
Experimenting the Automated Selection of COTS

Components Based on Cost and System Requirements

Vittorio Cortellessa
(Dipartimento di Informatica
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Abstract: In a component-based development process the selection of components is
an activity that takes place over multiple lifecycle phases that span from requirement
specifications through design to implementation and integration. In different phases,
different assumptions are valid and different granularity of information is available,
which has a consequence that different procedure should be used in the selection pro-
cess and an automated tool support for an optimized component selection would be
very helpful in each phase. In this paper we analyze the assumptions and propose the
selection procedure in the requirements phase. The selection criterion is based on cost
minimization of the whole system while assuring a certain degree of satisfaction of the
system requirements that can be considered before designing the whole architecture.
For the selection and optimization procedure we have adopted the DEER (DEcision
support for componEnt-based softwaRe) framework, previously developed to be used
in the selection process in the design phase. The output of DEER indicates the optimal
combination of single COTS (Commercial-Off-The-Shelf) components and assemblies
of COTS that satisfy the requirements while minimizing costs. In a case study we illus-
trate the selection and optimization procedure and an analysis of the model sensitivity
to changes in the requirements.
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1 Introduction

In a component-based development (CBD) process, one of the crucial and spe-
cific activities is component selection. The component selection is an activity
in which components are assessed in order to estimate appropriateness of their
inclusion into the system. Such a process may result in selecting several candi-
dates or a particular component, or in finding that some desired functionalities
cannot be found in existing components and the functionalities should be im-
plemented in a new component. The component selection is not performed only
in the implementation phase, when a component can be selected to replace the
ones identified in the design phase. If the component selection would be lim-
ited to the implementation phase, then it would be difficult to find pre-existing
components (in particular COTS (Commercial-Off-The-Shelf) components) that
exactly match the software specifications. For this reason, the component selec-
tion is considered earlier in the development process. This activity in practice
starts in the requirements elicitation phase and then is refined along the devel-
opment process [Crnkovic et al. 2005]. The selection process will, however, have
a different character and different goals in different phases.

One of the main objectives that traverses each phase of a development pro-
cess is to select the “best” set of (COTS and in-house) components, but with
slight difference of goals in each phase. In the requirements phase, the goal is
to find appropriate candidates that might be integrated into the system. In the
design and implementation phase, particular components are selected and veri-
fied/tested in isolation and in combination with other (selected) components. A
combination that best fits the goals will be selected. In the maintenance phase,
there will be requirements to replace a particular component (or set of com-
ponents) while keeping other components unchanged. While coming one after
the other the phases of a development process, the developers of the system get
more information about the features required for the system. In all phases, the
choice may have significant consequences on the development costs and the final
product quality. Therefore, the tools that support decisions strictly related to
meet functional and non-functional requirements, while keeping the costs within
a predicted budget, would be very helpful to the software developers’ tasks.

Since a pre-selection of components at the requirements phase, in partic-
ular related to a combination of functional and non-functional requirements,
can sensibly improve the efficiency of the whole process [Gokhale 2004] and de-
crease the development costs, we have developed the DEER (DEcision support
for componEnt-based softwaRe) framework [Cortellessa et al. 2007]. Basing on
an optimization model, DEER helps to check if the requirements that do not
depend only on the architecture of the system [IBM] are satisfied by a COTS
component or an assembly of COTS components. The requirements that do not
depend only on the architecture are the ones for which it is possible to provide a
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first estimation of their satisfaction without the architecture of the system. For
example, it is possible to check if an anti-virus tool is available on the market,
but, as we say in Section 2.1, it is impossible to estimate the reliability of the
whole system without basing on the software architecture. An assembly is meant
to be as a set of COTS components that interact with each other. In fact, in
[Alves et al. 2005] it is claimed that, depending on the complexity of the appli-
cation domain and the scope of available products, it is possible to find different
COTS solutions ranging from a single, large package or several specific packages
that once integrated will provide the desired capabilities. In the COTS selection
activity, it is sometimes necessary to decide whether in-house developed software
has to be maintained or replaced. DEER could support these decisions by re-
placing some COTS components by in-house developed components. Besides, to
develop a component-based system, Open Source Software (OSS) components
could be adopted. DEER could also support the selection of such components
by replacing some COTS components by OSS components. DEER could provide
the optimal combination of single (COTS, OSS and in-house) components and
assemblies of (COTS and/or OSS and/or in-house) components that minimize
the costs of construction of the system while satisfying (to a certain extent) the
functional and non-functional requirements.

