Journal of Universal Computer Science, vol. 14, no. 8 (2008), 1182-1206
submitted: 15/1/07, accepted: 25/3/08, appeared: 28/4/08 © J.UCS

Model Interpreter Frameworks:
A Foundation for the Analysis of Domain-Specific
Software Architectures

George Edwards
(University of Southern California, Los Angeles, USA
gedwards@usc.edu)

Chiyoung Seo
(University of Southern California, Los Angeles, USA
cseo@usc.edu)

Nenad Medvidovic
(University of Southern California, Los Angeles, USA
neno@usc.edu)

Abstract: Prediction of the quality attributes of software architectures requires technologies that
enable the application of analytic theories to component models. However, available analytic
techniques generally operate on formal models specified in notations that cannot flexibly and
intuitively capture the architectures of large-scale distributed systems. The construction of
model interpreters that transform architectural models into analysis models has proved to be a
complex and difficult task. This paper (1) describes a methodology for performing automated
analysis of architectural models that simplifies the development of model interpreters and
enables effective reuse of interpreter logic, and (2) demonstrates how a framework that utilizes

the methodology can be designed, implemented, utilized, and evaluated.!

Key Words: Software architecture, model-driven engineering, component-based systems
Category: D.2.2, D.2.10, D.2.11

1 Introduction

Modern day component technology provides software architects with powerful mecha-
nisms for designing, implementing, deploying, and evolving large-scale distributed
systems. Component-based software engineering, as a whole, encompasses a number
of different elements and paradigms. First, component-based architectures utilize
high-level design abstractions to help engineers reason about large-scale software sys-

1.This paper is a significant revision and extension of G. Edwards, et al., Construction of Ana-
lytic Frameworks for Component-Based Architectures, Proceedings of the Brazilian Symposium
on Software Components, Architectures and Reuse (SBCARS), August 2007.

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1183

tems more effectively. Second, component-based development enables highly effective
strategies for reuse and integration of existing software (in the form of off-the-shelf
components and product-line architectures, for example). Finally, component-based
middleware includes development environments and run-time platforms that support
the implementation of distributed systems by providing high-level programming con-
structs and numerous services, such as packaging, configuration, and deployment.

Component-based software engineering also offers a basis for the construction of
analysis models that enable the discovery and prediction of critical properties, or qual-
ity attributes, of a software system, such as performance, reliability, and resource con-
sumption. Although techniques for analyzing software systems with respect to such
properties are not new, the assembly of systems from independently deployable and
executable units makes these techniques more relevant and practical because the con-
straints on the design space provided by a component-based architecture make the
construction and solution of analysis models feasible. Furthermore, such constraints
can be enforced and certified during development and execution by component-based
middleware platforms. This paper outlines a novel strategy for conducting this type of
automated prediction of the quality attributes of component-based systems.

To effectively analyze the quality attributes of a component-based system, meth-
ods and tools are needed that support the integration of component technologies and
analysis technologies [Hissam 2002]. A component technology consists of a compo-
nent model along with a development environment and/or run-time platform. The
component model imposes rules that define the well-formedness of component
instances and assemblies. For example, component models define the types of inter-
faces that a component may expose, the patterns of interaction between components
and their run-time environments, and so on. Component technologies (such as Java
Enterprise Edition) provide the basis for the modeling, implementation, and deploy-
ment of software architectures.

An analysis technology consists of a system analysis technique and tools that sup-
port the utilization of that technique. An analysis technique is a process for applying a
computational theory to system models (such as layered queuing networks [Woodside
2002], or LQNS) to enable automated prediction of system properties and behaviors.
Software and system analysis techniques are required to make assumptions about the
systems to which they are applied. For example, a LQN assumes that each software
server in the model accepts requests from a single queue. Such an assumption can be
enforced by a component middleware platform both at system construction-time and at
run-time. Therefore, component technologies and analysis technologies are well-suited
to integration because the use of a component technology for system construction can
be leveraged to ensure that the assumptions required by an analysis technology are sat-
isfied. This increases confidence that predictions produced by an analysis technology
operating on design models will remain valid for the implemented system.

Unfortunately, the integration of component and analysis technologies is anything
but straightforward in practice. Component-based systems are generally specified
using high-level design languages and implemented using high-level programming
constructs that emphasize abstraction and flexibility, while analysis techniques, on the
other hand, operate on formal models that are frequently specified in much lower-

1184 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

level, more rigid notations. The consequence of this is that software architects are fre-
quently required to construct multiple system models, each intended for a different
purpose. For example, the safety experts on an architecture team may build and ana-
lyze fault trees, while energy management experts construct and execute specialized
power simulations.

The model-driven engineering (MDE) paradigm [Schmidt 2006] offers an attrac-
tive strategy for achieving the integration of component and analysis technologies.
MDE technologies enable the construction of domain-specific modeling languages
(DSMLs) through the use of metamodels. Metamodels capture the elements, attributes,
relationships, views, and constraints present in a particular modeling language, and
can be easily modified, adapted, composed, enhanced, and evolved [Ledeczi 2001]. In
this way, MDE offers a straightforward and intuitive way to incorporate the parameters
of an analytic theory into both widely-used general purpose component models and
domain-specific component models. MDE technologies provide access to the informa-
tion contained in architectural models through well-defined interfaces. Customized
model interpreters can then be constructed that perform system analysis and visualiza-
tion, automated synthesis of implementation artifacts, and so on. Model interpreters
can be used to implement semantic mappings, or transformations, between the high-
level design models amenable to architectural reasoning and the low-level analysis
models amenable to rigorous prediction of component assembly properties. Figure 1
delineates the main MDE concepts and processes.

Metamodeling
Environment

Domain Specific
Modeling Environment

Metamodeling
Language

Domain Specific
Modeling Languages

—

Figure 1:High-level view of the model-driven engineering (MDE) process.

Metamodel
Interpreter

Model
Interpreters

Metamodels

We postulate that the respective benefits of architecture-centric development,
model-driven engineering, and component-based middleware can be leveraged to con-
struct a methodology for the automated analysis of the quality attributes of software
systems. The remainder of this paper describes such a methodology. The core elements
of the methodology are (1) an abstract component technology and (2) model inter-
preter frameworks. An abstract component technology (ACT) is an extensible archi-
tecture description language (ADL) and component model that can be adapted to the
needs of a particular domain and implementation platform [Wallnau 2003]. A model
interpreter framework (MIF) is an extensible infrastructure for implementing analysis
techniques that can be used to rapidly construct analyzable models from domain-spe-

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1185

cific architectures. Our approach offers several important advantages over other meth-
odologies, most notably (1) the ability to systematically implement domain-specific
analysis techniques without having to implement complex model transformations, and
(2) the ability to apply off-the-shelf analysis capabilities to domain- and platform-spe-
cific models.

To illustrate the approach, we describe our implementation of the eXtensible Tool-
chain for Evaluation of Architectural Models (XTEAM), an integrated modeling, anal-
ysis, and synthesis environment. Our evaluation of XTEAM demonstrates that (1)
implementing an architectural analysis technique using a model interpreter framework
is substantially simpler than constructing a stand-alone interpreter from scratch, (2) an
interpreter framework can provide accurate predictions of the quality attributes of
complex assemblies of off-the-shelf components, and (3) a single interpreter frame-
work can be used to rapidly and successfully implement a broad range of analysis
techniques.

The remainder of this paper is organized as follows. Section 2 further motivates
this work. Sections 3 and 4 describe our approach, while Section 5 discusses in detail
our implementation of the XTEAM abstract component technology and model inter-
preter framework. Section 6 evaluates the framework and illustrates its benefits
through the use of a case study. Overviews of related work and conclusions round out
the paper.

