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Abstract: Taking as a starting point (a modification of) a weak theory of arithmetic of
Jan Johannsen and Chris Pollett (connected with the hierarchy of counting functions),
we introduce successively stronger theories of bounded arithmetic in order to set up a
system for analysis (TCA2). The extended theories preserve the connection with the
counting hierarchy in the sense that the algorithms which the systems prove to halt
are exactly the ones in the hierarchy. We show that TCA2 has the exact strength to
develop Riemannian integration for functions with a modulus of uniform continuity.
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1 Introduction

The formalization of mathematics in systems of second-order arithmetic has
attracted eminent mathematicians, including Richard Dedekind, Hermann Weyl
and David Hilbert, among others. More recently, the field has been revitalized
with contributions of Harvey Friedman, Stephen Simpson and their co-workers.
Their program of reverse mathematics seeks to find the exact correspondence
between theorems of ordinary mathematics and axioms, calibrating the strength
of specific mathematical results. A survey of the state of the art on this subject
can be found in [Simpson 1999].

In [Fernandes and Ferreira 2002], the efforts to formalize mathematics within
second-order arithmetic are extended to weaker (sub-exponential) theories, in
an area known as weak analysis. More precisely, some very basic notions of
analysis are developed within BTFA, a second-order system of 0-1 strings related
with polynomial time computability (see [Ferreira 1994]). On this regard, see
also [Yamazaki 2005] and [Fernandes and Ferreira 2005]. The following quote
is from [Fernandes and Ferreira 2002]: “BTFA is [...] insufficient for developing
Riemannian integration for (general) continuous functions with a modulus of
uniform continuity.” In the present paper, we pursue this line of research and
present a system of weak analysis with the exact strength to develop the Riemann
integral.
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We know from [Ferreira and Ferreira 2006] that counting is a consequence
of integration over the theory BTFA. Therefore, if we take BTFA as our base
theory, the formalization of the Riemann integral has to be carried out in a
system which allows counting. We show in this paper that counting is exactly
what is needed for developing Riemannian integration. This explains our interest
in the hierarchy of counting functions (FCH), a computational complexity class
lying between PTIME and PSPACE.

The links concerning bounded theories of arithmetic and computational
complexity classes are a good example of the rich interaction between math-
ematical logic and computer science. There are several examples of sys-
tems introduced because of their connection to some complexity classes.
We already mentioned BTFA characterizing PTIME, but could also refer to
(for instance) Buss’ theories S1

2, U1
2, and V1

2 [Buss 1985] characterizing pre-
cisely PTIME, PSPACE and EXPTIME as the class of functions provably to-
tal in these systems (with appropriate graphs). For related work in the
area, see also [Kraj́ıček 1993], [Kraj́ıček and Pudlák 1991], [Johannsen 1996],
[Johannsen and Pollett 1998] and [Clote and Takeuti 1995].

After the introduction of FCH, by Wagner in 1986 [Wagner 1986], some
machine independent characterizations of the class were developed (for in-
stance in [Vollmer and Wagner 1996]). Johannsen and Pollett introduced in
[Johannsen and Pollett 1998] a second-order bounded theory of arithmetic D0

2

and proved that it is related to FCH. This is our departure point. Based on
D0

2, we introduce TCA a second-order theory in binary notation, compatible
with Ferreira’s theories of feasible analysis, and still connected with FCH. The
second-order variables of this theory (as well as those of the original theory D0

2)
are intended to range over bounded sets. We expand this theory to a bona fide
second-order system for analysis TCA2, with second-order variables intended to
range over arbitrary subsets of the first-order domain. If we compare TCA and
TCA2 with the theories Σb

1 -NIA (see [Ferreira 1994]) and BTFA, we are led to
the following informal correspondence:

BTFA

Σb
1 -NIA

∼ TCA2

TCA

Since BTFA ⊆ TCA2, the portion of real analysis already developed in BTFA

(see [Fernandes and Ferreira 2002]) can also be developed within TCA2. We pur-
sue these efforts in order to formalize the Riemann integral for functions with
a modulus of uniform continuity in TCA2. We verify some properties of the
integral; in particular, we prove the fundamental theorem of calculus.
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2 Theory for counting arithmetic (TCA)

The purpose of this section is to present a second-order theory of bounded arith-
metic in binary notation, called TCA, whose class of provably total functions is
FCH. The intent is facilitated because Johannsen and Pollett have already de-
veloped a number system D0

2 and proved its relation to the counting hierarchy.
Apropos bounded arithmetic theories related with counting see also the sys-
tems C0

2 and C0
3 [Johannsen and Pollett 1998] by Johannsen and Pollett and the

system VTC0 [Nguyen and Cook 2004] by Stephen Cook and Phuong Nguyen.
However, we do not work in D0

2 and work instead with a reformulation of this
theory in the binary string setting. This has the advantage of building upon the
work in weak analysis already done in such setting. Following [Ferreira 1994], we
start by quickly recalling the basic concepts concerning second-order systems in
binary notation.

Consider Lb
2 a second-order language with equality which has three constant

symbols, viz ε (for the empty word), 0 and 1; two binary function symbols ˆ
(for concatenation – the symbol “ˆ” is usually omitted) and × (where x × y

refers to the word x concatenated with itself length of y times) and three binary
relation symbols =, ⊆ (for initial subwordness, i.e., string prefix) and ∈ that
infixes between a first-order term and a second-order variable. The language has
first-order variables denoted by x, y, z, . . . and second-order variables denoted by
F t, Gq, . . . with t, q first-order terms. The standard structure for this language
has domain (2<ω,Pf(2

<ω)), i.e., the first-order variables are interpreted as finite
sequences of zeros and ones, and the second-order variables are subsets Xt of
2<ω satisfying x ∈ Xt → x � t, where x � t abbreviates 1 × x ⊆ 1 × t (this
means that the length of x is less than or equal to the length of t; we also use
the notation, x ≺ t ∨ x ≡ t).

The class of formulas in Lb
2 is defined as the smallest class of expressions

containing the atomic formulas t1 ⊆ t2, t1 = t2, t1 ∈ F t, with t1, t2 terms and F t

a second-order variable, and closed under the boolean operations ¬,∧,∨,→, the
first-order quantifications ∀x, ∃x, the bounded first-order quantifications ∀x �
t, ∃x � t and the second-order quantifications ∀F t, ∃F t.

The theory that we present below is a reformulation in binary notation of
the theory D0

2, introduced in [Johannsen and Pollett 1998].

Definition 2.1 TCA (Theory for Counting Arithmetic) is the second-order the-
ory in the language Lb

2, which has the following axioms:

– Basic axioms: xε = x; x(y0) = (xy)0; x(y1) = (xy)1; x × ε = ε; x × y0 =
(x × y)x; x × y1 = (x × y)x; x ⊆ ε ↔ x = ε; x ⊆ y0 ↔ x ⊆ y ∨ x = y0;
x ⊆ y1 ↔ x ⊆ y ∨ x = y1; x0 = y0 → x = y; x1 = y1 → x = y; x0 �= y1;
x0 �= ε; x1 �= ε;
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– ∀y∀F t(y ∈ F t → y � t);

– Induction on notation for Σ1,b
0 -formulas:

A(ε) ∧ ∀x(A(x) → A(x0) ∧ A(x1)) → ∀xA(x),

with A a Σ1,b
0 -formula (i.e., with no second-order quantifications and where

all first-order quantifications are bounded). In the standard model, if the
second-order parameters are in the Polynomial Hierarchy (a.k.a. Meyer-
Stockmeyer Hierarchy) then these formulas define predicates in this hier-
archy;

– Bounded comprehension: ∃F t∀y � t(y ∈ F t ↔ A(y)), where t is a term in
which y does not occur, and A is a Σ1,b

0 -formula that may have other free
variables other than y and where the variable F t does not occur;

– Substitution for Σ1,b
0 -formulas: ∀x � t∃F q ϕ(x, F q) → ∃Gr∀x � tϕ̄(x, Gr),

with ϕ a Σ1,b
0 -formula, t a term where x does not occur, and ϕ̄ results from

ϕ by replacing all the occurrences of “s ∈ F q” by “〈x, s〉 ∈ Gr” (where 〈 , 〉
is a pairing function and r is a certain term depending on t and q). We are
omitting the exact term r in order to facilitate reading (the term depends
on the particular definition of the pairing function – see [Ferreira 2006] for
a concrete implementation of these matters). This is a technical axiom that
permits a kind of “permutation” between bounded first-order universal quan-
tifications and second-order existential quantifications;

– Counting axiom: ∀F t∃CvCount(Cv, F t), where v is a certain term (we omit
it) which depends on t, and Count(Cv, F t) abbreviates the conjunction of
∀x � t∃1j � v〈x, j〉 ∈ Cv – a clause which states the functionality of Cv –
together with

(ε /∈ F t → 〈ε, ε〉 ∈ Cv) ∧ (ε ∈ F t → 〈ε, 0〉 ∈ Cv),

and

∀x <l 1 × t
(
(S(x) /∈ F t → ∀j � v(〈x, j〉 ∈ Cv → 〈S(x), j〉 ∈ Cv))∧

(S(x) ∈ F t → ∀j � v(〈x, j〉 ∈ Cv → 〈S(x), S(j)〉 ∈ Cv))
)
,

where <l is linearly ordered according to increasing length and, within the
same length, lexicographically (0 before 1), S is the successor function in-
duced by <l, and t is a term in which x does not occur. (Again, the term v

depends on the particular definition of the pairing function; [Ferreira 2006]
presents a concrete implementation.)

In the last scheme, the idea behind the formula Count is that Cv counts the
number of elements in F t: given x � t, we have 〈x, j〉 ∈ Cv if and only if there
are j elements less than or equal to x (with respect to the order ≤l) in F t.
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A Σ1,b
1 -formula (resp. Π1,b

1 -formula) is a formula in Lb
2 of the

form: ∃F t1
1 ...∃F tk

k ϕ(F t1
1 , ..., F tk

k , x̄, Ḡr) (resp. ∀F t1
1 ...∀F tk

k ϕ(F t1
1 , ..., F tk

k , x̄, Ḡr)),
where ϕ is a Σ1,b

0 -formula. A Σ1,b
1 -extended formula (respectively Π1,b

1 -extended
formula) is a formula that can be built in a finite number of steps, starting
with Σ1,b

0 -formulas and allowing conjunctions, disjunctions, bounded first-order
quantifications and second-order existential (respectively universal) quantifica-
tions. A formula is Δ1,b

1 (respectively Δ1,b
1 -extended) if it is equivalent in TCA to

both a Σ1,b
1 -formula (respectively a Σ1,b

1 -extended formula) and a Π1,b
1 -formula

(respectively a Π1,b
1 -extended formula).

Proposition 2.1 The following is provable in TCA ([Ferreira 2006] or
[Johannsen and Pollett 1998]):

– substitution for Σ1,b
1 -extended formulas

– bounded comprehension for Δ1,b
1 -extended formulas

– induction on notation for Δ1,b
1 -extended formulas

– minimization scheme for Δ1,b
1 -extended formulas, i.e.,

∃xA(x) → ∃x(A(x) ∧ ∀y <l x¬A(y)),

with A a Δ1,b
1 -extended formula.