This paper extends the work in [Cortellessa et al. 2007] by providing a more
detailed presentation of the DEER framework. In particular, we describe the
DEER structure and the practical usage of the DEER framework by applying it
to an example. We show how it can support the analysis of model sensitivity to
changes in the requirements. Besides, we report the formulation of the optimiza-
tion model that is generated and solved by DEER. We have chosen to adopt
optimization techniques because they resolve some drawbacks of the Analytic
Hierarchy Process (AHP) and the Weighted Scoring Method (WSM) that are
typically used by the component selection approaches (see Section 6).

This paper is organised as follows. Section 2 gives a background about a
component selection process within a product development process. Section 3
provides the formulation of the optimization model that represents the DEER
core. Section 4 introduces the DEER structure and underlying mechanisms. Sec-
tion 5 illustrates the usage of DEER in the development of a mail server. Section
6 introduces related work and discusses the novelty of our contribution. Section
7 presents the conclusions.

2 Background

2.1 Component Selection in a Development Process

Figure 1 shows the component selection process in different phases of a software
lifecycle process (i.e. in requirements, design, implementation and maintenance
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Figure 1: Component-based Waterfall Software product lifecycle.

phase).
Requirements Phase . In the requirements phase, certain components can

be selected as candidates for the integration when they meet certain (typically
functional) requirements. Since the satisfaction of several (functional and non-
functional) requirements depends also on the software architecture, it is obvious
that the final selection takes place in a later phase. However, the selection of
particular candidates can have influence on the design, or it even may lead to
changes and/or refinements of the requirements [Maiden and Ncube 1998]. Also,
a pre-selection of components that comply to a particular architectural style may
have impact onto the whole system architecture. The estimation of the require-
ment fulfillment may be somehow inaccurate in the requirement phase. It may
be necessary to estimate again the satisfaction of all the requirements when the
software architecture will be in place. For example, it is impossible to estimate
the reliability of the whole system without basing on the software architecture
[Trivedi 2001]. However, a pre-selection of components at requirement phase can
sensibly improve the efficiency of the whole process and decrease the development
costs. In fact, this is the phase for which we propose a support for components
selection.

Design Phase . The design phase of component-based systems follows the
same pattern as a design phase of software in general. It starts with a concep-
tual design providing the system overall architecture, and continues with the
detailed design. Architectural components are identified in the system architec-
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ture by taking into account existing components. The selected components are
not necessarily the same components that may have already been considered in
the requirements phase, but they could be other components and assemblies of
the existing components. As in the requirements specification process, the trade-
off between desired properties and feasible design using the existing components
should be analyzed. To achieve this goal, many assumptions should be taken into
consideration. For example, it should be decided the component model(s) to be
used, which will have impact on the architectural framework as well as on certain
system quality properties. The selection process should ensure that appropriate
components are selected with respect to system functional and non-functional
properties. This requires the verification of the component specification, or the
testing of some of the components properties. In addition, it is a well known fact
[Wallnau 2002] that even if isolated components correctly work, an assembly of
them may fail, due to invisible dependencies and relationships, such as shared
data and resources. This implies that assemblies of components should be tested
before they are integrated into the system. These efforts should be taken into
account when estimating the costs of integration of existing components.

