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Abstract: Countably based filter spaces have been suggested in the 1970’s as a model
for recursion theory on higher types. Weak limit spaces with a countable base are
known to be the class of spaces which can be handled by the Type-2 Model of Effectivity
(TTE). We prove that the category of countably based proper filter spaces is equivalent
to the category of countably based weak limit spaces. This result implies that filter
spaces form yet another category from which the category of qcb-spaces inherits its
cartesian closed structure. Moreover, we compare the aforementioned categories to
other categories of spaces relevant to computability theory.
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1 Introduction

A category of spaces designed for modelling higher type computation should have
the property of being cartesian closed. Cartesian closedness means that a cate-
gory allows the construction of finite products and function spaces. Computa-
tion on non-discrete spaces requires to deal with approximations. One important
mathematical tool for modelling approximations are topological spaces. Unfor-
tunately, the category of topological spaces, Top, lacks the property of being
cartesian closed. However, there exist several relevant cartesian closed subcate-
gories and supercategories of Top which can be used as an alternative. Examples
of cartesian closed supercategories of Top are D. Scott’s category of equilogical
spaces [Scott et al. 2004] and the category of filter spaces [Hyland 1979], whereas
qcb-spaces [Simpson 2003] form a cartesian closed subcategory of Top.

In the 1970’s, M. Hyland established the relevance of filter spaces to compu-
tation on the continuous functionals over N, see [Hyland 1979]. Several notions
of filter spaces (also known as convergence spaces) exist in the literature. All
notions endow a set X with a convergence relation between filters on X and
points of X subject to certain axioms [see Section 2.1]. The most general notion
is the one considered in [Hyland 1979]. In this paper we introduce the slightly
less general notion of proper filter spaces: They enjoy the property that all sets
in a converging filter contain its limit(s). This matches with the intuition that a
filter should converge to x if it is viewed to contain enough properties of x pro-
viding sufficient information about x. The category of proper filter spaces turns
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out to be equivalent to one of the filter spaces categories which R. Heckmann
has investigated in [Heckmann 1998] in terms of their relationship to equilogical
spaces.

From the perspective of computability theory, we are particularly interested
in filter spaces with a countable basis. In these spaces, a countable set of prop-
erties suffices to describe the elements of the space. The presence of a countable
basis provides a handle to define computable functions between filter spaces by
means of enumeration operators or by means of multirepresentations.

Weak limit spaces [Schröder 2001] are a generalisation of limit spaces
[Kuratowski 1966] and thus of sequential topological spaces [Engelking 1989].
The constitutive structure of a weak limit space is a convergence relation between
sequences and points [see Section 2.2]. Weak limit spaces play an important
role in Weihrauch’s representation-based approach to Computable Analysis, the
Type-2 Theory of Effectivity (TTE) [Weihrauch 2000]: The class of spaces admit-
ting an admissible (i.e. continuously well-behaved) multirepresentation is exactly
the class of countably based weak limit spaces [Schröder 2001, Schröder 2002].

In [Section 3] we construct an embedding of the weak limit spaces into the
category of proper filter spaces and show that it preserves countable products.
In [Section 4] we present and prove our main result stating that the category of
countably based proper filter spaces is equivalent to the category of countably
based weak limit spaces. Thus countably based proper filter spaces are already
characterised by the apparently simpler concept of sequence convergence: they
are simply weak limit spaces in a different guise. The existence of countable basis
is crucial to this result.

An important full cartesian closed subcategory of Top is the category QCB

of qcb-spaces [see Section 5.6]. It has the property of inheriting its carte-
sian closed structure from many interesting cartesian closed supercategories
relevant to higher type computability and forms their common core. Exam-
ples are the categories of: equilogical spaces, compactly generated spaces, weak
limit spaces, Baire space representations, see [Bauer 2002, Escardó et al. 2004,
Menni and Simpson 2002, Schröder 2001] and [Section 5]. Countably based equi-
logical spaces exemplify the domain-theoretic approach to Computable Anal-
ysis, whereas Baire space representations describe the TTE approach. Hence
QCB qualifies as a convenient category for modelling higher type computation
[Simpson et al. 2007]. Our main theorem implies that the aforementioned cate-
gories of filter spaces belong to this list [see Section 5]. This answers positively a
question in [Simpson 2003, Simpson et al. 2007]. Moreover, at least in topolog-
ical terms, the approach to higher type computation via countably based filter
spaces agrees with the TTE approach. The relationship between the aforemen-
tioned categories is discussed in [Section 5].
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2 Filter Spaces and Weak Limit Spaces

In this section we recall the definitions of filter spaces and weak limit spaces
together with some known facts about these concepts.

2.1 Filter Spaces and Related Notions

2.1.1 Filters

Let X and Y be non-empty sets. A filter F on X is a non-empty family of non-
empty subsets of X which is closed under finite intersection and extension to
supersets. For x ∈ X , we write [x] for the principal ultrafilter {A ⊆ X |x ∈ A}.
A filter base Φ on X is a non-empty family of non-empty subsets of X such that
for all A, B ∈ Φ there is some C ∈ Φ with ∅ �= C ⊆ A ∩ B. For a filter base
Φ we denote by [Φ] the smallest filter containing Φ, i.e. {A ⊆ X | ∃B ∈ Φ. B ⊆
A}. Given a function f : X → Y and a filter F on X , f∗F denotes the filter
[{f(A) |A ∈ F}].

2.1.2 Filter spaces

There are several notions of filter spaces (sometimes also called convergence
spaces) in the literature. Generally, a filter space is a pair (X, ↓), where X is a
set and ↓ is a relation (called the convergence relation) between the filters on X

and the points of X satisfying certain axioms. If F ↓ x holds, then one says that
the filter F converges to x and that x is a limit of F . If additionally we have
F ⊆ [x], then we say that F converges properly to x and that x is a proper limit
of F . For a filter base Φ, it is convenient to say that Φ converges to x iff the filter
[Φ] generated by Φ does. Since any filter F is equal to [F ], this convention does
not cause ambiguity. In the following, we shall use capital Gothic letters like
X, Y for filter spaces of any kind. The carrier set of a filter space X will often be
denoted by X as well. We shall use the symbol ‘↓X’ or, if no confusion can occur,
simply ‘↓’ to denote its convergence relation. A function f : X → Y between
filter spaces X and Y is called filter-continuous, if F ↓X x implies f∗F ↓Y f(x)
for every filter F on X and every element x of X. Obviously, composition of
functions preserves filter continuity.