2 Motivation

This section summarizes the current technology trends and state-of-the-art in
architectural modeling and analysis, enumerates the shortcomings of current practices,
and briefly outlines how the methodology proposed in this paper addresses these short-
comings and represents an improvement over current approaches.

Increasingly, the architectural models of large-scale distributed systems are incor-
porating domain- and platform-specific elements. Rather than relying on static, gen-
eral-purpose languages, like UML 1.x, architects are constructing models using
domain-specific modeling languages (DSMLs) that are customized precisely for the
needs of a particular enterprise or project. The codification of domain concepts as first-
class modeling constructs allows developers to build models using the most concise
and intuitive syntax. This simplifies the modeling process and alleviates the tedious
specification of low-level details. The use of DSMLs along with model transformation
engines that perform system analysis and synthesis has been termed model-driven
engineering (MDE).

Domain-specificity confers a number of benefits, but also incurs some drawbacks.
First, the responsibility for producing the language specification or metamodel falls on
application developers and architects, rather than specialized tool developers and lan-
guage experts. The creation of semantically powerful, flexible, and intuitive modeling
languages, even with the benefit of metamodeling environments, is inherently chal-
lenging. Furthermore, DSML development requires both domain expertise and meta-
modeling expertise; that is, a language developer must command a thorough
understanding of the central and elemental concepts in the target domain and must be

1186 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

adept in the mechanisms for codification of those concepts. This poses an obstacle
because domain experts are commonly not metamodeling experts, and vice-versa.

Second, because domain-specific languages are not standardized, tools that lever-
age models for common functions like analysis and program synthesis (code genera-
tion) must be custom-built for each language. This requires system architects and
developers to become tool developers — rather than merely tool users — to achieve inte-
grated design analysis and program synthesis. Additionally, organizations want to
develop with third-party, commercially-supported tools to reduce risk and cost. The
implementation of such tools, called model interpreters, frequently requires a signifi-
cant investment of resources. Modeling environments provide interfaces for model
interpreters to access and manipulate the information contained in models, but in many
cases, a complex semantic mapping between languages is required that is difficult to
define and implement. For example, such a mapping is required to transform architec-
ture-based models, which are at a very high level of abstraction, into executable simu-
lations or code, which are at a much lower level. In order to motivate the discussion in
the remainder of this paper and illustrate the need for a new approach to the construc-
tion of model interpreters, this section describes a typical MDE-based process for
modeling and analyzing a software architecture, and suggests a strategy for simplify-
ing and improving this process.

Consider a large-scale development project for a software-intensive system. The
software architecture team has decided to employ an MDE-based modeling and analy-
sis process, and has consequently constructed an architectural model that includes
some domain-specific elements (such as hardware devices and middleware facilities)
in addition to the canonical architectural constructs (component, connector, etc.). The
team now plans to analyze the performance of the system through the use of a layered
queuing network (LQN) model [Woodside 2002]. Applying the normal MDE strategy;,
the team constructs a model interpreter that transforms the architectural model into a
LQN, which is then analyzed to determine a set of performance-related metrics, such
as system throughput and service utilization, under various loading conditions.

As the development program progresses, the need for additional analyses becomes
apparent. For example, as the system’s deployment architecture (i.e., the assignment of
software components to hardware hosts) is further refined, questions arise about how
deploying certain components to mobile hosts, which have a finite battery life, will
impact the system’s energy consumption. The architecture team is instructed to
employ the architecture model in comparing deployment alternatives with respect to
energy consumption. To do so, they implement a new model interpreter that transforms
the architecture model into the input to a cycle-accurate energy consumption simula-
tor. As other forms of analysis are requested, the team is forced to expend significant
resources implementing additional model interpreters. For each new interpreter, the
team must:

1. Find a computational theory that derives the relevant properties from a sys-
tem model.

2. Determine the syntax and semantics of the modeling constructs on which the
computational theory operates.

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1187

3. Discover the semantic relationships between the constructs present in the
architectural models and those present in the analysis models.

4. Determine the compatibility between the assumptions and constraints of the
architectural models and the analysis models, and resolve conflicts between
the two.

5. Implement a model interpreter that executes a sequence of operations to
transform an architectural model into an analysis model.

6. Verify the correctness of the transformation implemented by the interpreter.

The overhead and maintenance costs associated with employing the MDE process,
as outlined above, make it a less attractive development strategy for small- and
medium-scale software systems. For example, MDE has experienced widespread
industry adoption in large-scale defense and aerospace programs, but relatively limited
adoption in small business and desktop application development.

This paper demonstrates how a methodology that leverages an abstract component
technology combined with a model interpreter framework allows an architecture team
to (1) avoid the difficult task of inventing domain-specific languages from scratch, and
(2) perform the above process only once for a broad family of analysis techniques,
rather than repeating the process for each analysis technique. The methodology can
significantly improve the utility and appeal of domain-specific architectural develop-
ment, as the definition of domain-specific languages and the construction of model
interpreters constitute the primary activities in the MDE process.

3 Abstract Component Technology

The first step in leveraging the MDE approach for the evaluation of the quality attri-
butes of software architectures is to construct a metamodel that defines a DSML. How-
ever, as mentioned above, the creation of semantically powerful, flexible, and intuitive
modeling languages is non-trivial; in fact, it requires a great deal of expertise in both
metamodeling and the target domain. To overcome this challenge, we advocate an
approach that avoids the creation of languages from scratch. Instead, we rely on the
construction of an abstract component technology (ACT) to simplify language devel-
opment. This section defines what an ACT is and outlines the benefits of using an
ACT. In Section 5, we illustrate the role an ACT plays in an MDE toolchain and dem-
onstrate how it can be used through a detailed discussion of the eXtensible Toolchain
for Evaluation of Architectural Models (XTEAM), which implements the approach
described in this paper.

3.1 Definition

There exists a set of abstractions that are common to architectural models in a wide
variety of domains. Furthermore, these “standard” architectural elements (compo-
nents, connectors, interfaces, etc.) are provided as implementation constructs in a wide
variety of middleware component models. The software elements represented by each
of these constructs exhibit some capabilities, constraints, and properties that remain

1188 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

valid across domains and platforms. At the same time, other capabilities, constraints,
and properties may differ from one domain or platform to another. For example, com-
ponents in most domains and platforms can be described as independently deployable
software elements that interact with external entities only through well-defined inter-
faces. However, the types of interfaces that a component may expose and access varies
from one platform to another. For example, in the CORBA Component Model (CCM),
components interact via provided and required interfaces, which are method-based,
and event sources and event sinks, which are message-based [see CCM]. In the OSGi
platform, on the other hand, components (called bundles) may register producer and
consumer services, which are wired together by the middleware [see OSGi]. The capa-
bilities and constraints associated with OSGi bundle interfaces are different than those
associated with CCM component interfaces.

An abstract component technology (ACT) is a domain- and platform-independent
component model. An ACT defines a highly generic, but also highly extensible, mod-
eling language for component-based software architectures. An ACT defines the stan-
dard architectural elements only in terms of their platform-independent properties and
leaves undefined those properties that vary from one platform to another. For example,
an ACT will define a Component type which will include interface definitions. The
ACT should allow arbitrary component interfaces to be specified (in terms of their
data types, synchronism, etc.), but require that all inter-component interactions take
place via defined interfaces. This allows an ACT to serve as the basis for construction
of architectural models for a wide variety of domains and platforms. The ACT can
then be extended and enhanced to capture the capabilities, constraints, and properties
of the architectural elements present in a particular domain or platform, or incorporate
additional domain- and platform-specific constructs. In the example given, the ACT
could be extended to constrain the allowed interface definitions to synchronous,
method-based interactions, if such a constraint was enforced by the target middleware
platform.