Implementation Phase . In the implementation phase the components
should be integrated into the system. The adaptation of components may be
required in order to avoid architectural mismatches (such as incompatible in-
terfaces), or to ensure particular properties. There are several known adapta-
tion techniques, such as parameterized interface, wrappers and adapters. Also,
a selection of the connectors that connect the components could be performed
[Liang and Luqi 2003], for example, connectors could be implemented using the
“Off-The-Shelf” middlewares [Dashofy et al. 1999]. The adaptation effort should
also be considered when estimating the implementation costs.

Maintenance Phase . A component-based system should be maintained
for several reasons [Voas 1998], including frozen functionalities and incompati-
ble upgrades. The former could occur when the vendor of a COTS component
stops supporting the component, for example, if a COTS component need pe-
riodic updates there could exist some problems. The latter could occur when
the vendor of a COTS component updates the component with upgrades that
are incompatible with the own system. The paradigm of the maintenance pro-
cess is similar to the one for the development: find a proper component, test it,
adopt it if necessary, and integrate it into the system. In the work by Vidger et
al. [Vidger and Dean 2000], the activities of the maintenance phase of a COTS-
based system are presented. For example, the component reconfiguration activity
consists in replacing, adding, and deleting components within the system. A cer-
tain component could be deleted or replaced, for example, if the requirements of
the system evolve or if the vendor of the component releases an updated version.
Hence the component selection is a peculiar activity of the maintenance phase
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as well.

2.2 Common steps of a Component Selection Process

As remarked by the work of Mohamed et al. [Mohamed et al. 2007/b], the pro-
cesses of COTS selection have the following common steps that can be iterative
and overlapping.

Step 1 . The evaluation criteria are defined using the stakeholders’ require-
ments and constraints.

Step 2 . The research of COTS components is accomplished.
Step 3 . The identified COTS components are filtered with “must have”

requirements in order to define a short set of most promising components which
are to be evaluated in more detail.

Step 4 . The COTS components identified in the previous step are evaluated.
Step 5 . The output of the previous step is analyzed and the COTS compo-

nent that has the best fitness with the criteria is selected.
DEER supports the fifth step of a process of COTS selection. In fact, upon

getting as input a set of COTS components and assemblies and the system
requirements, it provides a solution that determines the COTS components to
select in order to minimize the costs of construction of the system while satisfying
(to a certain extent) the functional and non-functional requirements.

3 Optimization Model Formulation

In this section we introduce the mathematical formulation of the optimization
model that represents the core of the DEER tool. The solution of this optimiza-
tion model determines COTS components to select in order to minimize the cost
of construction of the system while assuring a certain degree of satisfaction of
the requirements.

3.1 A premise on the requirement satisfaction

In order to quantify the degree of satisfaction of a requirement by a COTS com-
ponent, it is necessary to adopt a methodology of comparison.
In [Alves et al. 2005], using the outlines of the goal-oriented requirements en-
gineering [Lamsweerde 2001] that defines requirements as goals, the authors
present a goal-based approach to match the goals of the system and the fea-
tures of the COTS components. They provide a methodology to derive the oper-
ational goals that represent the requirements for which it is possible to quantify
the degree of satisfaction required. Assuming that an operational goal expresses
a condition over a quality factor, they define the satisfaction function of the
operational goal g with respect to its quality factor q as follows:

1233Cortellessa V., Crnkovic I., Marinelli F., Potena P.: Experimenting ...



Figure 2: Acceptable Interval for the goal g

Satg : M → [0, 1] (1)

where M is the set of values that the quality factor q of g may take. Be-
sides, they quantify how a COTS component satisfies an operational goal in the
following way. Let x be an element of the set M and Satg(x) be the degree
of satisfaction of the goal g whit respect to x. Let C be a COTS component
available in the market. Upon determining the value of the quality factor q of g

in C, represented by Cq, and using the satisfaction function of the goal g, they
define the satisfaction degree that the COTS component C meets with the goal
g as Satg(Cq).