The original notion of filter spaces considered by M. Hyland in [Hyland 1979]
requires a filter space (X, ↓) to fulfil Axioms (F1) and (F2):

(F1) [x] ↓ x;

(F2) if F ↓ x and F ⊆ G then G ↓ x,

where F ,G are filters on X and x is an element of X . We denote the category
of filter spaces satisfying Axioms (F1), (F2) and of filter-continuous functions as
morphisms by Fil.
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2.1.3 Proper and canonical filter spaces

In this paper, we are concerned with proper filter spaces. They slightly differ from
Hyland’s filter spaces in that only proper limits are allowed, i.e., convergence of
a filter to a point implies that all sets in the filter contain that point. We define
(X, ↓) to be a proper filter space, if ↓ is a relation between the filter on X and
the points of X that satisfies the Axioms (F1), (F5), (F6):

(F5) if F ↓ x and F ⊆ G ⊆ [x] then G ↓ x;

(F6) if F ↓ x then F ⊆ [x].

We denote the category of proper filter spaces as objects and of filter-continuous
functions as morphisms by PFil.

The idea behind filter spaces is the following: A filter F is defined to converge
to a point x, if F is deemed to contain enough properties of x providing sufficient
information about x. Here we adopt the usual interpretation of a property of x

as a set containing x. The original notion of filter slightly mismatches with this
intuition, because it allows converging filters to contain sets which are not prop-
erties of the limit. It is more general than the notion of proper filter spaces. In
fact, PFil is equivalent to the full subcategory CFil (in [Heckmann 1998] denoted
by Filb) of those filter spaces in Fil that satisfy Axiom (F3):

(F3) if F ↓ x then F ∩ [x] ↓ x.

These filter spaces are sometimes called canonical filter spaces. Axiom (F3)
ensures that convergence of a filter to a point depends solely on the sets in the
filter which contain that point.

Proposition1. The category of proper filter spaces is equivalent to the category
of canonical filter spaces.

Proof. One defines functors C : PFil → CFil and P : CFil → PFil as follows: both
functors preserve the underlying sets, C sends a proper filter space X to the
canonical filter space whose convergence relation is given by F ↓C(X) x :⇐⇒
F ∩ [x] ↓X x, and P maps Y ∈ CFil to the proper filter space endowed with the
convergence relation defined by G ↓P (Y) y :⇐⇒ (G ⊆ [y] ∧ G ↓Y y). One easily
verifies that the object parts of C and P are inverses of each other. �

From the point of view of computability theory, proper filter spaces turn out
to be more handy and more natural than canonical filter spaces.

2.1.4 T0-property for filter spaces

We say that a filter space X has the T0-property, if [{{x, y}}] ↓X x and
[{{x, y}}] ↓X y imply x = y [Heckmann 1998]. This is equivalent to requiring
that each filter has at most one proper limit.
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2.1.5 Products and exponentials

The categories Fil, CFil and PFil have countable products and are cartesian closed,
see [Hyland 1979, Heckmann 1998] for Fil and [Heckmann 1998] for CFil. Un-
fortunately, function spaces in Fil and in its subcategory CFil are constructed
differently. However, for canonical filter spaces satisfying the Merging Axiom
(F4):

(F4) if F ↓ x and G ↓ x then F ∩ G ↓ x

the function space constructions in Fil and CFil agree, see [Heckmann 1998]. We
denote the full subcategory of proper filter spaces satisfying Axiom (F4) by MFil.

The cartesian closedness of PFil follows from its equivalence to CFil (see
Proposition 1). We give explicit constructions for products and exponentials in
PFil. Given a sequence of proper filter spaces (Xi)i, the carrier set of the product∏

i∈N
Xi is the cartesian product of the carrier sets and its convergence relation

↓ is given by

F ↓ x ⇐⇒ (F ⊆ [x] ∧ ∀i ∈ N. pr∗i F ↓Xi pri(x)
)
,

where pri denotes the respective set-theoretic projection function. The exponen-
tial YX in PFil for proper filter spaces X and Y has the set C(X, Y) of filter-
continuous functions from X to Y as its carrier set and its convergence relation
is given as follows: a filter F on C(X, Y) converges to a function f ∈ C(X, Y) iff

F ⊆ [f ] and A ↓X x implies
[{{g(a) | g ∈ F, a ∈ A} ∣∣F ∈ F , A ∈ A}] ↓Y f(x)

for every filter A on X and every x ∈ X.
The importance of filter spaces lies in the fact that each of the aforemen-

tionned categories of filter spaces forms a cartesian closed supercategory of the
non cartesian closed category Top of topological spaces, see [Heckmann 1998,
Hyland 1979]. The embedding functor ICFil

Top : Top ↪→ CFil maps a topological
space Z to the canonical filter space which has the same carrier set and whose
convergence relation is defined by: F ↓ z iff F contains the neighbourhood fil-
ter [{U open | z ∈ U}] of z. This matches with the usual definition of filter
convergence in a topological space. The functor ICFil

Top is known to preserve prod-
ucts and existing exponentials. By composing ICFil

Top and the equivalence functor
P : CFil → PFil from the proof of Proposition 1, we obtain an embedding functor
ITop of Top into MFil which preserves products and existing exponentials as well.

2.1.6 Bases for filter spaces

A family B of subsets of X is called a basis for a filter space X, if for every filter
F converging to some x ∈ X the family F ∩ B is a filter base such that [F ∩ B]
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converges to x. A subbasis for X is a family of subsets whose closure under finite
intersection is a basis for X. In contrast to topological bases, filter space bases
do not characterise filter spaces; indeed, the powerset of Y is a basis for every
filter space with carrier set Y . Nevertheless, filter space bases become interesting,
when they are countable. By ωPFil, ωCFil, ωMFil we denote the respective full
subcategories of PFil, CFil, MFil consisting of filter spaces with a countable basis.

The categories ωPFil, ωCFil, and ωMFil are cartesian closed as well, because
forming countable products and forming exponentials preserve the existence of
a countable basis. Given countable bases A and B for proper filter spaces X

and Y, one can show similar to [Hyland 1979] that
{
A × B

∣∣A ∈ A, B ∈ B}
is a countable basis for the product X × Y in PFil and that the family

{{f ∈
C(X, Y) | f(A) ⊆ B} ∣∣A ∈ A, B ∈ B}

is a countable subbasis for the exponential
YX in PFil.