3.2 Composition and Extension

The metamodeling mechanisms provided by MDE technologies enable the construc-
tion and manipulation of ACTs. An ACT metamodel can either be defined from
scratch, as is the case with the Pin component technology [Hissam 2005], or it can be
created through composition of the metamodels [Ledeczi 2001] of multiple, general
purpose architectural languages, as is the case with the XTEAM ACT (described in
Section 5). Once the metamodel for an ACT has been created, the ACT can be
extended as needed for a given application domain by modifying the metamodel.
Thus, the composition and enhancement of ACTs is achieved through composition and
enhancement of their corresponding metamodels.

There are generally two reasons for extending an ACT. First, an architect may
wish to include model parameters that are required by a domain-specific analytic tech-
nique. This allows the architectural model to be transformed into an analysis model
that can be evaluated with respect to a quality attribute. The set of analytic parameters
associated with an architectural element are collectively referred to as the element’s
analytic interface [Hissam 2002]. For example, a performance analysis might require

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1189

that a component’s behavioral definition include the number of available threads or the
queuing discipline applied to incoming requests. To capture analytic interfaces, the
parameters required by a particular analytic theory can be grouped together as attri-
butes of an abstract base type for ACT elements. This ensures that analytic interfaces
can be selectively used and composed in whatever combination is required. In the
above example, an abstract type named PerformanceAnalyzable could be defined with
ThreadPoolSize and QueuingDiscipline attributes. To apply the performance analysis
to architectural models, an architect defines an inheritance relationship within the
metamodel that specifies that the Component type implements the PerformanceAna-
lyzable analytic interface.

Second, an architect may wish to include platform-specific constructs that reflect
the implementation facilities provided by a middleware. This enables the automatic
generation of a variety of implementation artifacts, such as application code, middle-
ware configuration files, deployment descriptors, and so on [Gokhale 2005]. For
example, some CORBA implementations allow a set of quality-of-service (QoS)
parameters to be specified for component interfaces, such as event priorities and dis-
patching mechanisms. To create domain-specific constructs, new elements can be cre-
ated that are subclasses of ACT elements. Platform-specific attributes and constraints
can then be defined for these derived elements. This ensures that model interpreter
frameworks based on the ACT (as will be described in Section 4) will handle platform
constructs correctly (provided the assumptions listed in Section 4 are satisfied). Also,
all platform-specific constructs will inherit any analytic interfaces defined for their
respective ACT base types. In the example given, a new type named CORBAEventSink
could be defined. This type would have constraints applied to it that would require it to
be a message-based interface that only receives incoming data. The CORBAEventSink
type could also have Priority and Dispatching attributes that specify the priorities of
incoming events and the dispatching mechanism used to handle them. Architectural
models employing the CORBAEventSink type can then be easily used to automatically
generate QoS configuration files required by the underlying middleware.

3.3 Benefits

The use of an ACT allows existing notations and languages to be reused to the greatest
extent possible. Only incremental additions to the language are created as needed to
capture platform-specific concerns and enable specific architectural analysis tech-
niques. This is important for two reasons. First, the reuse of an ACT reduces the bur-
den of language development on software architects, allowing them to focus on
architecture (rather than modeling language) development. For example, an ACT
might define a particular formalism for modeling component behavior. Using the
mechanisms described above, an architect can create new platform-specific compo-
nent types and model their behavior without having to redefine a behavioral formal-
ism. Second, as we will demonstrate in the next section, the utilization of an ACT
permits the reuse of common tool infrastructures across development projects and
domains. Different types of system properties are relevant within different application
domains. Analysis technologies, such as discrete event simulators and model checkers,
can determine the quality attributes of a system model, but each type of analysis

1190 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

requires that certain information be captured in the system model. A general-purpose
modeling language, therefore, likely cannot capture the analytic parameters necessary
for a domain-specific analysis to be applied. On the other hand, analysis tools built for
domain-specific languages cannot be reused across other domains. An ACT strikes a
balance between these two extremes: it exploits commonality among domains, allow-
ing tool reuse, while permitting domain-specific extension, allowing rigorous analysis
of quality attributes.

4 Model Interpreter Frameworks

Applying MDE to the analysis of component-based systems requires software archi-
tects to construct semantic mappings between component models and analysis models.
The primary contribution of this paper is a novel approach that can greatly reduce the
complexity involved in this task. Our approach is to leverage general-purpose architec-
tural modeling constructs (as defined by an abstract component technology) and a
widely applicable analytic representation to construct a model interpreter framework
that abstracts away most of the semantic mapping required for analysis, while still pro-
viding the extensibility to accommodate both domain-specific modeling elements and
analyses. This section, therefore, focuses on defining specifically what an interpreter
framework is, what the objectives of an interpreter framework design are, and what
capabilities an interpreter framework provides. In the next section, we focus on how an
interpreter framework can be implemented and give concrete examples of how one can
be used.

4.1 Definition

In the model-driven engineering paradigm, a model interpreter is a software compo-
nent that operates on the information captured in a system model to produce some use-
ful artifact. Model interpreters invoke an API provided by a modeling environment to
extract the model structure and properties. A model interpreter codifies the semantics
of the modeling constructs on which it operates by defining the consequences of the
use of those constructs within a given context.

A model interpreter framework (MIF) is an infrastructure for constructing a fam-
ily of model interpreters. In order to be useful, such a framework must encapsulate
logic or algorithms that are useful in a wide variety of contexts. However, a MIF is not
a library of functions; rather, it is an active component that can be extended and
enhanced in specific, predefined ways. Furthermore, a MIF necessarily makes assump-
tions about the models on which it operates, and is therefore only applicable to a cer-
tain class of models. In the context of MDE, which advocates the inclusion of domain-
specific constructs in modeling languages, this implies that a common base of domain-
independent constructs exists on which the framework can operate. Domain-specific
elements are then handled by framework extensions.

One example of a model interpreter framework is a component that synthesizes
“glue-code” for a given middleware platform from a model of a software application.
Such a model likely includes both domain-independent constructs, such as objects or

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1191

components, and domain-specific constructs, such as the representation of the applica-
tion business logic. A MIF can be constructed that utilizes the component interface
specifications and topology to generate middleware glue-code, but leaves open exten-
sion mechanisms to insert logic that interprets the domain-specific behavior (e.g., to
generate component implementations).

When applied to the analysis of component-based systems, a MIF enables a family
of analytic techniques to be applied to a domain-specific architectural model by con-
structing from a high-level architectural model a more directly analyzable representa-
tion of a system, such as a discrete event simulation or Markov chain. In this context,
the domain-independent elements of the model are those concepts defined by an ACT.
The domain-specific elements of the model are the ACT extensions that capture
parameters of a relevant analytic theory, plus any additional domain- and platform-
specific extensions and constraints. In this way, a MIF is heavily dependent on the def-
inition and use of an ACT. The MIF abstracts the semantic mapping from architectural
constructs to analysis constructs, while providing the extensibility to accommodate the
logic that measures and records system properties according to an analytic technique.
The role of a model interpreter framework in the analysis of component-based soft-
ware architectures is illustrated in Figure 2.

Extensible Modeling Model Interpreter Framework
Environment

Abstract Component ‘

Technology I

Domain-Independent
Interpretation

Analysis Models

1S

Analytic Theory
Parameters

Domain-Specific

i B
Platform-Specific N
Interpretations

Extensions and
Constraints

Figure 2:The role of an abstract component technology and a model
interpreter framework in the analysis of component-based architectures.