Similarly to [Johannsen and Pollett 1998], it can be proved that FCH is the
class of functions provably total in TCA with Σ1,b

1 -graphs. The proof uses the
free cut elimination theorem, after formulating the theory TCA into Gentzen’s se-
quent calculus (the details can be found in [Ferreira 2006]). Here we just present
that formulation, denoted by LKFCH.

Besides the initial sequents of the form A ⇒ A, with A an atomic formula,
and the sequents for equality, LKFCH has also the following axioms:

1) ⇒ A(s̄), with A a basic axiom of TCA and s̄ terms;

2) s ∈ F t ⇒ s � t;

3) ⇒ A(ε) ∧ ∀x ≺ s (A(x) → A(x0) ∧ A(x1)) → ∀x � sA(x), with A a Σ1,b
0 -

formula, and x does not occur in s;

4) ⇒ ∃F s∀y � s (y ∈ F s ↔ A(y)), with A a Σ1,b
0 -formula where the variable

F s does not occur;

5) ⇒ ∃CvCount(Cv, F t), the term v as in the counting axiom,

and all the second-order inference rules (like the ones presented in [Buss 1985]
with the obvious modification to our language), complemented with the following
substitution rule:
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Γ, a � t ⇒ ∃F qϕ(a, F q)
Γ ⇒ ∃Gr∀x � tϕ̄(x, Gr)

,

where a is a proper variable, ϕ a Σ1,b
0 -formula , and r and ϕ̄ are as in the

substitution scheme.
Of course, the point of this sequent calculus formulation of TCA is that all

of its axioms are given by sequents consisting only of Σ1,b
1 -formulas.

3 Enriching TCA

In this section, we enrich TCA and set up a system for analysis (with second-order
variables intended to range over arbitrary subsets of 0-1-strings), still character-
izing FCH. Firstly, we need to add to TCA a suitable collection scheme.

A Σ1,b
∞ -formula is a formula that belongs to the smallest class of expressions

in Lb
2 that contains the Σ1,b

0 -formulas and is closed under ¬,∧,∨, ∃Xt, ∀Xt, ∃x �
t and ∀x � t. Consider the following scheme, denoted by B1Σ1,b

∞ :

∀Xt∃y ϕ(y, Xt) → ∃z∀Xt∃y � z ϕ(y, Xt)

with ϕ a Σ1,b∞ -formula which can have free variables other than y and Xt.
This bounded collection scheme, although somewhat technical, is of

paramount importance for the introduction of some principles of recursive com-
prehension. Observe that this is a true scheme in the standard model because
(for a fixed 0-1-string t) there are only finitely many values for Xt. Even
though we may be collecting exponentially many elements, adjoning the col-
lection scheme does not entail the totality of exponentiation. In point of fact,
one obtains a theory which is suitably conservative over the original theory
(see the next proposition). This conservativity is argued below via an analysis
within a sequent style Gentzen calculus. For a recent new angle on this issue see
[Ferreira and Oliva 2007].

The theory TCA + B1Σ1,b
∞ can be formulated in Gentzen’s sequent calculus

by LK′
FCH, which results from LKFCH adding the following inference rule:

Γ ⇒ ∃yϕ(y, Ct)
Γ ⇒ ∃z∀Xt∃y � zϕ(y, Xt)

,

where Ct is a proper variable, t is a term where y does not occur and ϕ is a
Σ1,b∞ -formula which can have other free variables.

The characterization of the provably total functions in the enlarged theory
TCA + B1Σ1,b

∞ is obtained via the following conservation result:

Proposition 3.1 The theory TCA + B1Σ1,b
∞ is ∀∃Σ1,b

∞ -conservative over TCA,
i.e., whenever TCA + B1Σ1,b∞ proves a sentence of the form ∀x̄∃yϕ(x̄, y), with ϕ

a Σ1,b
∞ -formula, then TCA already proves it.
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Proof. The proof uses the cut elimination theorem and is based on a proof, in
a different context, presented by Buss (see [Buss 1998]).

Suppose TCA + B1Σ1,b
∞ � ∀x̄∃yϕ(x̄, y), with ϕ a Σ1,b

∞ -formula. So, there
is a LK′

FCH-proof of the sequent ⇒ ∃yϕ(x̄, y). The free cut elimination theo-
rem ensures that there is a LK′

FCH-proof P of ⇒ ∃yϕ(x̄, y) without free cuts,
which means that we can assume that every formula in P is a Σ1,b

∞ -formula
or is a formula of the form ∃xθ(x, x̄, X̄p), with θ a Σ1,b∞ -formula. We prove,
by induction on the number of lines of the proof P , that for every sequent
Γ ⇒ Δ in P (consider Γ := ∃x1ϕ1, ...,∃xnϕn and Δ := ∃y1ψ1, ...,∃ykψk,
with ϕi, ψi Σ1,b∞ -formulas), we have TCA � ∀u∃v∀x̄ � u∀X̄p(x̄)(Γ�u → Δ�v),
where Γ�u abbreviates ∃x1 � uϕ1 ∧ ... ∧ ∃xn � uϕn and Δ�v abbreviates
∃y1 � vψ1∨ ...∨∃yk � vψk. Once we apply it to the last sequent of P , the result
follows immediately. We illustrate the proof by induction on the number of lines
of P with the cut rule. Suppose Γ ⇒ Δ is obtained by cut, i.e., the line immedi-
ately above is formed by the sequents Γ ⇒ Δ, A and A, Γ ⇒ Δ. If A is a Σ1,b∞ -
formula it is enough to choose v as being the concatenation of the v’s that exist
by induction hypotheses for the two sequents in the line above. Suppose A :=
∃zθ(z, x̄, X̄p(x̄)), with θ a Σ1,b

∞ -formula. By induction hypothesis we have that (1)
TCA � ∀u∃v∀x̄ � u∀X̄p(x̄)(Γ�u → Δ�v ∨ ∃z � vθ(z, x̄, X̄p(x̄))) and (2) TCA �
∀u∃v∀x̄ � u∀X̄p(x̄)(∃z � uθ(z, x̄, X̄p(x̄)) ∧ Γ�u → Δ�v). We want to prove that
TCA � ∀u∃v∀x̄ � u∀X̄p(x̄)(Γ�u → Δ�v). Let us work in TCA. Given u, by (1)
there is v1 such that ∀x̄ � u∀X̄p(x̄)(Γ�u → Δ�v1 ∨ ∃z � v1θ(z, x̄, X̄p(x̄))). We
can suppose that u � v1, because if it is not the case we replace v1 by v1ˆu. By
(2), there is v2 such that ∀x̄ � v1∀X̄p(x̄)(∃z � v1θ(z, x̄, X̄p(x̄)) ∧ Γ�v1 → Δ�v2).
So ∀x̄ � u∀X̄p(x̄)(∃z � v1θ(z, x̄, X̄p(x̄)) ∧ Γ�u → Δ�v2). With v = v1ˆv2 we
have ∀x̄ � u∀X̄p(x̄)(Γ�u → Δ�v). The other rules follow in a similar way. ��

It follows immediately that the provably total functions in TCA + B1Σ1,b
∞ ,

with graphs Σ1,b
1 , are exactly the functions of FCH.

We are now ready to define the theory TCA2, which includes the previous
systems and is stated in a language that permits variables ranging over infinite
sets. Let L2 be a second-order language with equality which differs from Lb

2 only
by the presence of second-order variables, denoted by F, G, . . . , X, Y , instead of
the previous second-order “bounded” variables F t, Gq, . . . The formulas of L2 are
defined as in Lb

2, replacing Xt by X . The definitions of Σ1,b
0 (respectively Σ1,b

1 ,
Π1,b

1 , Δ1,b
1 , Σ1,b

∞ )-formulas in L2 (and its extended versions) are given by obvious
modifications, namely replacing ∀Xt, ∃Xt by the second-order quantifications
∀X � t, ∃X � t where X � t abbreviates ∀z(z ∈ X → z � t).

A structure for L2 has domain (M, S), with the first-order variables taking
values in M and the second-order variables varying over S, a given subset of
P(M). The standard model is (2<ω,P(2<ω)). Note that although we work in
a second-order language, our logic is of first-order kind (first-order logic in a
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two-sorted language): our semantics only specifies S to be a subset of P(M), not
necessarily all of P(M).

Consider the following axiom, known as the recursive comprehension scheme:

∀x(∃yϕ(x, y) ↔ ∀yψ(x, y)) → ∃X∀x(x ∈ X ↔ ∃yϕ(x, y)),

with ϕ a Σ1,b
1 -formula and ψ a Π1,b

1 -formula, possibly with other free variables.
In the standard model, this scheme ensures that all recursive sets exist. There-
fore, it may seem that adding this scheme to weak theories like ours would
increase its computational power. We will prove that this is not the case. NB
the existence of a set X is guaranteed only in the case the theories have enough
resources to prove the equivalence in the antecedent of the scheme, i.e., enough
“power” to prove that some algorithms do halt.

Definition 3.1 TCA2 is the second-order theory, in the language L2, with the
following axioms: basic axioms, induction on notation for Σ1,b

0 -formulas, substi-
tution for Σ1,b

0 -formulas, counting axiom, bounded collection and the recursive
comprehension scheme mentioned above.

Note that Lb
2 ⊆ L2, in the sense that every expression in Lb

2 can be formulated
in L2. Note also that every model of TCA2 satisfies the axioms of TCA+ B1Σ1,b∞
by definition. In order to proceed, we need in some sense the inverse, i.e., to get
models of TCA2 from models of TCA + B1Σ1,b

∞ .

Lemma 3.1 Let M be a model of the theory TCA+B1Σ1,b∞ with domain (M, Sb).
Then there is S ⊆ P(M) such that M∗, with domain (M, S), is a model of TCA2

and Sb = {Xa : X ∈ S ∧ a ∈ M}, where Xa collects the elements of X with
length less than or equal to a.

Proof. In order to get M∗ from M we have in some sense to “close” M for
recursive comprehension. Let S be formed by the subsets X ⊆ M for which
there is a Σ1,b

1 -formula ϕ, a Π1,b
1 -formula ψ and elements ā, b̄ in M and Āp, B̄u

in Sb such that X = {x ∈ M : M � ∃y ϕ(x, y, ā, Āp(x,y,ā))} = {x ∈ M :
M � ∀y ψ(x, y, b̄, B̄u(x,y,b̄))}. The proof that Sb ⊆ {Xa : X ∈ S ∧ a ∈ M} fol-
lows immediately because whenever Cc ∈ Sb, we have Cc ∈ S. For the other
inclusion consider C ∈ S and c ∈ M . We want to prove that Cc ∈ Sb. By
definition of S there are formulas ϕ, ψ and elements ā, b̄, Ā, B̄ (to simplify no-
tation we omit the bounded term in the second-order parameters) such that
M � ∀x(∃yϕ(x, y, ā, Ā) ↔ ∀yψ(x, y, b̄, B̄)). We claim that there is d ∈ M such
that ∀x � c(∃y � dϕ(x, y, ā, Ā) ↔ ∀y � dψ(x, y, b̄, B̄)). The existence of this
d uses the fact that from ∀x � c∃y θ(x, y), with θ a Σ1,b

∞ -formula, we have
∃d∀x � c∃y � d θ(x, y), which is a consequence of M being a model of B1Σ1,b

∞ .
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Therefore, by bounded comprehension in TCA + B1Σ1,b
∞ for Δ1,b

1 -extended for-
mulas we have that F c = {x � c : ∃y � dϕ(x, y, ā, Ā)} is an element in Sb. Since
F c = Cc, we have Cc ∈ Sb.