Filter space bases relate to topological bases as follows:

Lemma2. Any topological base for a topological space Z is a filter space basis
for ITop(Z). If B is a filter space basis for ITop(Z), then {Int(B) |B ∈ B} is a
topological base for Z, where Int(B) denotes the interior of B.

Proof. Let z ∈ Z. Let N := [{U open | z ∈ U}] be the neighbourhood filter of z.
Any topological base A for Z satisfies [N ∩A] = N . Since in ITop(Z) a filter F
converges to z if, and only if, N ⊆ F ⊆ [z] holds, A is a filter base for ITop(Z).
Let B be a filter base for ITop(Z). Since the neighbourhood filter N and thus
[N ∩ B] converge to z in ITop(Z), we have N ⊆ [N ∩ B]. Hence for every open
neighbourhood U of z there is some B ∈ B and some open set V with z ∈ V ⊆
B ⊆ U , implying z ∈ Int(B) ⊆ U . Therefore {Int(B) |B ∈ B} is a topological
base for Z. �

2.1.7 Coded filter spaces and computable functions

For functions between countably based filter spaces one can introduce a reason-
able notion of computability by considering numberings of the respective bases.
We modify slightly the tentative definition in [Hyland 1979] and call a triple
(X, ↓, α) a coded filter space, if (X, ↓) is a proper filter space and α is a num-
bering of a basis for (X, ↓). A total function f between two coded filter spaces
X = (X, ↓X, α) and Y = (Y, ↓Y, β) is defined to be computable iff there is a
computable function g : 2N → 2N such that

[{αi | i ∈ I}] ↓X x implies [{βj | j ∈ g(I)}] ↓Y f(x)

for all x ∈ X and all I ⊆ N. This notion of computability is equivalent to
(δX, δY)-computability in the sense of TTE, where δX :⊆ NN ⇒ X is a standard
multirepresentation for X defined by δX(p) � x :⇐⇒ [{αp(l) | l ∈ N}] ↓X x. It
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comes as no surprise that computable functions between coded filter spaces are
filter-continuous.

2.2 Weak Limit Spaces and Related Notions

Let X and Y be sets. We write sequences x : N → X over X as (xn)n and
generalised sequences x : N+ → X as (xn)n≤∞, where N+ := N ∪ {∞}. By
[(xn)n] we denote the Fréchet filter

{
M ⊆ X

∣∣ ∃i ∈ N.∀j ≥ i. xj ∈ M
}
.

A weak limit space ([Schröder 2001, Schröder 2002]) is a set X equipped
with a convergence relation → between sequences (xn)n and points x of X . If
(xn)n → x∞, then we say that (xn)n converges to x∞ in the space (X,→) and
that x∞ is a limit of the sequence (xn)n. The convergence relation →X of a weak
limit space X = (X,→X) is required to satisfy the following axioms:

(L1) (x)n →X x;

(L4) if (xn)n →X x∞ and (ξn)n → ∞ in (N+, τN+) then (xξn)n →X x∞;

(L5) if (xn+1)n →X x∞ and x0 ∈ X then (xn)n →X x∞.

Here τN+ denotes the standard topology
{
U ⊆ N+

∣∣∞ ∈ U =⇒ U ∈ [(n)n]
}

on
N+. Note that the members of the sequence (ξn)n in (L4) may be equal to ∞.
By means of Axiom (L4’):

(L4’) if (yn)n →X x and [(yn)n] ∩ [x] ⊆ [(zn)n] then (zn)n →X x

we can characterise weak limit spaces.

Lemma3. A pair X = (X,→X), where is →X is a relation between sequences
and points of X, is a weak limit spaces if, and only if, X satisfies Axioms (L1)
and (L4’).

Proof. The if-part follows from the fact that [(xn+1)n] = [(xn)n] and [(xn)n] ∩
[x∞] ⊆ [(xξn)n] hold, if (ξn)n converges to ∞. For the only-if-part, let (xn)n

converge to x∞ and let (zn)n be a sequence with [(xn)n] ∩ [x∞] ⊆ [(zn)n].
Then there is a sequence l0 < l1 < l2 < . . . ∈ N such that, for all i ∈ N,
{zn |n ≥ li} ⊆ {x∞, xn |n ≥ i}. For every m ∈ {li, . . . , li+1 − 1} let ξm−l0 be
the least number in {∞}∪ {i, i + 1, . . . } with xξm−l0

= zm. By Axiom (L4), the
sequence (zn+l0)n = (xξn)n converges to x∞. Axiom (L5) implies (zn)n →X x∞.

�

Weak limit spaces are a generalisation of Kuratowski’s limit spaces
[Kuratowski 1966] (called L-spaces in [Hyland 1979]). The convergence relation
→X of a limit space X is subject to the axioms (L1), (L2), (L3):

(L2) if (xn)n →X x∞ then (yn)n →X x∞ for every subsequence (yn)n of (xn)n;
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(L3) if (xn)n �→X x∞ then (xn)n has a subsequence (yn)n such that (zn)n �→X

x∞ for every subsequence (zn)n of (yn)n.

Every weak limit space fulfils Axiom (L2), but not necessarily Axiom (L3),
whereas every limit space is a weak limit space. The convergence relation of
a topological space Z satisfies the axioms of a limit space. We denote the corre-
sponding (weak) limit space by LTop(Z). A weak limit space is called topological,
if it lies in the image of LTop. The class of weak limit spaces in which every con-
verging sequence has only one limit turns out to be exactly the class of L+–spaces
defined in [Dudley 1964].

A function f between two weak limit spaces X and Y is called sequentially
continuous, if it preserves convergence of sequences, i.e., (xn)n →X x∞ implies
(f(xn))n →Y f(x∞). By WLim we denote the category whose objects are the
weak limit spaces and whose morphisms are the (total) sequentially continuous
functions.

Given a weak limit space X, we call a family Φ of subsets of X a witness of
convergence for an element x in X, if Φ ⊆ [x] and, for every sequence (yn)n,
Φ ⊆ [(yn)n] implies (yn)n → x in X. For example, any neighbourhood base of a
point z in a topological space is a witness of convergence for z. Lemma 3 implies
that (yn)n converges in X to x if, and only if, the Fréchet filter [(yn)n] ∩ [x] is a
witness of convergence for x in X.