4.2 Assumptions and Design Objectives

As alluded to in the previous subsection, a model interpreter framework must make
several important assumptions about the models to which it will be applied. It also
must satisfy several design objectives in order to be effective. In this subsection, we
enumerate these assumptions and objectives and describe their consequences in terms
of MIFs in general. We also describe, for each assumption and objective, the specific

1192 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

implications for MIFs that provide analysis of the quality attributes of application
architectures.

4.2.1 Assumptions

Assumption 1. System models contain domain-independent elements that are suffi-
cient to implement an interpretation. MIFs encapsulate logic that operates on domain-
independent constructs. It therefore follows that models must contain a sufficient set of
domain-independent constructs to implement some useful interpretation. Modeling
languages that consist exclusively of domain-specific constructs are not amenable to
an interpreter framework. This assumption can be satisfied through the definition of an
ACT.

Assumption 2. The interpretation of domain-independent elements is not depen-
dent on the interpretation of domain-specific elements. The implementor of a MIF can-
not know the types of domain-specific extensions that will be present in system
models. Consequently, the framework logic must operate exclusively on domain-inde-
pendent modeling elements, and the semantics of those elements cannot change within
different domain-specific contexts. This assumption is not a significant problem for
architectural models: the domain-specific modeling elements in this case are generally
either the parameters of an analytic theory that will be applied to the model or plat-
form-specific constraints on components and connectors.

Assumption 3. Domain-specific constraints do not violate domain-independent
constraints. Constraints on the set of well-formed models are fundamental to every
modeling language, and a MIF relies on these constraints in applying semantics to a
model. Within a given domain, additional constraints are present; capturing these con-
straints is a crucial part of creating a domain-specific modeling language. Clearly, for a
MIF to execute, these domain-specific constraints cannot contradict any domain-inde-
pendent constraints.

This last assumption can, in some cases, constitute a major challenge when apply-
ing an interpreter framework to architectural models. The constraints of a component
model may be irreconcilable with the assumptions required by an analytic theory.
However, more commonly, these constraints and assumptions can be brought into
alignment by co-refinement, a process proposed by Hissam et al. [Hissam 2002]. Co-
refinement may weaken or strengthen the constraints of a component model, which
either expands or reduces the set of well-formed models, respectively, in order to
accommodate the assumptions of an analytic theory. When a component model is
weakened, it implies that the analytic theory can be applied to a larger class of systems
than those described by the component model, and some constraints are being “thrown
out.” Therefore, the predictions made by the theory may be less precise or more com-
putationally expensive than those made by a theory that leverages all constraints in the
component model. On the other hand, strengthening the component model implies that
the analytic theory can only be applied to a subset of systems described by the compo-
nent model, and constraints must be added. The analytic theory can therefore be used
only if a mechanism exists for ensuring that the executing system will abide by these
additional constraints; they are not enforced by the middleware platform. Similarly, the

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1193

assumptions of a analytic theory can be strengthened or weakened in order to reconcile
conflicting component constraints.

The consequences of this assumption can be illustrated using an example. As we
have previously stated, an ACT likely includes a constraint that requires component
interactions to take place via defined interfaces. This implies that a component’s inter-
nal state cannot change spontaneously without it being modified by the component
itself. An analysis technique that determines whether system deadlock is possible
likely relies on such an assumption, that is, that component state changes cannot hap-
pen arbitrarily, but will occur only in specified ways.

Now consider two hypothetical middleware platforms: in Platform A, components
may arbitrarily modify one another’s state; in Platform B, a components state may be
arbitrarily changed by the underlying operating system. If an architect decides to use
Platform A, a conflict exists between assumptions that can be rectified via co-refine-
ment. The architect strengthens the set of constraints associated with the middleware
component model, prohibiting components from changing each other’s state directly.
In this case, the architect must also institute some mechanism to ensure that the even-
tual implementation obeys this constraint, since the middleware does not enforce it.
The deadlock detection analysis can now be safely applied. If the architect decides to
use Platform B, however, a conflict exists between assumptions that cannot be reme-
died because the architect cannot prevent the operating system from changing a com-
ponent’s state. As a result, the architect is prevented from applying the deadlock
analysis to his architectural models. However, this is actually a desirable result
because the predictions provided by the deadlock detection analysis would have been
totally invalid for a system implemented using Platform B. The ACT and MIF, by
making constraints explicit, prevent the inadvertent use of invalid analyses.

4.2.2 Design Obijectives

Design Objective 1. The model interpreter framework encapsulates the implemen-
tation details of domain-independent interpretation. The manipulations performed by
an interpreter framework are necessarily at least somewhat complex (otherwise, the
reuse of the framework would be of little value). An interpreter framework should
insulate architects from the details of these manipulations in order to enable reuse
without forcing the architect to understand or modify the framework logic. This objec-
tive, can, however, be relaxed in some cases, in order to increase the flexibility of the
framework. Exposing the details of the interpretation process increases the complexity
of utilizing the framework, but also allows the architect to implement certain analyses
that would not otherwise be possible.

Design Objective 2. The model interpreter framework produces an artifact useful
in a wide variety of contexts. In order to maximize the benefits provided by reuse of an
interpreter framework, the framework must produce a representation of the system that
is flexible enough to be used for a variety of purposes. For example, some analysis
models, such as discrete event simulations, enable the realization of an extensive fam-
ily of analytic theories. Other analysis models, such as fault trees, are much more nar-
rowly targeted, and enable a much smaller set of analytic theories. Therefore, while it

1194 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

is possible to create a MIF for the latter types of analysis models, they are not strong
candidates for construction of a MIF.

Design Objective 3. The model interpreter framework provides extension mecha-
nisms sufficient to accommodate domain-specific interpretation. The inclusion of
extension mechanisms within an interpreter framework is the crucial feature that
allows them to be applied to domain-specific models. Extension points are created
through the use of design patterns such as Template Method, Strategy, and Functor
[Fayad 1997]. These patterns allow domain-specific logic to be inserted into the inter-
preter framework at points of variability. Of course, the interpreter framework designer
cannot predict every possible variability point. The choice of whether to include an
extension mechanism at a potential point of variability is a design trade-off between
flexibility and usability; that is, the inclusion of additional variability points makes the
framework more widely applicable, but also increases the burden on a software archi-
tect utilizing the framework in a domain-specific context.

5 The XTEAM Toolchain

In this section, we describe in detail the design of an abstract component technology
and model interpreter framework we implemented as part of the eXtensible Toolchain
for Evaluation of Architectural Models (XTEAM) [Edwards 2007]. XTEAM is an
environment that leverages the MDE paradigm to provide a reusable infrastructure for
realizing domain-specific architectural analyses. XTEAM allows an architect to ana-
lyze architectural models through a model interpreter framework that maps component
models to executable simulations. Furthermore, XTEAM incorporates mechanisms to
accommodate domain-specific extensibility at both the modeling and analysis phases
of the architectural evaluation process. A high-level view of XTEAM is shown in Fig-
ure 3.

GME Metamodeling GME Domain Specific XTEAM Model adevs
Environment Modeling Environment Interpreter Simulation
GME Framework Engine

Metamodeling XTEAM ACT

ol
Paradigm
XTEAM ACT XTEAM
Architecture |

Metamodel

XTEAM
Simulation Application
Generators Simulations

Scenario-
driven
Analysis

Energy
Consumptiol
Analysis

End-to-end
Latency
Analysis

Reliability
Analysis

Figure 3:The eXtensible Toolchain for Evaluation of Architectural Models.