The proof that M∗ is a model of TCA2 is done axiom by axiom. The case
of the basic axioms is trivial, because the interpretation of the constants, the
function and relation symbols is the same in M and M∗ and both models
have the same first-order domain. The study of the other axioms follows more
or less in a straightforward manner from the following technical fact (which
can be proved by induction on the complexity of ϕ): Given ϕ(ū, Ū) a Σ1,b

∞ -
formula, there is a term q(ū) with the following property: given c̄ elements in
M and C̄ subsets in S then M∗ � ϕ(c̄, C̄) ⇔ M � ϕ(c̄, C̄b) whenever q(c̄) � b.
We illustrate the application of the fact studying the counting axiom and the
recursive comprehension scheme. For the counting axiom, given ā ∈ M , fix F ∈ S

such that F � t(ā). We want to prove that M∗ � ϕ(ā, F ) with ϕ(ū, U) the Σ1,b
∞ -

formula defined by ∃C � vCount(C, U). Since F t(ā) ∈ Sb and M is a model of
TCA, we know that M � ϕ(ā, F t(ā)). Applying the technical fact above, there
is a term q(ū) such that M∗ � ϕ(ā, F ) ⇔ M � ϕ(ā, F b) whenever q(ā) � b. If
q(ā) � t(ā) the result is immediate. If t(ā) � q(ā), then F t(ā) = F q(ā) because
F � t(ā). Therefore, M∗ � ϕ(ā, F ).

For the recursive comprehension scheme, suppose that M∗ �
∀x(∃yϕ(x, y, ā, Ā) ↔ ∀yψ(x, y, b̄, B̄)) with ϕ a Σ1,b

1 -formula and ψ a Π1,b
1 -

formula. We want to prove that M∗ � ∃X∀x(x ∈ X ↔ ∃yϕ(x, y, ā, Ā)).
Note that the formulas ϕ(x, y, ū, Ū) and ψ(x, y, ū, Ū) are, in particular,
Σ1,b∞ -formulas. Applying the fact above to the formula ϕ, there exists
a term q(x, y, ū) such that given s, r, ā ∈ M and Ā ∈ S we have (
)
M∗ � ϕ(s, r, ā, Ā) ⇔ M � ϕ(s, r, ā, Āb) whenever q(s, r, ā) � b. Applying
the same fact to ψ, there exists a term p(x, y, ū) such that given s, r, b̄ ∈ M

and B̄ ∈ S we have M∗ � ϕ(s, r, b̄, B̄) ⇔ M � ϕ(s, r, b̄, B̄b′) whenever
p(s, r, b̄) � b′. Since M∗ � ∀x(∃yϕ(x, y, ā, Ā) ↔ ∀yψ(x, y, b̄, B̄)) we know
that M � ∀x(∃yϕ(x, y, ā, Āq(x,y,ā)) ↔ ∀yψ(x, y, b̄, B̄p(x,y,b̄))). Take X = {x ∈
M : M � ∃yϕ(x, y, ā, Āq(x,y,ā))} = {x ∈ M : M � ∀yψ(x, y, b̄, B̄p(x,y,b̄))}. By
the definition of S, X ∈ S. From (
) we know that M∗ � ∃yϕ(s, y, ā, Ā) ⇔
M � ∃yϕ(s, y, ā, Āq(s,y,ā)), so X = {x ∈ M : M∗ � ∃yϕ(x, y, ā, Ā)}. Thus
M∗ � ∃X∀x(x ∈ X ↔ ∃yϕ(x, y, ā, Ā)). ��

Theorem 3.1 If TCA2 � ∀x̄∃yϕ(x̄, y), with ϕ a Σ1,b
∞ -formula, then TCA �

∀x̄∃yϕ(x̄, y).

Proof. Suppose that TCA �� ∀x̄∃yϕ(x̄, y). Therefore, by Proposition 3.1, we also
have TCA+B1Σ1,b

∞ �� ∀x̄∃yϕ(x̄, y). By the completeness theorem, there is a model
(M, Sb) of TCA + B1Σ1,b∞ and ā ∈ M such that (M, Sb) |= ∀y¬ϕ(ā, y). Using the
previous lemma, take S ⊆ P(M) such that Sb = {Xa : X ∈ S ∧ a ∈ M}.

916 Ferreira F., Ferreira G.: The Riemann Integral in Weak Systems of Analysis



Clearly, Σ1,b
∞ -formulas are absolute between (M, Sb) and (M, S). Therefore, we

also have (M, S) |= ∀y¬ϕ(ā, y). Since (M, S) is a model of TCA2, by soundness
we conclude that TCA2 �� ∀x̄∃yϕ(x̄, y). ��

As a consequence, the provably total functions of TCA2, with Σ1,b
1 -graphs,

are still the functions of FCH.

4 Analysis in weak systems – background

In this section, we briefly review the formalization of the basic an-
alytic concepts given in the paper Groundwork for Weak Analysis
[Fernandes and Ferreira 2002]. The formalization was worked out within BTFA

and, consequently, it also applies to the stronger TCA2. All the elementary
notions that we will need, such as that of a real number or of a continuous
real function are briefly introduced. Some basic concepts not dealt with in
[Fernandes and Ferreira 2002] are also stressed. For a more detailed study see
[Fernandes and Ferreira 2002], [Yamazaki 2005] and [Ferreira 2006].

In TCA2 we consider two sorts of natural numbers:
- The tally numbers, N1, which are the sequences satisfying x = ε∨x = 1×x.

The idea is that a natural number y corresponds to the tally 1ˆ . . . ˆ1︸ ︷︷ ︸
y times

.

- The dyadic natural numbers, N2, which are the sequences satisfying x =
ε ∨ x = 1y (with y a word). The idea is that if z is 1x1x2 · · ·xn−1 where each
xi is 0 or 1, then we should view z as the number

∑n−1
i=0 xi2n−i−1, with x0 = 1.

The empty string ε represents the number zero.
We define 0N1 , 1N1 , ≤N1 , +N1 and ·N1 as ε, 1, ⊆, ˆ and × (resp.), and obtain

a structure of ordered semi-ring in N1. It is also possible to define 0N2 , 1N2 , ≤N2 ,
+N2 and ·N2 in order to reproduce the usual operations of the natural numbers
and verify that N2 is an ordered semi-ring (see [Ferreira and Oitavem 2006]).
The indexes N1 and N2 are omitted whenever it is clear from the context which
operations are being used.

Remark 4.1 - By the counting axiom it is possible to do the counting in N2 as
well.

- The induction scheme along N2 is valid in TCA2:

A(0N2) ∧ ∀x ∈ N2(A(x) → A(x +N2 1)) → ∀x ∈ N2A(x),

with A a Δ1,b
1 -extended formula.

We follow [Fernandes and Ferreira 2002] and let the dyadic rational num-
bers, D, be triples (0, x, y) and (1, x, y) (coded as strings in a smooth
way), with x ∈ N2 and y = ε ∨ y = z1 (with z a word). The idea
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is that the triple (s, x0 . . . xn−1, y0 . . . ym−1) represents the rational number
(−1)s(

∑n−1
i=0 xi2n−i−1 +

∑m−1
j=0

yj

2j+1 ). Usually we denote such dyadic rational
number by ±x0x1 . . . xn−1 · y0 . . . ym−1. The middle dot “·” is the radix point of
the bitwise representation of the dyadic number. It is possible to introduce 0D,
1D, ≤D, +D and ·D extending, to the dyadic rational numbers, the operations al-
ready mentioned in the dyadic natural numbers. Such operations reproduce the
usual operations in the rational numbers and with them D becomes an ordered
ring. We can also introduce: −D, −N1 (considering positive and negative tally)
and |x| in the expected way.

Given a tally n, we use the notation 2n to abbreviate the representation of
the dyadic rational number +1 00 . . .0︸ ︷︷ ︸

n zeros

·ε. Note that it is just notation, since both

the dyadic and unary exponential functions are not total in TCA2.

Notation 4.1 The dyadic rational numbers of the form +m · ε are sometimes
used when we want to refer to the dyadic natural numbers m.

Functions are suitable sets of codes of ordered pairs. A function α : N1 → D

is a real number if |α(n) − α(m)| ≤ 2−n for all n ≤ m. Two real numbers α and
β are equal and we write α = β if ∀n ∈ N1|α(n) − β(n)| ≤ 2−n+1. We identify
each dyadic rational number x with the real number αx defined by the constant
function αx(n) = x, for all n ∈ N1. Therefore, we have a natural embedding of
D into R. The basic arithmetical operations, with the usual properties, can be
defined on the real numbers in the following way:

- α + β is the real number n � α(n + 1) + β(n + 1)

- α − β is the real number n � α(n + 1) − β(n + 1)

- α · β is the real number n � α(n + k) · β(n + k), where k is the least tally
such that |α(0)| + |β(0)| + 2 ≤ 2k (the symbol · is usually omitted)

- α ≤ β is defined by ∀n(α(n) ≤ β(n) + 2−n+1)

- α < β is defined by α ≤ β ∧ α �= β

- |α| is the real number n � |α(n)|,

and, with these operations, the real numbers form an ordered field.
In the above, the only operation not introduced in

[Fernandes and Ferreira 2002] is the absolute value |α|, which is obviously a real
number because ||α|(n) − |α|(m)| = ||α(n)| − |α(m)|| ≤ |α(n) − α(m)| ≤ 2−n,
for all n ≤ m. Note that real numbers are sets, i.e., second-order entities. So,
the existence of particular real numbers always amounts to set formation (using
the available comprehension).
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The relations = and ≤ in the real numbers can be expressed by formulas of
the form ∀xϕ and the relations �= and < can be expressed by formulas of the form
∃xϕ with ϕ a Σ1,b

0 -formula. We also know that α(n) − 2−n ≤ α ≤ α(n) + 2−n.
Although we can not talk in general about sets of real numbers (the language

only allows sets of words), we use expressions of the form ∀α ∈ R . . . or α ∈ [β, γ]
to stand for ∀α(if α is a real number then . . . ) or α is a real number and
β ≤ α ≤ γ, respectively.

Since the main purpose is to develop analysis, the concept of continuous
real function is essential. In [Simpson 1999] and [Yamazaki 2005] we can find
different definitions. In this paper we broadly follow [Simpson 1999], adapted to
our weak setting (for more information, see [Fernandes and Ferreira 2002]). In
the following definition (x, n)Φ(y, k) can informally be seen as stating that the
elements in ]x − 2−n, x + 2−n[ are applied under Φ in [y − 2−k, y + 2−k].

A continuous partial function from R to R is a set Φ of codes of quintuples
(denoted by 〈w, x, n, y, k〉) satisfying:

- if 〈w, x, n, y, k〉 ∈ Φ then w is a first-order element, x, y ∈ D, n, k ∈ N1

- if (x, n)Φ(y, k) and (x, n)Φ(y′, k′) then |y − y′| ≤ 2−k + 2−k′

- if (x, n)Φ(y, k) and (x′, n′) < (x, n) then (x′, n′)Φ(y, k)

- if (x, n)Φ(y, k) and (y, k) < (y′, k′) then (x, n)Φ(y′, k′),

where (x, n)Φ(y, k) abbreviates the formula ∃w〈w, x, n, y, k〉 ∈ Φ and (x′, n′) <

(x, n) abbreviates |x − x′| + 2−n′
< 2−n.