A limit base for a weak limit space X is a family B of subsets of X such that
for every element x ∈ X and every sequence (yn)n converging to x, B contains a
witness of convergence Φ for x in X such that Φ ⊆ [(yn)n]. This implies that for
every element x∞, for every sequence (xn)n converging to x∞ and and for every
sequence (zn)n that does not converge to x∞ there is some B ∈ B such that
x∞ ∈ B, xn ∈ B for almost all n and zm /∈ B for infinitely many m. Similar to
bases of filter spaces, the powerset of a set Y is a limit base for every weak limit
space with carrier set Y . By ωWLim we denote the full subcategory of WLim

consisting of all weak limit spaces admitting a countable limit base.
Both categories WLim and ωWLim have countable products and are carte-

sian closed [Schröder 2001, Schröder 2002]. The product
∏

i∈N
Xi of a sequence

(Xi)i of weak limit spaces is constructed as one expects. The exponential YX

is obtained by equipping the set C(X, Y) of sequentially continuous functions
from X to Y with the convergence relation � of continuous convergence defined
by: (fn)n � f∞ iff (fξn(xn))n →Y f(x∞) holds for all (xn)n →X x∞ and all
(ξn)n → ∞ in (N+, τN+). For limit spaces this definition is equivalent to the
usual definition of continuous convergence. Given countable limit bases Bi for
weak limit spaces Xi, countable limit bases for the product

∏
i∈N

Xi and the expo-
nential XX1

2 are constructed by
{∏

i∈N
Bi

∣∣ k ∈ N, Bk ∈ Bk, ∀i �= k. Bi = Xi

}
and{{f ∈ C(X1, X2) | f(

⋂k
i=1 Ai) ⊆ B} ∣∣ {A1, . . . , Ak} ⊆ B1, B ∈ B2

}
, respectively.

Proofs can be found in [Schröder 2001, Schröder 2002].
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3 Embedding Weak Limit Spaces into Filter Spaces

In this section we construct an embedding J of the category of weak limit
spaces WLim into the category PFil of proper filter spaces. It preserves countable
products and maps countably based weak limit spaces to countably based filter
spaces. However, it fails to preserve exponentials.

Let X = (X,→) be a weak limit space. We define a filter convergence rela-
tion ↓X on X by

F ↓X x :⇐⇒
{ F ⊆ [x] and

F contains a countable witness of convergence for x in X.

Clearly, J (X) := (X, ↓X) is a proper filter space. We call J (X) the filter space
associated to X. From Lemma 3 we can deduce the following characterisation of
sequence convergence in a weak limit space in terms of filter convergence in its
associated filter space.

Lemma4. Let X be a weak limit space. Then a sequence (yn)n converges to a
point x in X if, and only if, the Fréchet filter [(yn)n]∩[x] converges to x in J (X).

By setting J (f) := f for every morphism f in WLim, we obtain an embedding
functor from WLim to PFil.

Proposition5. Let X and Y be weak limit spaces. Then a function f : X → Y

is sequentially continuous if, and only if, f is a filter-continuous function from
J (X) to J (Y).

Proof. Only-if-part: Let f be sequentially continuous. Let F be a filter that
converges to some x in J (X). There is a sequence (Fi)i of sets in F such that
{Fi | i ∈ N} is a witness of convergence for x. We define Gj := f(

⋂j
i=0 Fi) ∈ f∗F .

Let (yn)n be a sequence with {Gj | j ∈ N} ⊆ [(yn)n]. Then there are natural
numbers m0 < m1 < m2 . . . such that yn ∈ Gj for all j ∈ N and n ≥ mj . For
j ∈ N and n ∈ {mj, . . . , mj+1−1} we choose some xn ∈ ⋂j

i=0 Fi with f(xn) = yn.
Then (xn+m0)n converges x, because we have {Fi | i ∈ N} ⊆ [(xn+m0)n]∩ [x]. By
sequential continuity of f , (yn)n converges to f(x). Hence the family {Gj | j ∈ N}
constitutes a countable witness of convergence for f(x) contained in f∗F ⊆
[f(x)], implying f∗F ↓Y f(x). Therefore f is filter-continuous.
If-part: Let f be filter-continuous. Let (xn)n be a sequence converging in X to
some x∞. By Lemma 4 the filter F := [(xn)n] ∩ [x∞] converges to x∞ in J (X).
Hence f∗F converges to f(x∞). Since the Fréchet filter [(f(xn))n] ∩ [f(x∞)]
contains f∗F as a subset, it converges to f(x∞) by Axiom (F5). Hence (f(xn))n

converges to f(x∞) by Lemma 4. �
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The functor J gives rise to an alternative embedding of the sequential topo-
logical spaces into PFil, using the functor LTop : Top → Lim mentioned in [Sec-
tion 2.2]. We characterise the class of topological spaces on which J ◦LTop agrees
with the standard embedding ITop from [Section 2.1].

Proposition6. A topological space Z satisfies JLTop(Z) = ITop(Z) if, and only
if, Z is first-countable (i.e. every element has a countable neighbourhood base).

Proof. If-part: Let z ∈ Z, and let Φ be a countable neighbourhood base of z.
Let F be a filter converging to z in ITop(Z). By definition of ITop, F contains
Φ. Since Φ is a countable witness of convergence for z in LTop(Z), F converges
to z in JLTop(Z).
Conversely, let F be a filter converging to z in JLTop(Z). Then F contains a
witness of convergence {Fi | i ∈ N} for z. Assume for contradiction that there
is an open neighbourhood U of z that is not contained in F . Then for every n

there is some zn ∈ ⋂n
i=0 Fi \U . Since {Fi | i ∈ N} ⊆ [(zn)n], (zn)n converges to z

in Z. This contradicts {zn |n ∈ N}∩U = ∅. We conclude {U open | z ∈ U} ⊆ F .
Hence F , being a subset of [z], converges to z in ITop(Z).
Only-if-part: Let z ∈ Z. Since F := [{U open | z ∈ U}] converges to z, F contains
a countable witness of convergence {Fi | i ∈ N} for z. For every i there is an
open set Ui with z ∈ Ui ⊆ Fi. Let V be an open set containing z. Assume for
contradiction that for every n ∈ N there is some zn ∈ ⋂n

i=0 Ui \V . Since {Fi | i ∈
N} ⊆ [(zn)n], (zn)n converges to z in Z. This contradicts {zn |n ∈ N} ∩ V = ∅.
Hence {Ui | i ∈ N} is a neighbourhood base for z. Therefore Z is first-countable.