In the following we provide an example of the application of this approach.
Let us assume that we have to develop a system that provides the service

serv. Let g be the goal “The reliability of the service serv should be greater
than or equal to 0.9”. Let us assume that the acceptable interval for the goal
ranges from 0.8 to 0.9 (see Figure 2). Let C be a COTS component that provides
the service serv and let 0.92 be the value of the reliability guaranteed from the
component C. Therefore, the degree of satisfaction that the COTS C meets with
the goal g (i.e. Satg(0.92)) is equal to 1. Then, we can conclude that the COTS
C satisfies completely the goal g.

3.2 The Problem Formulation

Let G = {g1, . . . , gn} be a set of n operational goals, each of which represents
either a functional or a non-functional requirement of the system.

Let C = {C1, . . . , C|C|} be a set of COTS components available on the mar-
ket.

Let A = {A1, . . . , A|A|} be a family of assemblies of COTS components. To
reduce the search space of the model, we assume that each element Aj of A
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is a set consisting of one or more COTS components which satisfy at least a
functional requirement gk of the system.

3.2.1 Model Parameters

Let ci be the purchase cost, typically provided by the vendors, of the i-th COTS
component.

Let c̄j be the cost of the j-th assembly, i.e., the cost of integration and
adaptation needed to build the assembly Aj .

The estimate of the cost c̄j is outside the scope of this paper, however, the
adaptation cost cadapt could be estimated in the following way. Consider the
assembly Aj (1 ≤ j ≤ |A|) and the operational goal gk (1 ≤ k ≤ n). The cost of
adaptation of Aj in order to satisfy gk can be estimated by using the following
expression:

cadapt = max(0, Satgk
− Satjgk

) · Āj (2)

where Satgk
represents the degree of satisfaction required for the goal gk,

Satjgk
represents the satisfaction degree with which the assembly Aj meets the

operational goal gk and Āj is an integer number that depends on the features
of the assembly Aj with respect, for example, to the values of the development
process parameters (e.g. experience and skills of the developing team).

To estimate Satgk
and Satjgk

the approach presented in [Alves et al. 2005]
can be adopted. If an assembly of more COTS components is not available
on the market, its quality attributes can be predicted by combining the ones
of the single components with the features of the architecture of the assem-
bly [Crnkovic and Larsson 2004] (see, for example, the approach presented in
[Yacoub et al. 1999] for estimating the reliability of a component-based system).
To build the architecture of an assembly, it is necessary to make some assump-
tions (e.g. to choose an architectural style) that could be different from the ones
who will be adopted for the architecture of the system. In fact, DEER does not
support the making of the best architectural decisions, but, as we say in Section
1, our framework can check whether the requirements are satisfied by a COTS
component or an assembly of COTS components.

Besides, the cost of adaptation of Aj could be estimated by considering other
factors, such as the cost needed to resolve inconsistencies [Nuseibeh et al. 2001]
between the specifications of the COTS components that belong to Aj .

For solving a mismatch between a requirement and a COTS component or
an assembly of COTS components, different actions are possible. The approach
presented in [Mohamed et al. 2007/a] could be adopted, which supports the res-
olution of mismatches during and after a COTS selection process. It is based on

1235Cortellessa V., Crnkovic I., Marinelli F., Potena P.: Experimenting ...



an optimization model that provides the best set of resolution actions needed to
resolve a set of mismatches.

With regard to the integration cost, the components that belong to an as-
sembly should support the style of interaction of the assembly architecture. If
a COTS component has a different style of interaction, then developers have to
introduce glueware to allow correct interactions.
Yakimovich et al. in [Yakimovich et al. 1999] suggest a procedure for estimat-
ing the integration cost. They list some architectural styles and outline their
features with respect to a set of architectural assumptions. They define a vec-
tor of variables, namely the interaction vector, where each variable represents
a certain assumption. An interaction vector can be associated either to a single
COTS component or to an assembly. To estimate the integration cost they sug-
gest to compare its interaction vector with the interaction vector of the software
architecture.