From [Fernandes and Ferreira 2002], we know that the identity function Id,
the constant function Cγ with γ ∈ R, the sum Φ1 + Φ2 and product Φ1 · Φ2 of
continuous functions can be defined as continuous functions. Next we present
another example of a continuous function from R to R: the modulus function.

We define the modulus function |.|, by (x, n)|.|(y, k) if x, y ∈ D, n, k ∈ N1 and
||x| − y| ≤ 2−k − 2−n. Note that set {〈ε, x, n, y, k〉 : ||x| − y| ≤ 2−k − 2−n} exists
in TCA2 and is officially the modulus function. It can be seen that the set is,
indeed, a continuous function from R to R according to the definition.

Now we present some standard definitions:

- Let Φ be a continuous partial function from R to R. A real number α is in
the domain of Φ, denoted by α ∈ dom(Φ), if

∀k ∈ N1∃n ∈ N1∃x, y ∈ D(|α − x| < 2−n ∧ (x, n)Φ(y, k)).

Or equivalently: ∀k ∈ N1∃n ∈ N1∃y ∈ D(α(n + 1), n)Φ(y, k).

- Let Φ be a continuous partial function from R to R, and let α be a real
number in the domain of Φ. We say that a real number β is the value of α

under the function Φ, denoted by Φ(α) = β, if
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∀x, y ∈ D∀n, k ∈ N1((x, n)Φ(y, k) ∧ |α − x| < 1
2n → |β − y| ≤ 1

2k ).

From [Fernandes and Ferreira 2002], we know that, if Φ is a continuous par-
tial function from R to R and α ∈ dom(Φ), then there is a real number β

satisfying Φ(α) = β and it is unique (modulo the equality of reals). The proof
in BTFA is not straightforward, but in TCA2 is much easier since minimization
is available (see [Simpson 1999] and [Ferreira 2006]).

Remark 4.2 Given γ ∈ R and α ∈ dom(Φ), the formula Φ(α) ≤ γ is an
abbreviation of ∃β(Φ(α) = β ∧ β ≤ γ) (
). We can prove that such formula is
equivalent to ∀x, y ∈ D∀n, k ∈ N1((x, n)Φ(y, k)∧|α−x| < 1

2n → y ≤ γ + 1
2k ) (†).

Thus, equivalent to a ∀Σ1,b
0 -formula. We immediately obtain (†) from (
). The

other implication comes from the possibility of fixing β such that Φ(α) = β and
from the fact that α ∈ dom(Φ) implies that ∀k ∈ N1∃y ∈ D(|β − y| ≤ 1

2k ∧ y ≤
γ + 1

2k ), and consequently ∀k(β ≤ γ + 1
2k−1 ). So, β ≤ γ because k can be chosen

as large as we want. Obviously also Φ(α) < γ is equivalent to a ∃Σ1,b
0 -formula

and, by definition, Φ(α) = γ is equivalent to a ∀Σ1,b
0 -formula.

Of course, we have ∀α ∈ R, Id(α) = α, Cγ(α) = γ, and if α ∈ dom(Φ1), α ∈
dom(Φ2), Φ1(α) = β1 and Φ2(α) = β2 then α ∈ dom(Φ1 +Φ2), α ∈ dom(Φ1 ·Φ2),
(Φ1 + Φ2)(α) = β1 + β2 and (Φ1 · Φ2)(α) = β1 · β2.

Proposition 4.1 The modulus function |.| (introduced before) is a continuous
total function and ∀α ∈ R |.|(α) = |α|.

Proof. Take α ∈ R and k ∈ N1. We have |α − α(k + 1)| ≤ 2−(k+1) < 2−k

and ||α(k + 1)| − |α(k + 1)|| = 0 = 2−k − 2−k. So, there are n := k ∈ N1,
x := α(k + 1) ∈ D, y := |α(k + 1)| ∈ D such that (|α− x| < 2−n ∧ (x, n)|.|(y, k)).
Thus α ∈ dom(|.|). Let us prove now that |.|(α) = |α|, i.e., ∀x, y ∈ D∀n, k ∈
N1((x, n)|.|(y, k)∧|α−x| < 1

2n → ||α|−y| ≤ 1
2k ). Take x, y ∈ D and n, k ∈ N1 and

suppose that (x, n)|.|(y, k) and |α−x| < 1
2n . Then ||α|−y| = ||α|−|x|+ |x|−y| ≤

||α| − |x|| + ||x| − y| ≤ |α − x| + 2−k − 2−n < 1
2k . Therefore, |.|(α) = |α|. ��

Definition 4.1 A continuous partial function from R to R is total if all the real
numbers are in the domain of the function. It is total in the interval [α, β] if
every real number in [α, β] is in the domain of the function.

We finish the study of the continuous functions showing that the usual notion
of composition of real continuous function can be formalized in TCA2.

Let Φ1 and Φ2 be continuous partial functions from R to R.
Define (x, n)(Φ1 ◦ Φ2)(y, k) iff x, y ∈ D ∧ n, k ∈ N1∧

∃x′ ∈ D∃n′ ∈ N1 \ {0}(x, n)Φ2(x′, n′) ∧ (x′, n′ − 1)Φ1(y, k).
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Let θ(x, n, y, k) be the previous formula. Note that θ is (logically) equivalent to
a ∃Σ1,b

0 -formula, i.e., it is of the form ∃wθ′(w, x, n, y, k), with θ′ a Σ1,b
0 -formula.

Then, the set {〈w, x, n, y, k〉 : θ′(w, x, n, y, k)} exists in TCA2 and is officially the
composition Φ1 ◦ Φ2.

Let us prove that Φ1 ◦ Φ2 is a continuous partial function from R to R.
If (x, n)(Φ1 ◦ Φ2)(y, k) and (x, n)(Φ1 ◦ Φ2)(y′, k′) then there are x′ ∈ D and

n′ ∈ N1 \{0} such that (x, n)Φ2(x′, n′)∧(x′, n′−1)Φ1(y, k) and there are x′′ ∈ D

and n′′ ∈ N1 \ {0} such that (x, n)Φ2(x′′, n′′) ∧ (x′′, n′′ − 1)Φ1(y′, k′).
Since Φ2 is a continuous function, |x′ − x′′| ≤ 2−n′

+ 2−n′′
. If |x′ − x′′| <

2−n′
+2−n′′

then there are z ∈ D and m ∈ N1 such that (z, m) < (x′, n′)∧(z, m) <

(x′′, n′′). To see that, suppose that x′ ≤ x′′. It is enough to consider the interval

[x′′ − 2−n′′
, x′ + 2−n′

] and to take z as x′′−2−n′′
+x′+2−n′

2 and m as an element

of N1 such that 2−m < x′+2−n′−x′′+2−n′′

2 . Since we have (x′, n′) < (x′, n′ − 1) ∧
(x′′, n′′) < (x′′, n′′ − 1). We conclude that (z, m)Φ1(y, k) ∧ (z, m)Φ1(y′, k′), and
so |y − y′| ≤ 2−k + 2−k′

. If |x′ − x′′| = 2−n′
+ 2−n′′

, since (x′, n′) < (x′, n′ − 1)
and (x′′, n′′) < (x′′, n′′−1), we have (x, n)Φ2(x′, n′−1) and (x, n)Φ2(x′′, n′′−1),
with |x′ − x′′| < 2−(n′−1) + 2−(n′′−1). Just apply the previous case. The other
two conditions can be verified in a straightforward way.

Proposition 4.2 Take Φ1 and Φ2 continuous partial functions from R to R. If
α ∈ dom(Φ2) and Φ2(α) ∈ dom(Φ1), then α ∈ dom(Φ1 ◦Φ2) and (Φ1 ◦Φ2)(α) =
Φ1(Φ2(α)).

Proof. Fix k ∈ N1 and take β ∈ R such that Φ2(α) = β. Since β ∈ dom(Φ1),
there are n′ ∈ N1 and y ∈ D such that (β(n′ + 1), n′)Φ1(y, k). Also there are
n ∈ N1 and y′ ∈ D such that (α(n + 1), n)Φ2(y′, n′ + 3) because α ∈ dom(Φ2).
Let us prove that (α(n+1), n)(Φ1 ◦Φ2)(y, k). By definition of Φ1 ◦Φ2 we have to
prove that there are w ∈ D and m ∈ N1 \ {0} such that (α(n + 1), n)Φ2(w, m) ∧
(w, m − 1)Φ1(y, k). Take w := y′ and m := n′ + 3. Obviously, we have (α(n +
1), n)Φ2(w, m). It remains to prove that (y′, n′ + 2)Φ1(y, k). We know |β(n′ +
1) − y′| + 1

2n′+2 ≤ |β(n′ + 1) − β| + |β − y′| + 1
2n′+2 ≤ 1

2n′+1 + 1
2n′+3 + 1

2n′+2 <
1

2n′ . So (y′, n′ + 2) < (β(n′ + 1), n′). Since (β(n′ + 1), n′)Φ1(y, k), we have that
(y′, n′ + 2)Φ1(y, k).

Let us prove that (Φ1 ◦ Φ2)(α) = Φ1(Φ2(α)), i.e., giving λ, β, γ real numbers
such that λ = (Φ1 ◦ Φ2)(α), β = Φ2(α) and γ = Φ1(β) we have λ = γ.

From the above, given k ∈ N1, there are n, n′ ∈ N1 and y ∈ D such that
(α(n + 1), n)(Φ1 ◦ Φ2)(y, k) ∧ (β(n′ + 1), n′)Φ1(y, k). Because λ = (Φ1 ◦ Φ2)(α),
(α(n+1), n)(Φ1 ◦Φ2)(y, k) and |α−α(n+1)| ≤ 1

2n+1 < 1
2n we have |λ− y| ≤ 1

2k .
Since Φ1(β) = γ and (β(n′ +1), n′)Φ1(y, k) and |β−β(n′ +1)| ≤ 1

2n′+1 < 1
2n′ , we

have |γ−y| ≤ 1
2k . But |λ−γ| = |λ−y+y−γ| ≤ |λ−y|+ |y−γ| ≤ 1

2k + 1
2k = 1

2k−1 .
So |λ−γ| ≤ 0. Note that k can be chosen arbitrarily large. Therefore, λ = γ. ��
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Corollary 4.1 Take Φ a continuous total function in [α1, α2]. The function
|.| ◦Φ, abbreviated by |Φ|, is a continuous total function in [α1, α2] and |Φ|(α) =
|Φ(α)|, ∀α ∈ [α1, α2].

We need to strengthen the notion of continuity. We work with the concept
of modulus of uniform continuity.

Definition 4.2 Let Φ be a continuous total function (respectively continuous
total in [α1, α2]). A modulus of uniform continuity (m.u.c.) for Φ is a strictly
increasing function h from N1 to N1 such that for all n ∈ N1 and for all α, β ∈ R

(respectively α, β ∈ [α1, α2]), if |α − β| < 2−h(n) then |Φ(α) − Φ(β)| < 2−n.