An architect takes advantage of the extensibility in XTEAM in the following way.
First, the ACT is enhanced to include attributes and elements that capture the parame-
ters of a relevant analytic theory. XTEAM currently implements modeling extensions

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

1195

for energy consumption [Seo 2006], reliability [Roshandel 2006], latency [Woodside
2002], and memory usage analyses as examples. The architect then utilizes the exten-
sion mechanisms built into the MIF in such a way as to generate simulations that mea-
sure, analyze, and record the properties of interest. This has been accomplished for the
four analyses listed above to demonstrate the capability.

5.1 The XTEAM Abstract Component Technology

Using the Generic Modeling Environment (GME) [see GME], we created an abstract
component technology by composing the elements of the xADL Structures and Types
ADL [Dashofy 2002] and the Finite State Processes (FSP) ADL [Magee 1999]. GME
uses this ACT to create a modeling environment in which architectural models that
conform to the ACT can be created. The XTEAM environment allows an architect to
extend the ACT by defining new elements, attributes, and constraints that (1) tailor the
model to a specific component technology, such as the OSGi platform or CORBA
Component Model (CCM) and (2) allow the inclusion of the parameters required by an
analytic theory.

For illustration, a partial view of the metamodel for the XTEAM ACT is shown in
Figure 4, along with a set of analysis and platform ACT extensions. ACT elements are
tagged with the stereotype <<ACTElement>>. Analysis and platform extensions are
defined according to the process outlined in Section 3.2, and are tagged as <<Analyti-
cInterface>> or <<PlatformExtension>>, respectively. The PowerAnalyzable analytic
interface captures system parameters related to power consumption, as defined by a
published power consumption analysis technique [Seo 2006]. These parameters are
defined as equations that describe distributions of values and include other system
variables, such as the size of data objects being exchanged. (Note that the full set of
power consumption parameters is not shown in Figure 4.) The PrismComponent plat-

PowerAnalyzable
<<Analyticlnterface>>

Architecture
<<ACTElement>>

the “Interface” ACT element
as defined under the power
consumption ACT extension.

interfaceType
description constantEnergyConsumption
proportionalEnergyConsumption
% enumeratedEnergyConsumption

The analytic parameters for 7

PrismArchitecture Zr
<<PlatformExtension>>

Interface
<<ACTElement>>

architecturalStyle

‘ The ACT element representing ﬁ

¢~ description ‘ component interfaces.
Group Component direction
<<ACTElement>> k>~ | <<ACTElement>> zf
description description ™ -
escriptio d - The platform-specific realizations
PrismPort « "
<<PlatformExtension>> of the “Interface” ACT element
as defined under the Prism-MW
PrismScaffold - middleware ACT extension.
<<PlatformExtension>> PnsmCompone_nl
<<PlatformExtension>>
scheduler Ny -
di componentStyle PrismExtensiblePort
ispatcher .
<<PlatformExtension>>
distribution

bufferSize
hostName
portNumber

Figure 4:A small subset of the metamodel of the XTEAM abstract component
technology (along with a set of analysis and platform extensions).

1196 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

form extension models the capabilities and constraints of components that run on the
Prism-MW middleware platform [Malek 2005]. For example, Prism-MW components
can be tagged with a role within a given architectural style; Prism-MW then automati-
cally ensures that the component obeys stylistic constraints associated with that role.
This capability is captured by the componentStyle attribute.

The combination of xADL and FSP in the XTEAM ACT allowed us to create exe-
cutable architectural representations. Models conformant to the XTEAM ACT contain
sufficient information to implement a semantic mapping into low-level simulation
constructs that can be executed by an off-the-shelf discrete event simulation engine
[Schriber 2005]. This semantic mapping is implemented by our model interpreter
framework.

5.2 The XTEAM Model Interpreter Framework

XTEAM implements a model interpreter framework that maps the ACT to an analysis
model — a discrete event simulation — and implements appropriate extension mecha-
nisms. When invoked by an architect, the XTEAM MIF traverses the architectural
model, building up a discrete event simulation model in the process. The MIF maps
components and connectors to discrete event constructs, such as atomic models and
static digraphs. The FSP-based behavioral specifications are translated into the state
transition functions employed by the discrete event simulation engine. The MIF also
creates discrete event entities that represent various system resources, such as threads.

The interpreter framework employs the Strategy pattern [Gamma 1995] to enable
an architect to implement domain-specific extensions, as depicted in Figure 5. The
Strategy pattern allows a set of related algorithms to be transparently interchanged
within different contexts. The different algorithms are abstracted by a common inter-
face. In XTEAM, a MIF extension is implemented as a Strategy. Each Strategy gener-
ates code that encapsulates logic to realize a particular analytic theory. For example,
the logic may implement equations that calculate quality attribute metrics based on the
parameters defined in the model and equations defined by the theory. The inputs
required by a given analytic theory must be determined by the implementer of a MIF

on_task_end()

e H ! Strategy !
| Context I | E— |
| | " XTEAM_Simulation_Generator I
| XTEAM_Interpreter_Framework : | [on_input() |
1] | T lon_cutput() |
I 1, | [|on_task_begin() I
I 1 I

I I

I I

XTEAM_Latency_ Sim_Generator KTEAM_Memory_Sim_Generator Concrete
Strategies

KTEAM_Enemy_Sirn_Generator] XTEAM_Reliability_Sim_Generator

Figure 5:High-level design of the XTEAM model
interpreter framework.

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1197

extension and extracted from the model using the APIs provided by the modeling envi-
ronment. The algorithms encapsulated by a Strategy are invoked at specific times dur-
ing the interpretation process, such that the code generated by those algorithms will be
invoked when various events occur during an actual simulation run. These events
include a component receiving or sending data, invoking an interface, initiating or
completing a task, etc.

To illustrate the process used by an architect to realize a given analysis using an
interpreter framework, we now describe the implementation of the XTEAM energy
consumption simulator. The energy consumption estimation technique described in
[Seo 2006] provides a mechanism for estimating software energy consumption at the
level of software architecture. The estimation technique provides equations that enable
the calculation of energy costs based on a number of parameters, including data sizes
and values, characteristics of the hardware hosts, and network bandwidth. Energy is
used by the system whenever either (1) data is transmitted over the network or (2) the
software is required to perform computation. Consequently, the equations defined by
the energy consumption estimation technique were inserted into the Strategy methods
corresponding to the sending and receiving of data and the invocation of an interface.
The equations calculate the energy cost of a given data transmission or computation
based on the parameters defined in the model, and record these values for later exami-
nation by architects. The implementation of the other XTEAM simulation generators
follows the same approach.

6 Evaluation

This section evaluates the approach described in this paper in two ways. We begin with
a discussion of the utility of using an abstract component technology and model inter-
preter framework, in terms of the savings in effort experienced by software architects
adopting the approach. Next, we evaluate our implementation of the approach quanti-
tatively in the context of a specific case study.

6.1 Utility

The ultimate savings in time and effort achieved through the use of our methodology is
dependent on the ACT and MIFs being utilized. The design of both ACTs and MIFs
involves an important trade-off between flexibility and usability. An ACT or MIF that
defines more completely a language or transformation provides more off-the-shelf
capabilities, reducing the burden on software architects, but also has less potential for
customization. An ACT or MIF that leaves more of the language or transformation
undefined provides fewer off-the-shelf capabilities, but is highly customizable. There-
fore, ACTs and MIFs can be viewed as existing on a spectrum, from those that imple-
ment a nearly complete language or transformation to those that provide only a starting
point for implementing a language or transformation. The savings in effort perceived
by architects depends on where the ACT and MIF in question lie on this spectrum.
Our experiences with XTEAM provide some indication of how much effort is
saved through the use of an ACT and MIF. The XTEAM ACT and MIF lie somewhere

1198 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

in the middle of the spectrum described above. The ACT provides a high degree of
flexibility in terms of its structural elements (i.e., the xADL portion of the metamodel),
but the behavioral representations (i.e., the FSP portion of the metamodel) are more
brittle. Similarly, the MIF provides good flexibility in terms of what and how run-time
properties are monitored, but less flexibility in the semantics of event queuing and pro-
cessing (these portions of the MIF can be customized, but with greater effort). The
core transformation logic of the XTEAM MIF constitutes approximately 7000 SLOC,
while the latency, reliability, memory usage, and power consumption extensions are
implemented in only 325, 800, 300, and 350 SLOC, respectively. This indicates that
the implementation size of the transformation logic captured in the MIF is an order of
magnitude greater than the implementation size of the logic that must be written by
individual software architects.

