acceptable running time. Here the main obstacle for
improving the time complexity of our algorithm is that even the normed func-
tions can explode when reaching the boundary ∂D, thus evaluation can be quite
expensive.
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