The following is easy:

Proposition 4.3 a) Id, |.|, Cγ and Cγ · Id, with γ ∈ R, are functions with a
modulus of uniform continuity.

b) If Φ1 and Φ2 are continuous total functions or continuous total in [α1, α2]
with a m.u.c then Φ1 + Φ2 has a m.u.c.

c) If Φ2 is a continuous total function (respectively continuous total in [α1, α2])
with a m.u.c. and Φ1 is a continuous total function (respectively continuous
total in [β1, β2]) with a m.u.c. (and satisfying ∀α ∈ [α1, α2] Φ2(α) ∈ [β1, β2]),
then Φ1◦Φ2 has a m.u.c. In particular, if Φ has a m.u.c. then |Φ| has a m.u.c.

5 On the way to integration: sums

Let us make two preliminary observations that will be used often in the sequel.
Take f a function from X to Y (e.g. f : N1 → D, f : N1 × N2 → N2, ...). The
formula θ(x) := x ∈ X ∧ θ′(x, f(x)), with θ′ a Σ1,b

0 -formula is equivalent to a
Σ1,b

0 -formula (we allow a set parameter). In fact, θ(x) can be expressed in the
following equivalent forms: x ∈ X ∧∃y(f(x) = y∧θ′(x, y)) or x ∈ X ∧∀y(f(x) =
y → θ′(x, y)). So, by recursive comprehension (in TCA2) we can form the set
Z := {x ∈ X : θ(x)} and θ(x) is equivalent to x ∈ Z. The second observation
is the following. Let θ(x, y) be a ∃Σ1,b

1 -formula. If it is possible to prove, in
TCA2, that ∀x∃yθ(x, y) and that y is unique, then θ(x, y) is equivalent to a
Σ1,b

0 -formula. Indeed, we can form the set {〈x, y〉 : θ(x, y)} because we have
recursive comprehension and θ(x, y)︸ ︷︷ ︸

∃Σ1,b
1 −formula

↔ ∀y′(θ(x, y′) → y = y′︸ ︷︷ ︸
∀Π1,b

1 −formula

). Obviously

the result is still valid with the restrictions x ∈ N1 or x ∈ N2.

Lemma 5.1 Let f be a function from X × N2 to N2. Then there is a function
g from X × N2 to N2 such that ∀x ∈ X∀n ∈ N2∀i ≤N2 n(f(x, i) ≤ g(x, n)).
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Proof. Take x ∈ X and n ∈ N2. Obviously we have ∀i ≤N2 n∃sf(x, i) ≤ s, just
take s as being f(x, i). By bounded collection ∃r′∀i ≤N2 n∃s � r′f(x, i) ≤ s.
So ∃r∀i ≤N2 nf(x, i) ≤ r, for instance r = 1 × r′. Thus, ∀x ∈ X∀n ∈ N2∃r ∈
N2∀i ≤N2 nf(x, i) ≤ r. Consider the Σ1,b

0 -formula φ defined by φ(x, n, r) :=
∀i ≤N2 nf(x, i) ≤N2 r and the set g := {〈〈x, n〉, r〉 : x ∈ X ∧ n ∈ N2 ∧ r ∈ N2 ∧
φ(x, n, r)∧∀r′ < r¬φ(x, n, r′)}. Since ∀x ∈ X∀n ∈ N2∃r ∈ N2φ(x, n, r), applying
minimization we have ∀x ∈ X∀n ∈ N2∃r(φ(x, n, r) ∧ ∀r′ < r¬φ(x, n, r′)). Thus
g is a function from X × N2 to N2 satisfying the desired condition. ��

Theorem 5.1 Given f : X × N2 → N2, there is Σf a function from X × N2 to
N2 s.t. ∀x ∈ X∀n ∈ N2[Σf (x, 0) = f(x, 0)∧Σf (x, n+1) = Σf (x, n)+f(x, n+1)].

Proof. Informally notice that, for all x in X , we have f(x, 0) + f(x, 1) + · · · +
f(x, n) = #{r : r <N2 f(x, 0)} + · · · + #{r : r <N2 f(x, n)} = #{〈r, i〉 : i ≤N2

n ∧ r <N2 f(x, i)} = #{u : ∃i, r � u(u = 〈r, i〉 ∧ i ≤N2 n ∧ r <N2 f(x, i))}, where
# is the number of elements in the set that belong to N2.

Given x ∈ X and n ∈ N2 let Z be the set {u : ∃i, r � u(u = 〈r, i〉 ∧ i ≤N2

n ∧ r <N2 f(x, i))} where we suppose that the pairing function has some nice
properties, viz. that it is monotone (in the sense of �) in both arguments and
such that r, i � 〈r, i〉. Note that from Lemma 5.1, there is a function g such
that u ∈ Z → u � 〈g(x, n), n〉. Fix t := 〈(x, n), n〉. Applying the counting axiom
in N2 (see Remark 4.1), there is an explicit term vt constructed from t and
C � vt such that 〈u, j〉 ∈ C iff there are j elements of N2 less than or equal
to u in Z. Take Σf = {〈〈x, n〉, s〉 : x ∈ X ∧ n ∈ N2 ∧ ∃Z � 〈g(x, n), n〉∃C �
vt(∀u � 〈g(x, n), n〉(u ∈ Z ↔ ∃i, r � u(u = 〈r, i〉 ∧ i ≤ n ∧ r < f(x, i))) ∧
Count(C, Z) ∧ 〈〈g(x, n), n〉, s〉 ∈ C)}. Since for all x ∈ X, n ∈ N2 there is one
and only one s in the previous conditions, the set Σf exists in TCA2, and we
can easily prove that it does define a function that satisfies Σf(x, 0) = f(x, 0)
and Σf (x, n + 1) = Σf(x, n) + f(x, n + 1), ∀x ∈ X, ∀n ∈ N2. ��

Next, we extend the notion of sum along N2 to elements of D
+
0 (non negative

dyadic rational numbers) and then to elements of D.

Proposition 5.1 Given f : X×N2 → D
+
0 , there is a function Σf : X×N2 → D

+
0

s.t. Σf (x, 0) = f(x, 0) and Σf (x, n+1) = Σf (x, n)+f(x, n+1), ∀x ∈ X, ∀n ∈ N2.

Proof. We reduce this summation to a summation of the kind discussed in
the previous theorem. By the argument of Lemma 5.1, we may take a function
g : X × N2 → N1 such that ∀x ∈ X∀l ∈ N2∀n ≤N2 l (f(x, n) ·D 2g(x,l) ∈ N2).
Now, define f ′ : X × N2 × N2 → N2 as follows:

f ′(x, l, n) =
{

f(x, n) ·D 2g(x,l) if n ≤N2 l

0N2 otherwise

By the previous theorem, there is Σf ′ : X × N2 × N2 → N2 such that:
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∀x ∈ X∀l ∈ N2∀n ∈ N2

(
Σf ′(x, l, 0) = f ′(x, l, 0)∧

Σf ′(x, l, n + 1) = Σf ′(x, l, n) + f ′(x, l, n + 1)
)
.

We now define Σf : X × N2 → D
+
0 by Σf (x, n) = 2−g(x,n)Σf ′(x, n, n). It is

not difficult to show, using the available forms of induction, that this function
has the desired properties. ��

Proposition 5.2 Given f : X ×N2 → D, there is a function Σf : X × N2 → D

s.t. Σf (x, 0) = f(x, 0) and Σf (x, n+1) = Σf (x, n)+f(x, n+1), ∀x ∈ X, ∀n ∈ N2.

Proof. This can be reduced to the previous case by separating the positive and
negative summands. ��

Definition 5.1 Given f a function from X × N2 to D, x ∈ X and n ∈ N2, we
denote by

∑n
i=0 f(x, i) the dyadic rational number Σf (x, n).

For simplicity, the properties are presented in functions of only one variable
(f : N2 → D). The extension to domains with more variables is straightforward.

Definition 5.2 Take f : N2 → D, g : N2 → D and λ ∈ D. We can consider
the functions f + g, λf and |f | defined respectively by (f + g)(n) = f(n) + g(n),
(λf)(n) = λf(n) and |f |(n) = |f(n)|, ∀n ∈ N2.

Proposition 5.3 Take f : N2 → D, g : N2 → D, n ∈ N2 and λ ∈ D

a)
∑n

i=0(f + g)(i) =
∑n

i=0 f(i) +
∑n

i=0 g(i)

b)
∑n

i=0(λf)(i) = λ
∑n

i=0 f(i)

c)
∑n

i=0 λ = λ · (n + 1)

d) |∑n
i=0 f(i)| ≤ ∑n

i=0 |f |(i)
e)

∑n
i=0 i = (n+1)n

2

f) If f(i) ≤ g(i) for all i ≤ n, then
∑n

i=0 f(i) ≤ ∑n
i=0 g(i).

Proof. All the clauses can be easily proved by induction on n ∈ N2. ��

Definition 5.3 Take f : N2 → D and n, m ∈ N2 such that n ≤ m. Then
∑m

i=n f(i) :=
∑m

i=0 f(i) − ∑n−1
i=0 f(i).

Using the notation above and the properties of the sum along N2, we imme-
diately deduce the following equalities:

− ∑n
i=n f(i) = f(n)
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− ∑n+m
i=0 f(i) =

∑n−1
i=0 f(i) +

∑n+m
i=n f(i)

− ∑m+1
i=n f(i) =

∑m
i=n f(i) + f(m + 1), with n ≤ m

− ∑m
i=n+1 f(i) =

∑m
i=n f(i) − f(n), with n < m.

The following two properties can also be easily proven with the available
induction:

Proposition 5.4 Let f be a function from N2 to D and n, k ∈ N2. Then
∑n

i=0 f(k + i) =
∑n+k

i=k f(i).

Proposition 5.5 Given n, k, m ∈ N2\{0}, such that n = k · m, we have that
∑n−1

i=0 f(i) =
∑k−1

j=0

∑m−1
i=0 f(jm + i).

6 On the way to integration: miscellanea

Definition 6.1 A sequence of real numbers is a function f : N1×N1 → D such
that for all n ∈ N1 the function fn : N1 → D defined by fn(k) = f(k, n) is a real
number. We denote by (αn)n∈N1 the sequence f , with fn = αn.

Remark 6.1 - If (αn)n∈N1 and (βn)n∈N1 are sequences of real numbers and λ ∈
R, then we can form the sequences (αn +βn)n∈N1 , (αn ·βn)n∈N1 and (λαn)n∈N1 .
For instance, the sum sequence is coded by the set

{〈〈m, n〉, d〉 : m, n ∈ N1 ∧ d ∈ D∧ d = (αn)n∈N1(m + 1, n)+ (βn)n∈N1(m + 1, n)}.

- Given α ∈ R, X = {〈〈m, n〉, d〉 : m ∈ N1 ∧ n ∈ N1 ∧ d ∈ D ∧ 〈m, d〉 ∈ α} is
the constant sequence (equal to α).

Definition 6.2 A sequence of real numbers (αn)n∈N1 is bounded if there is α ∈
R such that ∀n ∈ N1|αn| ≤ α; it is increasing (respectively strictly increasing)
if ∀n ∈ N1(αn ≤ αn+1) (respectively αn < αn+1) and decreasing (respectively
strictly decreasing) if ∀n ∈ N1(αn+1 ≤ αn) (respectively αn+1 < αn).

Definition 6.3 A sequence of real numbers (αn)n∈N1 converges to the real num-
ber α, denoted α = limn αn, if ∀k ∈ N1∃n ∈ N1∀i ∈ N1|α − αn+i| < 2−k.