�

The functor J preserves the existence of a countable base. We denote the
arising functor from ωWLim to ωPFil by Jω.

Proposition7. Any countable limit base B for a weak limit space X is a subbasis
for the associated filter space J (X).

Proof. Let F be a filter that converges to x in J (X). In order to show that
F ∩ B is a witness of convergence for x, let (zn)n be a sequence that does not
converge to x in X. We choose a numbering i �→ αi of the non-empty family
A := B ∩ [x] \ [(zn)n] such that ∀i.∃j > i. αj = αi. Assume for contradiction
F ∩ A = ∅. Let {Fi | i ∈ N} be the countable witness for x contained in F .
Then for every n ∈ N there exists some yn ∈ ⋂n

i=0 Fi \ αn, as αn /∈ F . Since
{Fi | i ∈ N} ⊆ [(yn)n], (yn)n converges to x. As B is a limit base, there exist some
A ∈ A and n1 ∈ N with yn ∈ A for all n ≥ n1. Moreover, there is some n2 ≥ n1

with αn2 = A. This contradicts yn2 /∈ αn2 . Thus we have F∩B � [(zn)n] showing
that F ∩B is a witness of convergence for x. Hence the filter base F ∩B∩, where
B∩ denotes the closure of B under finite intersection, converges to x in J (X).
Therefore B is a subbasis for J (X). �
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We obtain from Propositions 5 and 7:

Theorem 8. The functor J embeds WLim into PFil. Its restriction Jω embeds
ωWLim into ωPFil.

We prove that J preserves countable products, but not exponentials. By con-
trast, the restriction Jω preserves exponentials by being an equivalence functor,
as we shall see in [Section 4].

Proposition9. For a sequence (Xi)i of weak limit spaces, we have∏
i∈N

J (Xi) = J (
∏

i∈N
Xi).

Proof. Let F be a filter converging to x in J (
∏

i∈N
Xi). For every i, the pro-

jection pri is a filter-continuous function from J (
∏

i∈N
Xi) to J (Xi) by being

sequentially continuous, hence pr∗iF ↓ pri(x) in Xi. By definition this means
that F converges to x in the product filter space

∏
i∈N

J (Xi).
Conversely, let F be a filter converging to x in

∏
i∈N

J (Xi). For every i we have
pr∗iF ↓Xi pri(x), hence pr∗iF contains a countable witnesses of convergence Φi

for pri(x) in Xi. The countable family

Ψ := {X0 × . . . × Xi−1 × A × Xi+1 × Xi+2 . . . | i ∈ N, A ∈ Φi}
is contained in F , as F is a filter. For every i ∈ N and every sequence (yn)n in∏

j∈N
Xj , Ψ ⊆ [(yn)n] implies Φi ⊆ [(pri(yn))n] and thus (pri(yn))n → pri(x) in

Xi. Hence (yn)n converges to x in the weak limit space
∏

i∈N
Xi. Thus Ψ is a

countable witness of convergence for x. We conclude that F converges to x in
J (

∏
i∈N

Xi). �

Example 1. The functor J does not preserve exponentials. As an example we
consider an uncountable discrete1 limit space D ∈ WLim as domain space and
as codomain space the two point discrete limit space 2 with carrier set {0, 1}.
The only filter to converge in J (D) to a point x is the principal filter [x]. This
implies that the filter

F :=
[{

F ⊆ C(D, 2)
∣∣∃E ⊆ X finite. ∀f ∈ F. f(E) = {0}}]

converges in J (2)J (D) to the constant zero function 0. Assume that F converges
to 0 in J (2D). Then F contains a countable witness of convergence, {Fi | i ∈ N},
for 0 in 2D. For every i ∈ N there is a finite set Ei with

{
f : D → 2

∣∣ f(Ei) =
{0}} ⊆ Fi. The function fn : D → 2 defined by fn(x) = 0 :⇐⇒ x ∈ ⋃n

i=0 Ei

is sequentially continuous and hence filter-continuous by Proposition 5. As D is
uncountable, there exists some x0 ∈ D \ ⋃

i∈N
Ei. Since (fn(x0))n �→ 0(x0) in

2, (fn)n does not converge to 0 in 2D. This contradicts {Fi | i ∈ N} ⊆ [(fn)n].
Hence J (2)J (D) is not isomorphic to J (2D).
1 i.e., (xn)n →D x∞ if, and only if, xn = x∞ for almost all n ∈ N
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4 Equivalence of ωWLim and ωPFil

We prove in this section our main result stating that the categories ωWLim and
ωPFil are equivalent. Actually we show the stronger result that the object part
of Jω is a bijection between the weak limit spaces with a countable limit base
and the countably based proper filter spaces.

In order to obtain the inverse of Jω, we construct at first a retraction W
from the proper filter spaces back to the weak limit spaces. Any filter space X

induces a natural sequence convergence relation →X. It is defined by

(xn)n →X x∞ :⇐⇒ [(xn)n] ∩ [x∞] converges to x∞ in X .

We define W(X) := (X,→X) and W(f) := f for any morphism f in PFil and
prove that W constitutes a functor from the category of proper filter spaces to
the category of weak limit spaces.

Proposition10. For any proper filter space X, W(X) is a weak limit space.
Moreover, any filter-continuous function f from X to a proper filter space Y is
a sequentially continuous function from W(X) to W(Y).