When in-house and OSS components are considered for the construction of
the system (Section 1), the parameters of the model could be estimated in a
different way. For example, the purchase cost of an in-house instance, as sug-
gested by [Cortellessa et al. 2006], could be intended as the per-day cost of a
software developer. It typically depends on the skills and experience required to
develop the component. There are well-assessed cost/time models to estimate
it (e.g. COCOMO [Boehm 1981]). By contrast, an OSS component is acquired
for free. The adaptation and integration costs of an in-house instance should
be estimated as the cost needed to adapt the in-house components and that
one needed to integrate them with (COTS, OSS and in-house), whereas if the
OSS components are considered as black box, the adaptation and integration
costs could be estimated as the ones of the COTS components, otherwise they
could be estimated by considering other factor, such as the one needed to mod-
ify the source code of the components. In fact, while selecting OSS components,
as remarked in [Di Giacomo 2005], the evaluation criteria based on factors, e.g.
the features of the licence of the component, are often different from the ones
used for the COTS components. In [Di Giacomo 2005] the activities needed to
acquire, integrate and maintain OSS components are discussed by highlighting
their common points and differences with the COTS components.

The relationship between the operational goals and the assemblies is de-
scribed by a matrix SAT (|A| × n), where the element SAT [j, k] is equal to 1 if
the k-th goal is satisfied by the j-th assembly, and 0 otherwise.

For each non-functional requirement, if the satisfaction degree with which an
assembly meets the corresponding goal is greater than or equal to the satisfaction
degree required for that goal then the entry that corresponds to the goal and
the assembly is set to 1.

Since we assume that each element of the assembly set A satisfies at least
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a functional requirement (see Section 3.2), for each row of SAT there exist at
least an entry equal to 1. Clearly, in order to obtain a feasible solution, for each
non-functional requirement there should exist at least an assembly satisfying it,
i.e., for each column of SAT there should exist at least an entry equal to 1.

3.2.2 Model Variables

The variables of our optimization model are:

xi =

⎧⎨
⎩

1 if the i-th COTS components available
on the market is chosen (1 ≤ i ≤ |C|)

0 otherwise

yj =

⎧⎨
⎩

1 if the j-th assembly is
chosen (1 ≤ j ≤ |A|)

0 otherwise

3.2.3 Objective Function and Constraints

The objective function consists in minimizing the total costs, i.e., the sum of the
costs of the selected components and assemblies, under the condition that each
operational goal gk must be satisfied by at least an assembly. We can formulate
the problem as follows:

min
|C|∑
i=1

cixi +
|A|∑
j=1

c̄jyj (3)

|A|∑
j=1

SAT [j, k]yj ≥ 1 ∀k = 1 . . . n

yj ≤ xi ∀j = 1 . . . |A|,∀i : Ci ∈ Aj

xi ∈ {0, 1} ∀i = 1 . . . |C|
yj ∈ {0, 1} ∀j = 1 . . . |A|

Note that the second set of constraints (i.e. yj ≤ xi) is to guarantee that
if an assembly is part of the solution then all COTS components making the
assembly will be part of it too.

It is easy to see that the component selection problem here addressed is NP-
complete since it boils down to a set covering model as soon as purchase costs are
set to zero. Another computational difficulty consists in the fact that in principle
the size of model (3) grows exponentially in the number of COTS components.
From the practical point of view, however, the model can be solved by means of
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Figure 3: The DEER framework and its environment

standard optimization tools within a reasonable computation time since, quite
often in practice, the set A consists of few elements. In those cases where the
computation time becomes too big, heuristic approaches based on algorithms
for set covering (see cap. 6 in [Reeves 1993]) or more general metaheuristic tech-
niques (e.g. the tabu-search algorithm, [Blum and Roli 2003]) can be used for
solving the model.