A sequence (αn)n∈N1 is convergent if there is α ∈ R such that limn αn = α.

Let us continue, listing some basic properties of limits with proofs that can
be easily formalizable in TCA2.

Proposition 6.1 Take (αn)n∈N1 , (βn)n∈N1 , (γn)n∈N1 sequences of real numbers
and α, β, γ ∈ R. In TCA2 we can prove the following
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1. If there is the limit of a sequence of real numbers, then that limit is unique.

2. If (αn)n∈N1 is a constant sequence equal to α. Then limn αn = α.

3. If αn = βn for all n after a certain given value, then if limn αn = α we have
limn βn = α.

4. If limn αn = α and limn βn = β, then (αn+βn)n∈N1 is a convergent sequence
and limn(αn + βn) = α + β.

5. Every convergent sequence is bounded.

6. If limn αn = 0 and (βn)n∈N1 is a bounded sequence, then (αn · βn)n∈N1 is a
convergent sequence and limn(αn · βn) = 0.

7. If limn αn = α and limn βn = β, then (αn ·βn)n∈N1 is a convergent sequence
and limn(αn · βn) = α · β.

8. If limn αn = α, then (λαn)n∈N1 is a convergent sequence and limn(λαn) =
λα.

9. If ∀n ∈ N1(αn ≤ γn ≤ βn) and limn αn = limn βn = α, then (γn)n∈N1 is a
convergent sequence and limn γn = α.

Remark 6.2 Given α ∈ R and n ∈ N1 the dyadic rational number α(n) is well
determined and α(n) =D d is a Σ1,b

0 -formula, since it abbreviates 〈n, d〉 ∈ α.
However, if Φ is a continuous partial function from R to R and α ∈ dom(Φ),

although the expression Φ(α) is well defined (modulo the equality of reals) the
expression Φ(α)(n) is not. Note that we can have Φ(α) = β and Φ(α) = γ,
obviously with β =R γ, but with β(n) �= γ(n).

In order to control the complexity of the formula that defines the integral (see
Section 7), it is necessary to introduce the expression Φ(α, n), which intuitively
can be seen as λ(n) for a certain λ = Φ(α), avoiding the complexity of examining
Φ(α). Next, we will define Φ(α, n) in detail.

Let Φ be a continuous partial function from R to R and α a real number in
the domain of Φ. Consider the formula

ϕ(n, r) :↔ ∃w∃k[〈w, α(k + 1), k, r, n + 1〉 ∈ Φ ∧ ∀〈r′, w′, k′〉 < 〈r, w, k〉
〈w′, α(k′ + 1), k′, r′, n + 1〉 /∈ Φ].

Given n ∈ N1, let us prove that there is a unique r ∈ D s.t. ϕ(n, r). Since α ∈
dom(Φ), we have that there are k ∈ N1 and r ∈ D such that (α(k+1), k)Φ(r, n+1)
i.e., there is w such that 〈w, α(k + 1), k, r, n + 1〉 ∈ Φ. If (r, w, k) is not (in code)
the least triple such that 〈w, α(k + 1), k, r, n + 1〉 ∈ Φ, choose the least in these
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conditions. Notice that the minimization scheme is available in TCA2 for Δ1,b
1 -

extended formulas.
The coding of triples ensures that if r �= r′ then 〈r′, w′, k′〉 �= 〈r, w, k〉, so the

uniqueness follows immediately.

Definition 6.4 Given Φ a continuous partial function from R to R and α a real
number in the domain of Φ, we let Φ(α, n) = r :↔ ϕ(n, r).

Remark 6.3 Accordingly, ∀n ∈ N1∃1r ∈ D Φ(α, n) = r. Φ(α, n) denotes the
unique dyadic rational number satisfying ϕ(n, Φ(α, n)). Of course, Φ(α, n) = r

is a Δ1,b
1 -extended formula (with parameter α).

Proposition 6.2 If Φ is a continuous partial function from R to R, α ∈ dom(Φ)
and n ∈ N1, then |Φ(α, n) − Φ(α)| ≤ 1

2n+1 , independently of the representative
chosen for Φ(α), i.e., ∀β ∈ R(Φ(α) = β → |Φ(α, n) − β| ≤ 1

2n+1 ).

Proof. Since ϕ(n, Φ(α, n)), there is k such that (α(k+1), k)Φ(Φ(α, n), n+1). But
|α−α(k+1)| ≤ 1

2k+1 < 1
2k , so, by definition of Φ(α) = β, we have |β−Φ(α, n)| ≤

1
2n+1 . Thus, |Φ(α, n) − β| ≤ 1

2n+1 .
��

The next proposition emphasizes the possibility of considering a canonical
representative for the value of a real under a continuous function.

Proposition 6.3 Take Φ a continuous partial function from R to R and α ∈
dom(Φ). The function λ : N1 → D defined by λ(n) = Φ(α, n) is a real number
and Φ(α) = λ.

Proof. The existence of a set, in TCA2, that codes the function λ, was ensured
in the previous observations. Let us prove that λ is a real number. Take n ≤ m.
|λ(n) − λ(m)| = |Φ(α, n) − Φ(α, m)| = |Φ(α, n) − Φ(α) + Φ(α) − Φ(α, m)| ≤
|Φ(α, n)−Φ(α)|+|Φ(α)−Φ(α, m)|, independently of the representative chosen for
Φ(α). By Proposition 6.2, |Φ(α, k)−Φ(α)| ≤ 1

2k+1 , ∀k ∈ N1. So, |λ(n)−λ(m)| ≤
1

2n+1 + 1
2m+1 ≤ 1

2n+1 + 1
2n+1 = 1

2n . Therefore, λ is a real number. Also note that
for all n, |Φ(α)−λ| ≤ |Φ(α)−Φ(α, n)|+ |Φ(α, n)−λ| ≤ 1

2n+1 + |λ(n)−λ| ≤ 1
2n−1 .

Since n can be chosen arbitrarily large, |Φ(α) − λ| = 0, i.e. Φ(α) = λ.
��

7 The Riemann integral

We now introduce the notion of the Riemann integral. In order to simplify no-
tation, we restrict the definition to the interval [0, 1].
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Definition 7.1 Take Φ a continuous total function in [0, 1], with a modulus of
uniform continuity, h. We define the integral between 0 and 1 of Φ, denoted by∫ 1

0 Φ(t) dt, in the following way:

∫ 1

0

Φ(t) dt :=R lim
n

Sn

where, for all n ∈ N1, Sn =
∑2h(n)−1

i=0
1

2h(n) Φ( i
2h(n) , n).

Remark 7.1 By the definition of the expressions of the form Φ(α, n) = r (and
subsequent discussions), it is easy to see that f : N1 × N2 → D, defined by
f(n, i) = 1

2h(n) Φ( i
2h(n) , n) is indeed a function in TCA2. Observe also that it

is possible to consider (in TCA2) sums of the form
∑2h(n)−1

i=0 f(n, i), with f a

function from N1 × N2 to D. In fact,
∑2h(n)−1

i=0 f(n, i) = Σf (n, 2h(n) − 1), with
h(n) ∈ N1, so, 2h(n) − 1 is a dyadic rational number which can be seen as an
element of N2 (see Notation 4.1).

From the previous remark, the equality d =D Sn is given by a Σ1,b
0 -formula.

So the set X = {〈n, d〉 : n ∈ N1 ∧ d = Sn} exists in TCA2 and it makes sense to
consider the sequence (Sn)n∈N1 = {〈〈m, n〉, d〉 : m, n ∈ N1 ∧d ∈ D∧〈n, d〉 ∈ X}.

In order to ensure that the integral is well defined we have to prove that the
sequence (Sn)n∈N1 is convergent.

Proposition 7.1 The sequence (Sn)n∈N1 is a Cauchy sequence, i.e.,

∀n ∈ N1∃p ∈ N1∀k ∈ N1(p < k → |Sp − Sk| < 2−n).

Proof. Take p < k. We have h(p) < h(k), so, by the sum properties,

∑2h(p)−1
i=0

1
2h(p) Φ( i

2h(p) , p) =
∑2h(p)−1

i=0
1

2h(k) Φ( i
2h(p) , p)2h(k)−h(p) =

∑2h(p)−1
i=0

1
2h(k) Φ( i

2h(p) , p)
∑2h(k)−h(p)−1

j=0 1 =

∑2h(p)−1
i=0

∑2h(k)−h(p)−1

j=0
1

2h(k) Φ( i
2h(p) , p).

Since 2h(k) = 2h(p) ·2h(k)−h(p), by Proposition 5.5,
∑2h(k)−1

i=0
1

2h(k) Φ( i
2h(k) , k) =∑2h(p)−1

i=0

∑2h(k)−h(p)−1
j=0

1
2h(k) Φ( i2h(k)−h(p)+j

2h(k) , k). So,

|Sp − Sk| = |∑2h(p)−1
i=0

1
2h(p) Φ( i

2h(p) , p) − ∑2h(k)−1
i=0

1
2h(k) Φ( i

2h(k) , k)| =

|∑2h(p)−1
i=0

∑2h(k)−h(p)−1
j=0

1
2h(k) [Φ( i

2h(p) , p) − Φ( i2h(k)−h(p)+j
2h(k) , k)]| ≤

∑2h(p)−1
i=0

∑2h(k)−h(p)−1
j=0

1
2h(k) |Φ( i

2h(p) , p) − Φ( i2h(k)−h(p)+j
2h(k) , k)|.
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But 1
2h(k) |Φ( i

2h(p) , p) − Φ( i2h(k)−h(p)+j
2h(k) , k)| ≤ 1

2h(k) (|Φ( i
2h(p) , p) − Φ( i

2h(p) )| +

|Φ( i
2h(p) ) − Φ( i2h(k)−h(p)+j

2h(k) )| + |Φ( i2h(k)−h(p)+j
2h(k) ) − Φ( i2h(k)−h(p)+j

2h(k) , k)|) (
).
Given α ∈ R, we know that |Φ(α) − Φ(α, n)| ≤ 2−n. Since, by hypothesis, h

is a m.u.c for Φ, and ∀i ∈ {0, . . . , 2h(p) − 1}∀j ∈ {0, . . . , 2h(k)−h(p) − 1} i
2h(p) ∈

[0, 1], i2h(k)−h(p)+j
2h(k) ∈ [0, 1] and | i

2h(p) − i2h(k)−h(p)+j
2h(k) | = | j

2h(k) | ≤ 2h(k)−h(p)−1
2h(k) =

1
2h(p) − 1

2h(k) < 1
2h(p) , we know that |Φ( i

2h(p) ) − Φ( i2h(k)−h(p)+j
2h(k) )| < 1

2p . So (
) <
1

2h(k) ( 1
2p + 1

2p + 1
2k ).

Therefore, |Sp − Sk| <
∑2h(p)−1

i=0

∑2h(k)−h(p)−1
j=0

1
2h(k) ( 1

2p + 1
2p + 1

2k ) =
1

2h(k) ( 1
2p−1 + 1

2k )2h(p)2h(k)−h(p) = 1
2p−1 + 1

2k < 1
2p−1 + 1

2p < 1
2p−2 .