Proof. We have to show that W(X) satisfies Axioms (L1), (L4), (L5). Axiom
(L1) follows from the validity of (F1) in X. Axiom (L5) holds, because [(xn)n]
is equal to [(xn+1)n]. Axiom (L4) follows from Axiom (F5) for X along with
the fact that [(xn)n] ∩ [x∞] ⊆ [(xξn)n] ∩ [x∞] holds for all x : N+ → X and all
sequences (ξn)n converging to ∞ in (N+, τN+).
Now let f : X → Y be filter-continuous. Let (xn)n be a sequence converging in
W(X) to some x∞. Then the Fréchet filter [(xn)n] ∩ [x∞] converges to x∞. By
filter continuity, f∗([(xn)n] ∩ [x∞]

)
converges to f(x∞). Since the Fréchet filter

[(f(xn))n]∩ [f(x∞)] contains the filter f∗([(xn)n]∩ [x∞]
)
, (f(xn))n converges to

f(x∞) in W(Y) by Axiom (F5). Hence f is sequentially continuous. �

By the next lemma, W preserves the existence of a countable basis. We denote
the arising functor from ωPFil to ωWLim by Wω.

Lemma11. Any basis B for a proper filter space X is a limit base for the weak
limit space W(X).

Proof. Let (xn)n be a sequence converging to some x∞ in W(X). Then the filter
[(xn)n]∩ [x∞]∩B converges to x∞ in X. Thus for every sequence (zn)n failing to
converge to x∞ in W(X), there is some B ∈ [(xn)n]∩ [x∞]∩B with B /∈ [(zn)n],
because otherwise we would have [(xn)n] ∩ [x∞] ∩ B ⊆ [(zn)n] ∩ [x∞] and hence
[(zn)n]∩[x∞] ↓X x∞ by Axiom (F5), a contradiction. Therefore [(xn)n]∩[x∞]∩B
is a witness of convergence for x. �
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Lemma 4 implies:

Proposition12. Every weak limit space X satisfies WJ (X) = X.

Yet W is not left adjoint to J : Consider the filter space J (2)J (D), where
D and 2 are the discrete weak limit spaces from Example 1. The identity func-
tion of C(D, 2) is a sequentially continuous function from W(J (2)J (D)) to 2D,
but it is not a filter-continuous function from J (2)J (D) to J (2D), as we have
seen in Example 1. This implies that the functors HomWLim(W(−),−) and
HomCFil(−,J (−)) are not naturally isomorphic. Neither is W a right adjoint
to J . To see this, we equip the set of real numbers, R, with the proper filter
convergence relation ⇓ given by

F ⇓ x :⇐⇒ ∃(yn)n.
(
(yn)n →R x and [(yn)n] ∩ [x] ⊆ F ⊆ [x]

)
.

It is easy to verify that W(R,⇓) is endowed with the usual Euclidean convergence
relation →R and that the neighbourhood filter NτR

(x) of any real number x with
respect the Euclidean topology τR converges to x in JW(R,⇓). Since NτR

(x) does
not converge to x in (R,⇓), the identity function on R is not filter-continuous
from JW(R,⇓) to (R,⇓). Hence W is not right adjoint to J .

Proper filter spaces X do not necessarily satisfy JW(X) = X. Counterexam-
ples are J (2)J (D) and (R,⇓). Surprisingly, JW(X) = X does hold true, if X has
countable basis.

Proposition13. Any proper filter space X with a countable basis fulfils
JW(X) = X.

Proof. Let B be a countable basis for X. We have to show that a filter F on X

converges in X to an element x if, and only if, it converges in JW(X) to x.
First, let F converge to x in X. Then F ⊆ [x] and the countable filter base
Φ := F ∩B converges to x in X. By Axiom (F5), every sequence (yn)n with Φ ⊆
[(yn)n] converges to x in W(X). Hence Φ is a countable witness of convergence
for x contained in F . Therefore F converges to x in JW(X).
Conversely, assume that F converge to x in JW(X). Then we have F ⊆ [x] and
F contains a countable witness of convergence {Fi | i ∈ N} for x in W(X). Let
D := {∅} ∪ {B ∈ B | ∀n ∈ N.

⋂n
i=0 Fi � B}, and let i �→ βi be a numbering of

D with ∀i.∃j > i. βj = βi. We choose for every n some yn ∈ ⋂n
i=0 Fi \ βn. Since

{Fi | i ∈ N} ⊆ [(yn)n], (yn)n converges to x in W(X). Hence the filter [(yn)n]∩ [x]
and the filter base Φ := [(yn)n]∩ [x]∩B converge to x in X. Since D∩ [(yn)n] = ∅,
for every B ∈ Φ there is some n ∈ N with

⋂n
i=0 Fi ⊆ B, implying [Φ] ⊆ F . Hence

F converges to x in X by Axiom (F5). �

By Propositions 12 and 13, the object part of the functor Jω is a bijection be-
tween the countably based weak limit spaces and the countably based canonical
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filter spaces. By Proposition 5, for all X, Y ∈ ωWLim the morphism part of Jω

constitutes a bijection between the morphisms from X to Y and the morphisms
from Jω(X) to Jω(Y). This implies our main result:

Theorem 14. The category ωPFil of countably based proper filter spaces is equiv-
alent to the category ωWLim of weak limit spaces with a countable limit base.

From [Schröder 2002] we know that ωWLim is locally cartesian closed and
has all countable limits and all countable colimits. Hence:

Corollary 15. The categories ωPFil and ωCFil are locally cartesian closed and
have all countable limits and all countable colimits.

It is not difficult to verify that J maps a weak limit space X to a filter space
satisfying the Merging Axiom (F4) if, and only if, X fulfils the Merging Axiom
for weak limit spaces:

(L6) if (y2n)n → x and (y2n+1)n → x then (yn)n → x.

We obtain:

Theorem 16. The category ωMFil is equivalent to the category of countably
based weak limit spaces satisfying the Merging Axiom (L6).

5 Comparison of Categories Relevant to Computability
Theory

In this section, we repeat the definition of other categories relevant to com-
putability theory and investigate their relationships to filter spaces and weak
limit spaces.

5.1 Equilogical spaces

The largest of the categories we shall consider is D. Scott’s category Equ of equi-
logical spaces and of equivariant maps [Scott et al. 2004]. An equilogical space2

is a pair X = (S,≡X ), where S is a topological space and ≡X is an equivalence
relation on the carrier set of S. We say that X has the T0-property, if S is a T0-
space. By qX : S → S/≡X we denote the quotient function mapping any s ∈ S

to its equivalence class modulo ≡X . An equivariant map f : X → Y from X to
an equilogical space Y = (T,≡Y) is a set-theoretical function between the quo-
tient sets S/≡X and T/≡Y which is tracked by a continuous function g : S → T ,
meaning that qY(g(s)) = f(qX (s)) holds for all s ∈ S. We denote by ωEqu the
2 We follow here the more general definition in [Menni and Simpson 2002]. The original

definition in [Scott et al. 2004] requires the topological space S to be T0.
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full subcategory of those equilogical spaces whose underlying topological space
has a countable topological basis. Note that a non-countably-based equilogical
space may be isomorphic to a countably-based one, for example, if its equivalence
relation defines all elements to be equivalent.