We do not possess concrete data regarding the amount of resources that organiza-
tions adopting the MDE approach are forced to invest in language and interpreter
development, so it is difficult to highlight our arguments with exact numbers. How-
ever, the overall resources invested in modeling efforts using domain-specific lan-
guages on large-scale development programs are substantial. Furthermore, it is
apparent that language and interpreter development constitute a significant portion of
the work required to implement MDE. Therefore, we argue that it is reasonable to con-
clude that any approach that simplifies this challenge would result in substantial sav-
ings for organizations utilizing MDE.

6.2 Case Study

This section describes how XTEAM was utilized to provide a key quality attribute
analysis that ultimately guided the choice of architectural style for a given application.
Furthermore, this section compares the predictions of system properties made by
XTEAM with measured values taken from the executing system. In our experiments,
XTEAM simulations were shown to produce predicted values for system energy con-
sumption that fell within 10% of the observed values, and guided the software archi-
tects to the correct choice of architectural style. This result illustrates the utility of
XTEAM in making fundamental architectural decisions early in the development
cycle.

6.2.1 Application Scenarios

To illustrate the importance of quality attribute analysis, consider the MIDAS family
of sensor network applications [Malek 2007]. An instance of MIDAS consists of sen-
sors, gateways, hubs, and PDAS. Sensor nodes collect data about the environment and
transmit that data to gateways over wireless links. Gateways manage groups of sen-
sors, aggregate and fuse sensor data, and forward the fused data to hubs. Hubs analyze
fused sensor data, generate visualizations of the data, and provide a user interface for
configuring and managing the system. PDAs provide mobile access to the data visual-
izations and system management capabilities. The distributed software system, which
is described and analyzed in this section, is implemented on top of a lightweight, com-
ponent-based middleware platform, called Prism-MW [Malek 2005], which enables

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1199

architecture-based development of distributed applications in embedded and pervasive
environments.

The MIDAS system is subject to a number of quality attribute requirements. For
this evaluation, we analyzed an instance of MIDAS that provides building monitoring
services, such as intrusion and fire detection. In this scenario, the MIDAS hardware
devices are not connected to a continuous power supply, but instead run on battery
power. Therefore, the system’s efficiency with respect to energy consumption has a
critical impact on the longevity of the system services.

One of the most influential factors in the system’s overall energy consumption is
the cost of sending and receiving data over the wireless network. As a result, the type
and frequency of interactions between software components has a major impact on the
system’s energy usage. Component interactions are, in turn, governed to a large extent
by the choice of an architectural style. It was crucial, therefore, that the MIDAS sys-
tem employ an energy efficient architectural style, while still fulfilling numerous other
functional and non-functional requirements. Based on the system requirements as a
whole, two candidate architectural styles, client-server and publish-subscribe, were
selected. Two models of the MIDAS security application — each using one of the can-
didate styles — were then created in XTEAM and compared with respect to energy
consumption.

6.2.2 Modeling and Analysis

Figure 6 shows the same subset of MIDAS designed using the two styles. The Fire-
AlarmReceiver and IntrusionAlarmReceiver components deployed on the gateways
translate, aggregate and fuse alarm events received from the sensors periodically, and
propagate them to the components deployed on the hub. The Analyzer components
deployed on the hub analyze the alarm data and determine whether there is actually a
fire or intrusion. If the FireAlarmAnalyzer or IntrusionAlarmAnlyzer component con-
cludes that there is a fire or intrusion, it transmits a sensor activation message to the
appropriate Receiver component, which in turn sends an activation signal to all the
Sensors.

Fire Intrusion Fire Intrusion

Alarm Alarm

Alarm Alarm Alarm Alarm
Logger

Analyzer Analyzer Analyzer Logger Analyzer

Client- Client Client- Publish-Subscribe
Connector Connector Connector Connector

Pub-Sub
Connector

Pub-Sub
Connector

Client-Server Client-Server
Connector Connector

Intrusion
Alarm
Receiver

Fire Intrusion Fire
Alarm Alarm

Receiver Receiver

Alarm
Receiver

Gateway 1 Gateway 2 Gateway 1 Gateway 2

Figure 6:A subset of MIDAS designed in client-server (left)
and publish-subscribe (right) styles.

1200 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

For the client-server architecture, we modeled the behavior of client-server con-
nectors based on a request-response protocol. Client-server connectors are frequently
implemented as middleware stubs and skeletons. The behavior of the application com-
ponents was also modeled according to the above scenario: the Receiver components
act as clients and invoke interfaces on the Analyzer and Logger components via their
local client-server connectors. The client-server connector on a gateway then transmits
a request event (from its local Receiver component) to the Analyzer and Logger com-
ponents separately, which indicates that each request requires two transmissions on
each gateway.

For the publish-subscribe architecture, we modeled the behavior of connectors
based on a typical publish-subscribe interaction protocol. For example, the FireAlar-
mAnalyzer sends a message to the connector that requests a subscription to fire alarm
events. When a component, such as FireAlarmReceiver, publishes a fire alarm event,
the connector routes the event to each subscribed component. The behavior model of
each component is essentially the same as that in the client-server architecture, except
that components publish and subscribe to events. For instance, the FireAlarmAnalyzer
has the same behavior for processing fire alarm events as in the client-server architec-
ture, but includes additional logic that transmits event subscription requests to the pub-
lish-subscribe connector. In this architecture, the publish-subscribe connector can
optimize the transmission of events based on the location of publishers and subscribers
(as is done in the publish-subscribe service implementations of widely-used middle-
ware platforms [Edwards 2004]). Therefore, compared with the client-server architec-
ture, the publish-subscribe architecture may require fewer events to be sent over the
wireless network, but incurs the additional overhead of managing lists of publishers
and subscribers.

XTEAM requires the following host-specific energy costs to analyze the above
two architectural styles with respect to their energy costs:

1. The communication energy cost on each host due to transmitting and receiv-
ing data over the network. Previous research [Feeney 2001] has shown that
the energy consumption of wireless communication is directly proportional to
the size of transmitted and received data and can be expressed as a linear
equation with the size of data exchanged. Our energy estimation tool [Seo
2006] details the steps for determining the communication energy cost on a
specific hardware platform.

2. The energy consumption on each host due to processing a subscription and
retrieving a set of subscribers for a published event. These energy costs can
be determined by leveraging the measurement setup described in [Seo 2006].

Note that we do not need to consider the computational energy cost of most com-
ponent event processing (e.g., the energy consumption of the FireAlarmAnalyzer due
to processing a fire alarm) in comparing the energy costs of the candidate architectural
styles because this cost is the same for both styles.