With regard to the accuracy of the model, the input parameters (i.e. the
cost and satisfaction degree with which the assembly Aj meets the operational
goal gk) may be characterized by a not negligible uncertainty (e.g. a range for
the costs may be available [Kazman 2001]). The propagation of this uncertainty
should be analyzed, but it is outside the scope of this paper. Several meth-
ods to perform this type of analysis can be found, e.g. it has been done in
[Goseva-Popstojanova and Kamavaram 2002] for a reliability model.

4 The DEER Framework

Figure 3 shows the DEER framework within its working environment.
The input of the framework is represented by: (i) a set of operational goals,

each of which representing either a functional or a non-functional requirement
of the system, (ii) a set of COTS components and assemblies.

The DEER framework is made of two components, which are a model builder
and a model solver. The model builder first allows to annotate the non-functional
operational goals with additional data that represent the optimization model pa-
rameters. For each component and/or assembly that satisfies a goal it is possible
to enter the satisfaction degree with which it meets the goal (see Section 3.2).
Then the model builder transforms the annotated model into an optimization
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model in the format accepted by the solver. The model solver processes the op-
timization model received from the builder and produces the results that consist
in the selection of COTS components that minimize the costs of development
of the system while assuring a certain degree of satisfaction of its functional
and non-functional requirements. The optimization model solver that we have
adopted is LINGO [LINGO].

However, metaheuristic techniques [Blum and Roli 2003] can be used when
the model becomes too big. These algorithms do not assure neither the optimality
nor the feasibility (i.e., they could not terminate if no solution exists), but they
are very efficient and permit to find optimal or near-optimal solutions. Note that
another model solver based on metaheuristics can be easily adopted without
essentially changing the overall DEER structure. In fact, only its integration
with the model builder would be affected.

In the DEER framework, the model builder has been integrated with the
model solver using the same technique adopted in [Cortellessa et al. 2006]. Fig-
ure 4 shows the GUI of the model builder. The interface can be partitioned in
4 areas: (i) the operational goal area (upper right side of Figure 4), where the
functional operational goals are shown, and where the non-functional operational
goals can be selected for annotations; (ii) the non-functional operational goals
annotation area, where the model parameters related to them can be entered,
that are: the required satisfaction degree for the selected goal and, for each as-
sembly that satisfies the selected goal, the satisfaction degree with which the
assembly meets it (lower right side of Figure 4); (iii) the COTS annotation area,
where the purchase cost of each COTS component can be entered (upper left
side of Figure 4); (iv) the assembly annotation area, where the model parameters
related to each assembly can be entered (lower left side of Figure 4), that are: its
cost (i.e. the cost of integration and adaptation needed to build the assembly),
the list of COTS components that define the assembly, and the functional and
non-functional operational goals satisfied by the assembly. The four ellipses of
Figure 4, respectively, from the top to the bottom of the figure, highlight: the
button to run the model solver LINGO, the titles of the areas where COTS
components and operational goals parameters can be entered, and the title of
the area where the parameters of the assemblies can be entered.

5 An example: a mail server

In order to show the practical usage of the DEER framework, in this section we
apply it to an example. We have considered the “mail server” example used in
[Alves et al. 2005], and readers interested to the application details that we do
not provide here can refer to [Alves et al. 2005]. Shortly, a bank has to decide if
upgrading the own mail server with a new version, or adopt another mail server.
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Figure 4: The GUI of the DEER framework model builder.

We have assumed that the mail server has to guarantee the functional oper-
ational goals listed in Table 1 (where the x-th goal is denoted as fgx) and the
non-functional operational goals listed in Table 2 (where the x-th goal is denoted
as nfgx).