We proved that, given n ∈ N1, there is p = n+2 ∈ N1 such that ∀k ∈ N1(p <

k → |Sp − Sk| < 1
2n ). In conclusion, (Sn)n∈N1 is a Cauchy sequence. ��

Remark 7.2 In the previous argument, we actually prove that (Sn)n∈N1 has a
modulus of Cauchy convergence, i.e., there is a function p : N1 → N1 strictly
increasing (p(n) = n + 2), such that

∀n ∈ N1∀k ∈ N1(p(n) < k → |Sp(n) − Sk| < 2−n).

It is not true that every Cauchy sequence is convergent. Such an assertion is
equivalent to ACA0 over RCA0 (see [Simpson 1999]). However:

Lemma 7.1 Let (βn)n∈N1 be a sequence of real numbers and p : N1 → N1 a
modulus of Cauchy convergence for (βn)n∈N1 . Then the function α : N1 → D

defined by α(n) = βp(n+3)(n + 3) is a real number and limn βn = α.

Proof. Let us prove that α is a real number.
Take n, m ∈ N1 such that n ≤ m. We have that |α(n)−α(m)| = |βp(n+3)(n+

3)−βp(m+3)(m+3)| ≤ |βp(n+3)(n+3)−βp(n+3)|+|βp(n+3)−βp(m+3)|+|βp(m+3)−
βp(m+3)(m + 3)| ≤ 1

2n+3 + 1
2n+3 + 1

2m+3 ≤ 1
2n . Note that, in order to ensure that

|βp(n+3) − βp(m+3)| < 2−(n+3), we use the fact that p is a modulus of Cauchy
convergence for (βn)n∈N1 and satisfies p(n + 3) ≤ p(m + 3).

Let us prove that (βn)n∈N1 converges for α, i.e., given k ∈ N1 we want to
prove that ∃n ∈ N1∀i ∈ N1|α − βn+i| < 2−k.

For all m > k and n, i ∈ N1, |α − βn+i| ≤ |α − α(m)| + |α(m) − βn+i(m)| +
|βn+i(m)−βn+i| ≤ 1

2m + |βp(m+3)(m+3)−βn+i(m)|+ 1
2m ≤ 1

2m + |βp(m+3)(m+
3) − βp(m+3)| + |βp(m+3) − βn+i| + |βn+i − βn+i(m)| + 1

2m . For n = p(k + 3),
|α− βn+i| ≤ 1

2m + 1
2m+3 + |βp(m+3) − βp(k+3)+i|+ 1

2m + 1
2m ≤ 1

2m−2 + |βp(m+3) −
βp(k+3)|+ |βp(k+3) − βp(k+3)+i|. Since (βn)n∈N1 is a sequence with a modulus of
Cauchy convergence, |α − βn+i| < 1

2m−2 + 2−(k+3) + 2−(k+3) = 1
2m−2 + 1

2k+2 ≤
1

2m−2 + 1
2k . Since m can be chosen arbitrarily large, |α − βn+i| < 1

2k . ��
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By Remark 7.2 and Lemma 7.1, we know that (Sn)n∈N1 is a convergent
sequence. So, we can consider the real number limn Sn.

It remains to prove that the Riemann integral does not depend on the func-
tion chosen as a modulus of uniform continuity.

Proposition 7.2 Let Φ be a continuous total function in [0, 1] and h1, h2 m.u.c
for Φ. Then

limn

∑2h1(n)−1
i=0

1
2h1(n) Φ( i

2h1(n) , n) = limn

∑2h2(n)−1
i=0

1
2h2(n) Φ( i

2h2(n) , n).

Proof. It is easy to check that, for all n ∈ N1,∣∣∣∣∣∣
2h1(n)−1∑

i=0

1
2h1(n)

Φ(
i

2h1(n)
, n) −

2h2(n)−1∑
i=0

1
2h2(n)

Φ(
i

2h2(n)
, n)

∣∣∣∣∣∣ ≤
1

2n−2
.

��
Therefore, the Riemann integral is well defined.

Remark 7.3 - Take Φ and (Sn)n∈N1 as in Definition 7.1. By Lemma 7.1 and
Remark 7.2, we know that (Sn)n∈N1 is convergent. Furthermore, we also know
that it converges for α, the real number defined by α(n) = Sp(n+3)(n + 3), i.e.,
α(n) = Sn+5(n + 3). Since Sn+5 is a dyadic rational number, we have α(n) =
Sn+5, ∀n ∈ N1. So,

∫ 1

0
Φ(t) dt = α. Note that the real number α, defined by

α(n) = Sn+5, exists in TCA2, since d =
∑2h(n+5)−1

i=0
1

2h(n+5) Φ( i
2h(n+5) , n + 5) can

be expressed — see Remark 7.1 — by means of a Σ1,b
0 -formula.

-
∫ 1

0
Φ(t) dt = β, with β ∈ R, is equivalent to a ∀Σ1,b

0 -formula. Note that it
is equivalent to the formula α = β, with α the real number defined above.

- In a similar way,
∫ 1

0
Φ(t) dt < β and

∫ 1

0
Φ(t) dt ≤ β are equivalent to ∃Σ1,b

0

and ∀Σ1,b
0 -formulas respectively.

Next, we establish some of the usual integral properties.

Proposition 7.3 Let Φ and Ψ be continuous total functions in the interval [0, 1]
with a modulus of uniform continuity and let γ be a real number:

a)
∫ 1

0 γ dt = γ

b)
∫ 1

0 t dt = 1
2

c)
∫ 1

0
(Φ + Ψ)(t) dt =

∫ 1

0
Φ(t) dt +

∫ 1

0
Ψ(t) dt

d) | ∫ 1

0
Φ(t)dt| ≤ ∫ 1

0
|Φ|(t)dt

e) If Φ(t) = Ψ(t) for all t ∈ [0, 1], then
∫ 1

0
Φ(t) dt =

∫ 1

0
Ψ(t) dt
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f) If Φ(t) ≤ Ψ(t) for all t ∈ [0, 1], then
∫ 1

0
Φ(t) dt ≤ ∫ 1

0
Ψ(t) dt

g)
∫ 1

0
γΦ(t) dt = γ

∫ 1

0
Φ(t) dt.

Proof. We present the proof of assertion a). Similar demonstrations work for
the other assertions (see [Ferreira 2006]).

a) By Proposition 4.3, fix h a m.u.c. for Cγ . By Remark 7.3, we know that∫ 1

0 γ dt =
∫ 1

0 Cγ(t) dt is equal to α, with α the real number defined by α(n) =

Sn+5 =
∑2h(n+5)−1

i=0
1

2h(n+5) Cγ( i
2h(n+5) , n + 5). We prove that α = γ.

Take n ∈ N1. We have |α(n) − γ(n)| = |∑2h(n+5)−1
i=0

1
2h(n+5) Cγ( i

2h(n+5) , n +

5) − γ(n)| = |∑2h(n+5)−1
i=0

1
2h(n+5) Cγ( i

2h(n+5) , n + 5) − ∑2h(n+5)−1
i=0

1
2h(n+5) (γ − γ +

γ(n))| ≤ 1
2h(n+5)

∑2h(n+5)−1
i=0 |Cγ( i

2h(n+5) , n + 5) − γ + γ − γ(n)|. Since, for all i,
|Cγ( i

2h(n+5) , n+5)−γ+γ−γ(n)| ≤ |Cγ( i
2h(n+5) , n+5)−Cγ( i

2h(n+5) )|+|γ−γ(n)| ≤
1

2n+5 + 1
2n , we have |α(n)−γ(n)| ≤ 1

2h(n+5) 2h(n+5)( 1
2n+5 + 1

2n ) = 1
2n+5 + 1

2n ≤ 1
2n−1 .

So α = γ. ��
In a quite similar way, we can (as we sketch next) introduce the Riemann

integral with arbitrary dyadic rational limits.

Definition 7.2 Take x, y ∈ D such that x < y and let Φ be a continuous total
function in the interval [x, y], with a modulus of uniform continuity h. We define
the integral between x and y of Φ, denoted by

∫ y

x Φ(t) dt, in the following way:
∫ y

x

Φ(t) dt :=R lim
n

Sn

where, for all n ∈ N1, Sn =
∑2h(n)−1

i=0
y−x
2h(n) Φ(x + (y−x)i

2h(n) , n).

With a strategy completely similar to the one used in the context of [0, 1], we
can see that the previous notion of integral is well defined and has no ambiguities.
We just call the attention for some minor adaptations needed in this context:

- Fix l ∈ N1 such that y − x ≤ 2l. It is possible to prove that p : N1 → N1

defined by p(n) = n+2l+2 is a modulus of Cauchy convergence for (Sn)n∈N1 .
The proof is similar to that of Proposition 7.1.

- Apropos the independence of the integral relatively to the modulus of uni-
form continuity chosen, note that a result similar to Proposition 7.2 is still
valid. Fixing l ∈ N1 we consider the upper bound 1

2n−2l−2 .

- The extension of the integral has the purpose of studying, in the next section,
the fundamental theorem of calculus for functions defined in [0, 1]. So, we
will just work with integrals with limits x, y ∈ D such that 0 ≤ x < y ≤ 1.
Therefore, adapting the study developed in [0, 1] is still easier.
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- Considerations analogous to the ones stated in Remark 7.3 can still be made
within the context [x, y]. In particular, we have that

∫ y

x Φ(t) dt = α, with α

the real number defined by α(n) =
∑2h(n+5)−1

i=0
y−x

2h(n+5) Φ(x + (y−x)i

2h(n+5) , n + 5)
and the complexity of the formulas involving integrals is still controlled. The
results described below are similar to the case [0, 1].

Proposition 7.4
∫ y

x Φ(t) dt = β and
∫ y

x Φ(t) dt ≤ β are equivalent to ∀Σ1,b
0 -

formulas and
∫ y

x Φ(t) dt < β is equivalent to a ∃Σ1,b
0 -formula.

Proposition 7.5 Let Φ and Ψ be continuous total functions in the interval [x, y],
with a modulus of uniform continuity and γ ∈ R:

a)
∫ y

x
γ dt = γ · (y − x)

b)
∫ y

x
t dt = y2−x2

2

c)
∫ y

x
(Φ + Ψ)(t) dt =

∫ y

x
Φ(t) dt +

∫ y

x
Ψ(t) dt

d) | ∫ y

x
Φ(t) dt| ≤ ∫ y

x
|Φ|(t) dt

e) If ∀t ∈ [x, y](Φ(t) = Ψ(t)) then
∫ y

x Φ(t) dt =
∫ y

x Ψ(t) dt

f) If ∀t ∈ [x, y](Φ(t) ≤ Ψ(t)) then
∫ y

x Φ(t) dt ≤ ∫ y

x Ψ(t) dt

g)
∫ y

x γΦ(t) dt = γ
∫ y

x Φ(t) dt.

In the remaining lines of this section we prove the additivity of the Riemann
integral. For the sake of simplicity, we consider x and y dyadic rational numbers
in the interval [0, 1]. We will use the following technical result:

Lemma 7.2 Let x and y be dyadic rational numbers with x < y and let Φ be a
continuous total function on [x, y] with a m.u.c. h. Then, for tally n sufficiently
large, (y − x)2h(n+n) is in N2 and

∫ y

x

Φ(t)dt = lim
n

(y−x)2h(n+n)−1∑
i=0

1
2h(n+n)

Φ(x +
i

2h(n+n)
, n).