Once the architectural model was parameterized with the above information, the
XTEAM energy consumption simulation generator was invoked. XTEAM allows sim-

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1201

ulations to include various stochastic behaviors, such as the frequency of client
requests, the probability of cache misses, or the sizes and values of data. In this case,
the timing and size of events was determined stochastically, and four different average
rates of event transmission were simulated. The results of the energy consumption
simulation are shown in Figure 7. The XTEAM analysis predicted that utilizing the
publish-subscribe style would result in significant energy savings. The next subsection
describes how we verified the correctness of this result.

m Client-S erver - Measured m Client-S erver - Estimated

P ublish-S ubscribe - Measured P ublish-S ubscribe - E stimated

200000

= 160000%

£ 120000

; 80000 II

¢ 40000

g ﬂ-— "I | |
0.4 0.8 1.4 2 3

Frequency (times/sec)

Figure 7:Comparison of the energy consumption of MIDAS using
the client-server and publish-subscribe styles.

6.2.3 Verification

In order to determine the accuracy of the energy consumption estimates made by
XTEAM, we need to know the actual energy consumption of the distributed software
system. To this end, we used a digital multimeter and the experimental setup described
in [Seo 2006]. The MIDAS application discussed in Section 6.2.1 was implemented
using both the client-server and publish-subscribe styles on top of Prism-MW. We used
the same average frequencies and sizes of alarm events as those simulated in XTEAM,
measured the energy consumption on each host, and finally calculated the software
system’s overall energy consumption by summing up the three hosts’ energy costs.

For each candidate style, we compared the actual overall energy consumption with
the energy consumption estimates generated by XTEAM for different rates of event
transmission. As shown in Figure 7, the predicted energy consumption fell within 10%
of the measured energy consumption in all the scenarios analyzed. In addition, the
publish-subscribe style was determined to be much more energy-efficient for this sce-
nario because (1) the publish-subscribe style requires fewer events to be sent over the
wireless network and (2) the energy savings obtained by the reduced data exchange
over the network exceeds the energy overhead due to processing subscription requests
and retrieving the set of subscribers for each published event.

This result demonstrates that although the architectural models cannot be parame-
terized with perfect accuracy — especially when XTEAM is being applied early in the
architectural development process — the predictions provided by XTEAM are accu-

1202 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

rate enough to enable architects to successfully determine trade-offs between relatively
course-grained design alternatives, such as the choice of architectural style.

6.3 Limitations

Although the experiment described above establishes both the quality and utility of
XTEAM predictions of quality attributes, there are several limitations to the applica-
bility of XTEAM’s discrete event simulation MIF. First, XTEAM’s model interpreter
framework relies on the ability to measure and quantify a given system property. Prop-
erties that are difficult or impossible to quantify, such as usability [Folmer 2004], can-
not be predicted using XTEAM’s discrete event simulation-based analysis. Second, the
properties of a component assembly must be derivable from a composition of (1) the
properties of individual components, (2) the overall software architecture, and (3) the
system’s usage profile. For example, properties that depend on the environment in
which the system is used are not amenable to analysis in XTEAM. An example of such
a property is security [Crnkovic 2005], which is heavily impacted by characteristics of
the computing infrastructure (e.g., network and operating system) and external, human
factors. While these types of concerns can be added to XTEAM’s modeling language
through metamodel extensions, XTEAM’s focus is on software architecture, and con-
sequently the corresponding extensions to the model interpreter framework would
likely require significant effort. Finally, XTEAM’s MIF is intended to predict system
run-time properties rather than lifecycle properties related to construction activities.
For example, the maintainability of a system is derivable from its software architecture
[Lassing 2002], but is not compatible with XTEAM’s dynamic analysis. However,
these types of analyses can be supported via additional MIFs.

7 Related Work

This section establishes the broader context in which our work resides. First, we dis-
cuss a conceptual framework that provides a basis for the ideas discussed in this paper.
Second, we describe a representative approach to modeling and analysis component-
based architectures.

7.1 Prediction-Enabled Component Technology

Predication-Enabled Component Technology (PECT) is a proposed framework for the
integration of component technologies and analysis technologies [Hissam 2002]. A
PECT can be used to determine the emergent properties of a highly complex assembly
of software components when certain characteristics of the individual components can
be certified. PECT relies on component design tools and run-time environments to
enforce the assumptions required by each analysis technique applied to the system.

A PECT instance includes a construction framework and one or more reasoning
frameworks [Wallnau 2003]. The construction framework constitutes the design and
implementation facilities, such as modeling environments and code generators, that are
used to develop a component-based system. The construction framework relies on an
abstract component technology to represent component models and run-time plat-

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1203

forms. The ACT can be either explicitly defined, e.g., by a component metamodel, or
implicitly defined via the capabilities of and constraints on components developed
using the construction framework. Software architecture and design models, or con-
structive models, that conform to the ACT are created in the construction framework.
A reasoning framework, on the other hand, constitutes the analysis facilities to be
applied to the system. A reasoning framework applies system analysis techniques, or
property theories, through the use of an analysis environment. Discrete event simula-
tors and fault-tree analysis tools are examples of analysis environments. Interpreta-
tions transform constructive models into analysis models. Component characteristics,
which constitute the parameters of property theories, are codified in a component’s
analytic interface. This interface is leveraged by the reasoning framework to apply a
system-wide analysis of quality attributes.

Construction Framework Reasoning Framework
Property
:\- il.‘- Theory
Defines
Cgrlz\ztgicetnt Conforms Constructive '/}m Analysis
Q)
Technology 4 Models Models
| Implements
M (‘:I | F F Analysis
o*e ° Environment
Analytic Theory
Component Interfaces Parameters
Technology
Development
Component Platform /
Model Run-time
Environment

Figure 8:High-level view of the elements of prediction-enabled
component technology (PECT).

PECT leverages many of the core concepts of MDE within the context of compo-
nent-based systems to support analysis of the quality attributes of large-scale compo-
nent assemblies. PECT establishes a clear and intuitive way of organizing and relating
the salient elements and features of component technologies and analysis technologies,
and outlines a strategy for integrating component models and analysis models that
leverages their complementary characteristics. For these reasons, we believe PECT
provides a useful conceptual framework for additional research in the modeling and
analysis of component-based systems. However, PECT does not address the funda-
mental challenge described in Section 2; that is, it does not help a software architect
discover and realize any particular domain-specific model interpretation.

1204 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

7.2 CALM and Cadena

Cadena is an extensible environment for the modeling and development of compo-
nent-based architectures [Childs 2006]. The Cadena Architecture Language with
Metamodeling (CALM) supports the specification of platform- and domain-specific
component models, which are leveraged by Cadena to provide automated enforcement
of architectural constraints. In this way, CALM and Cadena provide a modeling envi-
ronment that can be readily integrated with a wide variety of component technologies.

CALM is based on a three-tiered typing system. At the style tier, an architect
defines the kinds of components, connectors, and interfaces that exist within a particu-
lar component model or architectural style. The style tier is essentially a metamodeling
layer that defines a language of architectural constructs. At the module tier, the compo-
nent and interface types that may exist within a specific application architecture are
declared. Finally, at the scenario tier, component types are instantiated into a particular
configuration or assembly. At each tier, Cadena automatically enforces the constraints
imposed by the type system defined at the tier above.

The modeling capabilities of CALM and Cadena provide a powerful and intuitive
mechanism for creating application architectures that conform to domain-specific
component models. Cadena also provides an integrated model-checking infrastructure,
Bogor, which enables automatic verification of the logical properties of a system, such
as event sequencing. However, Cadena provides little support for the implementation
of additional, domain-specific types of quality attribute analysis.