From Corollary 4.2 in R. Heckmann’s paper [Heckmann 1998] we already
know the T0-version of the following theorem.

Theorem 17. The category PFil is equivalent to a full subcategory of Equ that
is closed under countable limits and exponentiation.

Proof. (Sketch) One proves that PFil is an exponential ideal of Equ. In order to
show this, by [Freyd and Scedrov 1990, Section 1.857] it suffices to construct an
inclusion functor E : PFil → Equ which has a left adjoint P : Equ → PFil that
preserves finite products. In order to define E and P , we adapt the construction
ideas for the respective functors in [Heckmann 1998].

Given a proper filter space X, the equilogical space E(X) is defined to have
as underlying topological space the set Z :=

{
(F , x)

∣∣F ↓X x
}

endowed with the
topology which is induced by the base consisting of the sets

{
(F , x) ∈ Z

∣∣F �
M

}
, where M runs over all nonempty subsets of X. The equivalence relation of

E(X) is given by (F , x) ≡E(X) (F ′, x′) :⇐⇒ x = x′, allowing us to identify the
quotient set Z/≡E(X) with the carrier set of X. It is not difficult to see that a
function f : X → Y is filter-continuous if, and only if, f is an equivariant map
from E(X) to E(Y). So defining the morphism part of E by E(f) := f yields an
inclusion functor from PFil to Equ.

Conversely, for an equilogical space X = (S,≡X ) we define the carrier set of
the filter space P(X ) to be the quotient set S/≡X and the convergence relation
of P(X ) by

F ↓P(X ) x :⇐⇒ ∃s ∈ S.
(
qX (s) = x ∧ {qX (U) |U open, s ∈ U} ⊆ F ⊆ [x]

)
.

The morphism part of P is defined to map a function to itself. We omit the proof
of P being a left adjoint to E that preserves countable limits. �

The countably based version of Theorem 17 holds as well.

Theorem 18. The category ωPFil is equivalent to a full subcategory of ωEqu

that is closed under countable limits and exponentiation.

Proof. (Sketch) The reflection functor P in the proof of Theorem 17, which pre-
serves countable limits, maps a countably based equilogical space X to a count-
ably based filter space: if B is a countable base for the underlying topological
space, then

{
qX (B) |B ∈ B}

is a subbasis for the filter space P(X ). Conversely,
for a countably based filter space X the equilogical space E(X) is isomorphic to a
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countably based equilogical space Eω(X): given a countable basis B for X, the un-
derlying topological space of Eω(X) has S :=

{
([F ∩B], x)

∣∣F ↓X x
}

as its carrier
set and the family of sets

{
(G, x) ∈ S

∣∣ B ∈ G}
, where B runs over B, as a topolog-

ical base. So ωPFil is an exponential ideal of ωEqu by [Freyd and Scedrov 1990,
Section 1.857], as P preserves finite products. �

5.2 Assemblies

The category ωEqu of countably based equilogical spaces is equivalent to
the category ωAss of assemblies over countably-based algebraic lattices, see
[Menni and Simpson 2002]. It is also equivalent to the category Asm(P) of assem-
blies over Scott’s graph model P, see [Bauer et al. 2002]. The carrier set of the
topological space P is the powerset of N, topologised by the Scott topology on the
dcpo (P,⊆). An object X of Asm(P) is a set X together with a function φX from
X to the non-empty subsets of P. The elements in φX(x) are called the realisers
of x. A morphism f between two assemblies X, Y is a function between their
carriers sets which is tracked by a continuous function h : P → P, meaning that
p ∈ φX(x) implies h(p) ∈ φY(f(x)). An equivalence functor EAsm(P) from Asm(P)
to ωEqu can be constructed by mapping an assembly X = (X, P, φX) ∈ Asm(P)
to the countably based equilogical space (SX,≡X) defined as follows: SX has{
(p, x) ∈ P×X

∣∣ p ∈ φX(x)
}

as its carrier set, topologised by the subspace topol-
ogy inherited from the topological product of P and the indiscrete space over X ;
the equivalence relation ≡X is given by (p, x) ≡X (p′, x′) iff x equals x′. For the
converse direction, one defines the object part of a functor A : ωEqu → Asm(P)
as follows: given a countably based equilogical space X = (S,≡X ) and a num-
bering β of a countable base of S, A sends X to the assembly (S/≡X , P, φX ),
where φX (qX (s)) :=

{{i ∈ N | s′ ∈ β(i)} ∣∣ s′ ≡X s
}
. It is not too difficult to

see that A(EAsm(P)(X)) is isomorphic to X in Asm(P) and that EAsm(P)(A(X )) is
isomorphic to X in ωEqu.

5.3 Multirepresentations

A multirepresentation [Schröder 2002] of a set X is a surjective partial multifunc-
tion from the Baire space NN onto X . Multirepresentations generalise represen-
tations [Weihrauch 2000], which can be viewed as single-valued multirepresenta-
tions. Given two multirepresentations δ :⊆ NN ⇒ X and γ :⊆ NN ⇒ Y , we say
that a function f : X → Y is relatively continuous w.r.t. δ and γ, if there is a par-
tial continuous function g : NN ⇀ NN satisfying x ∈ δ(p) =⇒ f(x) ∈ γ(g(p)) for
every p ∈ NN and x ∈ X . The category MRep of multirepresentations as objects
and of relatively continuous functions as morphisms is known to be cartesian
closed. This can be shown similar to the cartesian closedness of its full subcat-
egory Rep of Baire space representations, see [Bauer 2002]. Moreover, MRep is
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equivalent to the cartesian closed category Asm(NN) of assemblies over the Baire
space, see [Lietz 2004]. This category is defined like Asm(P), except for using
NN as the set of realisers and partial continuous functions on NN as tracking
functions.