Proof. Since x and y are dyadic rational numbers, there are functions kx and ky

from N1 to N2 such that, for tally n sufficiently large, x = kx(n)
2n and y = ky(n)

2n .
Note that, for such n, (y − x)2h(n+n) = 2h(n)q(n), where

q(n) := (ky(n) − kx(n))2h(n+n)−(h(n)+n).
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By Proposition 5.5 we have that
∑(y−x)2h(n+n)−1

i=0
1

2h(n+n) Φ(x + i
2h(n+n) , n) is

2h(n)−1∑
r=0

q(n)−1∑
j=0

1
2h(n+n)

Φ(x +
rq(n) + j

2h(n+n)
, n).

We will see that this value differs form the following by an amount that goes
to zero when n → ∞:

2h(n)−1∑
r=0

q(n)−1∑
j=0

1
2h(n+n)

Φ(x +
rq(n)

2h(n+n)
, n).

The above is, of course, equal to

2h(n)−1∑
r=0

q(n)
1

2h(n+n)
Φ(x +

rq(n)
2h(n+n)

, n),

and this simplifies to

2h(n)−1∑
r=0

y − x

2h(n)
Φ(x + r

y − x

2h(n)
, n).

It remains to verify that the amount mentioned above does indeed converge
to 0 as n → ∞. Using the majorization of Proposition 6.2 it is clear that

|Φ(x+ rq(n)+j
2h(n+n) , n)−Φ(x+ rq(n)

2h(n+n) , n)| ≤ |Φ(x+ rq(n)+j
2h(n+n) )−Φ(x+ rq(n)

2h(n+n) )|+ 1
2n .

Notice that q(n)

2h(n+n) = y−x
2h(n) ≤ 1

2h(n) . Therefore, for j < q(n) and using the
properties of the m.u.c. h, we get that

|Φ(x + rq(n)+j
2h(n+n) , n) − Φ(x + rq(n)

2h(n+n) , n)| ≤ 1
2n + 1

2n = 1
2n−1 .

Hence, the amount mentioned above does not exceed 2h(n)q(n) 1
2h(n+n)

1
2n−1 ,

which is less than or equal to 1
2n−1 . ��

With the aid of the above lemma, the additivity of the Riemann integral is
now immediate:

Proposition 7.6 If z is a dyadic rational number such that x < z < y and Φ is
a continuous total function in [x, y] with a modulus of uniform continuity, then

∫ z

x Φ(t) dt +
∫ y

z Φ(t) dt =
∫ y

x Φ(t) dt.
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8 The fundamental theorem of calculus

Let Φ be a continuous total function in [0, 1] with a modulus of uniform continu-
ity. In what follows, we define Ψ , a continuous total function in [0, 1], satisfying
Ψ(x) =

∫ x

0 Φ(t) dt for all dyadic rational number x ∈ [0, 1].
The result below follows immediately from the m.u.c. definition:

Lemma 8.1 Every continuous total function (respectively continuous total in
[α1, α2]), Φ, with a m.u.c. is uniformly continuous, i.e., ∀k ∈ N1∃m ∈ N1∀α, β ∈
R(|α − β| < 1

2m → |Φ(α) − Φ(β)| < 1
2k ) (respectively ∀k ∈ N1∃m ∈ N1∀α, β ∈

[α1, α2](|α − β| < 1
2m → |Φ(α) − Φ(β)| < 1

2k ).

From [Fernandes and Ferreira 2005], in BTFA (so also in TCA2), we have the
following:

Proposition 8.1 If Φ is a continuous total function in [0, 1], uniformly continu-
ous in that interval, then there is m ∈ N1 such that for all α ∈ [0, 1], Φ(α) ≤ 2m.

Remember, we fixed Φ a continuous total function in [0, 1] with a m.u.c. By
Corollary 4.1 and Proposition 4.3-c), we know that |Φ| is also a continuous total
function in [0, 1] with a m.u.c., so applying the previous proposition it is possible
to take m ∈ N1 such that ∀α ∈ [0, 1], |Φ|(α) ≤ 2m.

Let d : D → D be the function defined by d(x) =

⎧⎨
⎩

x if 0 ≤ x ≤ 1
0 if x < 0
1 if 1 < x.

We define (x, n)Ψ(y, k) as:

x, y ∈ D ∧ n, k ∈ N1 ∧ | ∫ d(x)

0
Φ(t) dt − y| < 1

2k − 1
2n−m−1 .

Remark 8.1 The quaternary relation (x, n)Ψ(y, k) is equivalent to a ∃Σ1,b
0 -

formula ∃wθ′(w, x, n, y, k). So, the set {〈w, x, n, y, k〉 : θ′(w, x, n, y, k)} is offi-
cially the function Ψ .

Theorem 8.1 (Indefinite integral) Given Φ a continuous total function from
[0, 1] to R with a m.u.c., let us take Ψ as above. Then Ψ is a continuous total
function from [0, 1] to R, and for all dyadic rational number r in [0, 1], Ψ(r) =∫ r

0
Φ(t) dt.

Proof. We first show that Ψ is a partial continuous function from [0, 1] to R.
The first two conditions of the definition of partial continuous function are clear.
Let us now prove that if (x, n)Ψ(y, k) ∧ (x′, n′) < (x, n) then (x′, n′)Ψ(y, k). We
know that | ∫ d(x′)

0
Φ(t) dt−y| ≤ | ∫ d(x′)

0
Φ(t) dt−∫ d(x)

0
Φ(t) dt|+| ∫ d(x)

0
Φ(t) dt−y|.

The first term is less than or equal to |d(x′) − d(x)|2m which, by the way we
defined d(x), is less than or equal to |x′ − x|2m. Since (x′, n′) < (x, n), we
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have |x′ − x|2m < ( 1
2n − 1

2n′ )2m. By hypothesis, the second term is less than
1
2k − 1

2n−m−1 . So | ∫ d(x′)
0

Φ(t) dt − y| < 1
2k + 2m(2−n − 2−n′ − 2n+1) = 1

2k +
2m(−2−n − 2−n′

) < 1
2k − 2m−n′+1.

Let us prove the totality of Ψ . Take α ∈ R and fix k ∈ N1. We must show
that ∃n ∈ N1∃y ∈ D(α(n + 1), n)Ψ(y, k). Take n := m + k + 2. We know that∫ d(α(n+1))

0
Φ(t) dt = β, with β(n) =

∑2h(n+5)−1
i=0

d(α(n+1))
2h(n+5) Φ(d(α(n+1))i

2h(n+5) , n + 5).

Take y := β(k + 2). | ∫ d(α(n+1))

0
Φ(t) dt − y| = |β − β(k + 2)| ≤ 1

2k+2 < 1
2k+1 =

1
2k − 1

2n−m−1 . So (α(n + 1), n)Ψ(y, k).
Finally, we must show that Ψ(r) =

∫ r

0
Φ(t) dt. Let us take x, y, n, k such

that (x, n)Ψ(y, k) ∧ |r − x| < 1
2n in order to prove that | ∫ r

0
Φ(t) dt − y| ≤ 1

2k .

We have | ∫ r

0 Φ(t) dt − y| ≤ | ∫ r

0 Φ(t) dt − ∫ d(x)

0 Φ(t) dt| + | ∫ d(x)

0 Φ(t) dt − y| <

|r−d(x)|2m+ 1
2k − 1

2n−m−1 ≤ |r−x|2m+ 1
2k − 1

2n−m−1 < 2m−n+ 1
2k −2m−n+1 < 1

2k .
��

Remark 8.2 Although the function Ψ , defined as a set, depends on the tally
number m chosen, the values of the dyadic rational numbers in [0, 1] under Ψ do
not depend (modulo equality of reals) on such a choice.

The previous theorem permits to give a meaning to
∫ α

0
Φ(t)dt also for real

numbers α ∈ [0, 1]. It is just defined as Ψ(α). It is also easy to define
∫ β

α Φ(t)dt,
e.g., by taking an appropriate difference. By working with approximations,
Propositions 7.5 and 7.6 can be easily extended to integrals with real limits.

Definition 8.1 Let Φ be a continuous total function in [0, 1], α ∈ [0, 1] and
β ∈ R. β is the derivative of Φ at α, denoted by Φ′(α) = β, if

∀n ∈ N1∃m ∈ N1∀h �= 0 (0 ≤ α+h ≤ 1∧|h| < 1
2m → |Φ(α+h)−Φ(α)

h −β| ≤ 1
2n ).

Definition 8.2 Let Φ and Ψ be continuous total functions in [0, 1]. Φ is the
derivative of Ψ if Φ(α) = Ψ ′(α), ∀α ∈ [0, 1].

Theorem 8.2 (The fundamental theorem of calculus) If Φ is a contin-
uous total function in [0, 1] with a m.u.c. and Ψ is such that Ψ(α) =∫ α

0 Φ(t) dt, ∀α ∈ [0, 1], then Φ is the derivative of Ψ .

Proof. The usual proof of the theorem goes through in TCA2. Take α ∈ [0, 1].
Let us prove that, if Φ is a continuous total function in [0, 1] with a m.u.c. and
Ψ is a continuous total function in [0, 1] such that Ψ(α) =

∫ α

0 Φ(t) dt, ∀α ∈ [0, 1]
then Φ(α) = Ψ ′(α), i.e., given n ∈ N1 there is m ∈ N1 such that

∀h �= 0
(
0 ≤ α + h ≤ 1 ∧ |h| < 1

2m → |Ψ(α+h)−Ψ(α)
h − Φ(α)| ≤ 1

2n

)
.
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Consider p a m.u.c. for Φ. Given n ∈ N1, take m := p(n). Let h �= 0 be
such that 0 ≤ α + h ≤ 1 ∧ |h| < 1

2m = 1
2p(n) . Since p is a m.u.c. for Φ, we have

|Φ(α) − Φ(α + k)| < 1
2n for all k such that |k| ≤ |h|.

If 0 < h, we have h(Φ(α)− 1
2n ) ≤ ∫ α+h

0
Φ(t) dt−∫ α

0
Φ(t) dt ≤ h(Φ(α)+ 1

2n ) and
if h < 0 we know that h(Φ(α)+ 1

2n ) ≤ ∫ α+h

0 Φ(t) dt−∫ α

0 Φ(t) dt ≤ h(Φ(α)− 1
2n ).

Therefore, in each case, Φ(α) − 1
2n ≤

R α+h
0 Φ(t) dt−R α

0 Φ(t) dt

h ≤ Φ(α) + 1
2n . We

proved that |
R α+h
0 Φ(t) dt−R α

0 Φ(t) dt

h −Φ(α)| ≤ 1
2n , i.e., |Ψ(α+h)−Ψ(α)

h −Φ(α)| ≤ 1
2n .
��

Acknowledgements

This work was partially supported by cmaf, poci2010/fct and feder.

References

[Buss 1985] Buss S., Bounded Arithmetic, PhD thesis, Princeton University, Princeton,
New Jersey, 1985. A revised version of this thesis was published by Bibliopolis
(Naples), 1986.

[Buss 1998] Buss S., First-Order Proof Theory of Arithmetic, In S. R. Buss, editor,
Handbook of Proof Theory, Elsevier, Amsterdam, 137:79-147, 1998.

[Clote and Takeuti 1995] Clote P. and Takeuti G., First Order Bounded Arithmetic
and Small Boolean Circuit Complexity Classes. In P. Clote and J. Remmel, editors,
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