7.3 xADL and ArchStudio

ArchStudio is a software architecture development environment based on the xADL
architecture description language. XADL is designed to be highly extensible, and is
defined by modular XML schemas; a “core” schema specifies basic architectural struc-
tures and types, while “extension” schemas specify new modeling elements as needed.
Extension schemas can define the syntax of domain- or platform-specific constructs.
ArchStudio includes a number of tools that support the creation, manipulation, and uti-
lization of models that conform to xADL schemas. For example, ArchStudio includes
the ArchLight analysis framework, which allows model checkers to be applied to
XADL models.

XADL represents a promising step towards supporting the creation of domain-spe-
cific architectural languages. However, XADL schemas only define the syntax of mod-
eling constructs, and do not provide any mechanism for specifying the semantics of
domain concepts. Consequently, the ArchStudio toolset consists of parsers and other
syntactic tools that are semantically unaware. For example, ArchLight provides an
interface for extracting model data in XML format, and an interface for reporting anal-
ysis results within a graphical interface, but provides no support for any semantic
transformation that must be implemented to convert xADL models into the input
expected by off-the-shelf analysis engines. Instead, XADL requires architects to
develop, from scratch and without guidance, “wrappers” (a.k.a., model interpreters)
that perform the transformation. Therefore, XADL does not address the challenge
described in Section 2.

Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ... 1205

8 Conclusions

This paper presented a methodology for the construction of analytic frameworks that
enable the prediction of the quality attributes of component-based systems. Such
frameworks allow the rapid construction of model interpreters, which is one of the
most complex and difficult activities in the model-driven engineering paradigm. In
order to achieve this result, model interpreter frameworks must make several impor-
tant assumptions about the models to which they are applied, and they must fulfill a set
of design requirements. This paper also demonstrated the process of constructing, uti-
lizing, and validating a model interpreter framework using a case study.

Our ongoing work in this area is two-fold. First, we are constructing additional
interpreter frameworks and integrating them into the XTEAM environment, in order to
more clearly define the scope of applicability of the approach described in this paper.
For example, we hope to identify a small set of analysis models for which interpreter
frameworks can be constructed that will provide broad coverage of the analysis tech-
niques present in the software architecture literature. Second, we are continuing to
apply the current XTEAM interpreter framework in several R&D contexts. For exam-
ple, we are utilizing XTEAM for the continuing development of the MIDAS family of
applications and conducting a rigorous analysis of the impact of styles on quality attri-
butes.

Acknowledgements

This material is based upon work sponsored by Bosch and the NSF under Grant number ITR-
0312780. Any opinions, findings, and conclusions expressed in this paper are those of the
authors and do not necessarily reflect the views of the NSF.

References

[Boehm 1981] Boehm, B.: Software Engineering Economics, Prentice-Hall, 1981.

[CCM] The Corba Component Model. http://www.omg.org/

[Childs 2006] Childs, A., et al.. CALM and Cadena: Metamodeling for Component-Based Prod-
uct-Line Development. IEEE Computer, 2006.

[Crnkovic 2005] Crnkovic, 1., et al.: Concerning Predictability in Dependable Component-
Based Systems: Classification of Quality Attributes. Architecting Dependable Systems IlI,
Springer, LNCS 3549, Editor(s): R. de Lemos et al., pp. 257-278, 2005.

[Dashofy 2002] Dashofy, E., et al.: An Infrastructure for the Rapid Development of XML-based
Architecture Description Languages. Proc. of the 24th International Conference on Software
Engineering, pp. 266 - 276, 2002.

[Edwards 2004] Edwards, G., Schmidt, D.C., Gokhale, A., Natarajan, B.: Integrating Publisher/
Subscriber Services in Component Middleware for Distributed Real-time and Embedded Sys-
tems. Proc. of the 42nd Annual ACM Southeast Conference, 2004.

[Edwards 2007] Edwards, G., et al.: Scenario-Driven Dynamic Analysis of Distributed Architec-
tures. Proc. of the Fundamental Approaches to Soft. Eng, 2007.

[Fayad 1997] Fayad, M., Schmidt, D.C.: Object-oriented application frameworks. Communica-
tions of the ACM, pp. 32 - 38, 1997.

1206 Edwards G., Deo C., Medvidovic N.: Model Interpreter Frameworks ...

[Feeney 2001] Feeney, L.M., et. al.: Investigating the Energy Consumption of a Wireless Net-
work Interface in an Ad Hoc Networking Environment. Proc. of IEEE INFOCOM, pp. 1548-
1557, 2001.

[Folmer 2004] Folmer, E., et al.: Software Architecture Analysis of Usability. Proc. of the IFIP
Working Conf. on Eng. for Human-Computer Interaction, pp. 321-339, 2004.

[Gamma 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[GME] The Generic Modeling Environment. http://www.isis.vanderbilt.edu/projects/gme/
[Gokhale 2005] Gokhale, A., et al.: Model-Driven Middleware: A New Paradigm for Deploying
and Provisioning Distributed Real-time and Embedded Applications, Elsevier Journal of the Sci-
ence of Computer Programming: Special Issue on Model Driven Architecture, 2005.

[Hissam 2002] Hissam, S.A., Stafford, J.A., Wallnau K.C.: Packaging Predictable Assembly.
Proc. of the ACM Working Conf. on Component Deployment, pp. 108-124, 2002.

[Hissam 2005] Hissam, S., et al.: Pin Component Technology (V1.0) and Its C Interface. Tech.
Report CMU/SEI-2005-TN-001, Software Eng. Institute, 2005.

[Lassing 2002] Lassing, N., et al.: Experiences with ALMA: Architecture-Level Modifiability
Analysis. Journal of systems and software, Elsevier, pp. 47-57, 2002.

[Ledeczi 2001] Ledeczi, A., et al.: On metamodel composition. Proceedings of the 2001 IEEE
International Conference on Control Applications, pp. 756 - 760, 2001.

[Magee 1999] Magee, J., et al.: Behaviour Analysis of Software Architectures. Proceedings of
the TC2 First Working IFIP Conference on Software Architecture, pp. 35 - 50, 1999.

[Malek 2005] Malek, S., Mikic-Rakic, M., et al.: A Style-Aware Architectural Middleware for
Resource Constrained, Distributed Systems. IEEE Trans. on Soft. Engineering, 2005.

[Malek 2007] Malek, S., Seo, C., et al. Reconceptualizing a Family of Heterogeneous Embedded
Systems via Explicit Architectural Support. Proc. of the 29th International Conference on Soft-
ware Engineering, 2007.

[OSGi] The Open Services Gateway Initiative. http://www.osgi.org/

[Roshandel 2006] Roshandel, R., Banerjee, S., Cheung, L., Medvidovic, M., and Golubchik, L.:
Estimating Software Component Reliability by Leveraging Architectural Models. Proc. of the
28th International Conference on Software Engineering, 2006.

[Schmidt 2006] Schmidt, D.C.: Model-Driven Engineering. IEEE Computer, pp. 41 - 47, 2006.
[Schriber 2005] Schriber, T.J., Brunner, D.T.: Inside Discrete-Event Simulation Software: How
it Works and Why it Matters. Proceedings of the Winter Simulation Conference, 2005.

[Seo 2006] Seo, C., et al.: Energy Consumption Framework for Distributed Java-Based Soft-
ware Systems. Tech. Report USC-CSE-2006-604, Univ. of Southern California, 2006.

[UML] The Unified Modeling Language. http://www.omg.org/spec/UML/1.4

[Wallnau 2003] Wallnau, K.: Volume I11: A Technology for Predictable Assembly from Certifi-
able Components. Tech. Report CMU/SEI-2003-TR-009, Software Eng. Institute, 2003.
[Woodside 2002] Woodside, M.: Tutorial Introduction to Layered Modeling of Software Perfor-
mance. Carleton University, http://sce.carleton.ca/rads.