The category MRep embeds into the category of countably based equilogical
spaces. The corresponding functor maps a multirepresentation δ :⊆ NN ⇒ X

to an equilogical space whose underlying topological space has the graph
{(p, x) |x ∈ δ(p)} of δ as its carrier set and as its topology the subspace topology
inherited from the product of the Baire space and the indiscrete space over X .
This functor preserves finite products, but not exponentials (see [Bauer 2002]
for the respective inclusion functor for Rep into ωEqu0).

The category ωWLim embeds into MRep via a functor that preserves count-
able products and exponentials. This functor maps a countably based weak limit
space X to an admissible multirepresentation of X, see [Schröder 2002].

5.4 Spaces based on net convergence

The existence of countable bases are crucial to the equivalence results in [Sec-
tion 4]. A generalisation of weak limit spaces that gives rise to a category equiv-
alent to the category of all proper filter spaces can be obtained by considering
nets instead of sequences. A net over a set X is function from some directed
set D to X written as (xd)d∈D, see [Engelking 1989]. A net convergence relation
on X is a relation between nets over X and points of X . We define NLim to be
the category of pairs (X,→), where → is a net convergence relation on a set X

satisfying Axioms (L1) and (N2):

(N2) if (yd)d∈D → x and [(yd)d∈D] ∩ [x] ⊆ [(ze)e∈E ] then (ze)e∈E → x.

Here [(yd)d∈D] denotes the induced filter
[{{yd′ | d ≤D d′} ∣∣ d ∈ D

}]
. Morphisms

of NLim are the functions which preserve convergence of nets. The category NLim

can be proven to be equivalent to PFil. The equivalence functor from NLim to
PFil maps an object (X,→) to the proper filter space (X, ↓) defined by

F ↓ x :⇐⇒ ∃(yd)d∈D.
(
(yd)d∈D → x and [(yd)d∈D] ∩ [x] ⊆ F ⊆ [x]

)
.

Conversely, a proper filter space X = (X, ↓X) is mapped to that space in NLim

in which a net (yd)d∈D converges to a point x ∈ X if, and only if, the filter
[(yd)d∈D] ∩ [x] converges to x in X. We omit the details.

5.5 Sequential spaces, Kelley spaces, Core compactly generated
spaces

We give some examples of full cartesian closed subcategories of the category Top

of topological spaces. The first is the category Seq of sequential spaces. A topo-
logical space Z is called sequential, if any sequentially closed subset of Z is closed,
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see [Engelking 1989]. The category Seq is known to be equivalent to a full re-
flective subcategory of the category Lim of limit spaces and inherits its cartesian
closed structure from it, see [Hyland 1979, Menni and Simpson 2002]. Another
supercategory of Seq is the category kTop of compactly generated spaces. A
topological space Z is called compactly generated, if any subset V is open in Z,
whenever p−1(V ) is open in K for every compact Hausdorff space K and ev-
ery continuous function p : K → Z. Compactly generated Hausdorff spaces are
referred to as Kelley spaces. The inclusion functor from Seq to kTop preserves
products, but not exponentials. An even larger cartesian closed subcategory of
Top is the category of core compactly generated spaces. Core compactly gen-
erated spaces are characterised as topological quotients of core compact (i.e.
exponentiable) topological spaces. None of the inclusion functors of these cate-
gories into Top preserves finite products (nor exponentials). Details can be found
in [Escardó et al. 2004].

5.6 QCB-spaces

A qcb-space [Simpson 2003] is a topological space Z that is a quotient of a
countably based topological space3. The class of qcb-spaces is exactly the class
of sequential topological spaces on which a reasonable computability theory is
possible. Moreover, the category QCB of qcb-spaces (with topological contin-
uous functions as morphisms) is cartesian closed, see [Schröder 2002]. It is a
full subcategory of several categories in such a way that the respective em-
beddings preserve finite products and exponentials. Examples are the cate-
gories of: equilogical spaces (as an example of a cartesian closed supercate-
gory of Top), sequential spaces, compactly generated spaces, core compactly
generated spaces (as examples of cartesian closed subcategories of Top), Baire
space multirepresentations and assemblies over P (as examples of effective cate-
gories), limit spaces and weak limit spaces. The corresponding proofs are due to
several authors, see [Bauer 2002, Escardó et al. 2004, Menni and Simpson 2002,
Schröder 2001]. Theorems 14 and 16 imply that QCB also lives inside the filter
space categories PFil and MFil inheriting the respective constructions of prod-
ucts and exponentials. The same holds true for the filter space category Fil in
[Hyland 1979], because function spaces in MFil are constructed as in Fil, see
[Heckmann 1998]. This gives the expected positive answer to the question in
[Simpson 2003, Simpson et al. 2007] whether this is the case.

The following diagram depicts embeddings between the aforementioned cat-
egories as described before. Solid arrows denote embeddings that preserve finite
products as well as existing exponentials, dashed arrows indicate embeddings
that preserve finite products, but not exponentials, and dotted arrows stand for
3 i.e., there is a surjection q : A → Z from a countably based space A onto Z satisfying:

V open in Z ⇐⇒ q−1[V ] open in A.
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embeddings that do not preserve finite products. The symbol ωTop denotes the
category of topological spaces with a countable base. Note that the diagram
would commute, were the two embeddings into Top omitted.

ωTop

QCB

ωLim ωMFil ωWLim ωPFil ωCFil MRep ωEqu

kTop Seq Lim WLim Asm(NN) Asm(P)

Top MFil NLim PFil CFil Equ

Fil

Figure 1: The relationship between relevant categories

6 Discussion

We have seen that countably based proper filter spaces are basically the same
mathematical objects as weak limit spaces. In [Schröder 2002] computability for
functions between countably based weak limits spaces is introduced by endow-
ing the weak limit spaces with multirepresentations obtained from numberings
of the respective limit bases. One can show that the induced computability no-
tion is equivalent to the one generated by coded filter spaces, see [Section 2.1].
However, the corresponding category of coded filter spaces as objects and com-
putable functions as morphisms does not have all finite colimits and seems not
to be cartesian closed. In [Schröder 2002], an effective cartesian closed category
(denoted by EffWeakLim) with finite limits and colimits is defined by imposing
an effectivity condition on the used multirepresentations. It would be interesting
to investigate effectivity notions on filter space bases which lead to a category of
“effectively coded filter spaces” that is equivalent to EffWeakLim or to a cartesian
closed subcategory of EffWeakLim.
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