Table 3 shows a list of available COTS components along with their buying
cost ci (in KiloEuros, KE). Besides, Table 4 shows the list of available assemblies
along with their parameter values. In particular, for each assembly: the second
column represents its cost c̄j (i.e. integration and adaptation cost in KiloEuros,
KE); the third column represents the list of COTS components that define the
assembly; in the fourth column the functional operational goals satisfied by each
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Functional Operational Goal
fg1 Integrated document management
fg2 Provide anti-spam filters
fg3 Provide anti-virus scanning
fg4 Provide voice and video conferencing

Table 1: Mail server: Functional Operational Goals.

Non-Functional Operational Goal
nfg1 The latency for voice and video conferencing should not exceed 150ms
nfg2 The reliability of the anti-virus scanning should be greater than or equal to 0.9

Table 2: Mail server: Non-Functional Operational Goals.

assembly are listed; in the fifth and sixth columns the satisfaction degrees with
which each assembly meets the nfg1 and nfg2 goals, respectively, are reported.

Figures 5 and 6 report the acceptable intervals and the satisfaction functions
(estimated using the results in [Alves et al. 2005]) of the goals nfg1 and nfg2,
respectively.

Given the above set of parameters, we have conducted two experiments that
differ for a functional operational goal.

5.1 First Experiment

In order to show how DEER allows to analyze the cost of construction of the
system while varying the targeted satisfaction degree for each requirement, we
have solved the optimization model for multiple values of the satisfaction degree
required for the nfg1 and nfg2 goals. Figure 7 shows the results where each
bar represents the minimum cost of the whole system for a given value of the
satisfaction degree required for the goal nfg2 and a given value of the satisfaction
degree required for the goal nfg1. Both the former and the latter span from 0.2
to 1.

Table 5 shows some details of this experiment results and it is organized as
follows: each row represents a value of the satisfaction degree of the goal nfg2

(i.e. the satisfaction degree required for the reliability of the anti-virus scanning),
each column represents a value of the satisfaction degree of the goal nfg1 (i.e. the
satisfaction degree required for the latency of the voice and video conferencing).
Each entry (row, column) of the table represents the choice of assemblies that
DEER suggests for that specific optimization model. The choice is represented
as a vector, where each element is the name of an assembly. Beside the vector
of assemblies, the cost of the solution is also reported in each entry.

As expected, for the same value of the satisfaction degree required for the
latency of the voice and video conferencing, the total cost of the application
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COTS Cost
name ci

C1 9
C2 11
C3 1
C4 1
C5 8
C6 6
C7 4
C8 3
C9 2
C10 1

Table 3: Mail server: costs of available COTS components.

Assembly Cost COTS Func. Op. Goal Satnfg1 Satnfg2
name c̄j names names
A1 0 C1, C3 fg1 0 0
A2 0 C2 fg1 0 0
A3 3 C1, C4 fg2 0 0
A4 1 C2, C4 fg2 0 0
A5 0 C2, C5 fg3, fg4 1 1
A6 0 C1, C6 fg3, fg4 0.9 0.9
A7 0 C2, C6 fg3, fg4 0.9 0.9
A8 1 C1, C7 fg3, fg4 1 0.5
A9 1 C2, C7 fg3, fg4 1 0.5
A10 0 C1, C8 fg3, fg4 0.5 0.3
A11 0 C1, C9 fg3, fg4 0.3 0.3
A12 0 C2, C9 fg3, fg4 0.3 0.3
A13 0 C2, C10 fg3, fg4 0.3 0.2

Table 4: Mail server: parameters of the COTS assemblies.

decreases while decreasing the satisfaction degree required for the reliability of
the anti-virus scanning. On the other hand, for the same value of the satisfaction
degree required for the reliability of the anti-virus scanning the total cost almost
always increases (except in two cases) while increasing the satisfaction degree
required for the latency of the voice and video conferencing.

The results in Table 5 highlight, in general, that it is necessary to increase
the cost of the system (i.e. to utilize more expensive assemblies) in order to
better satisfy the system requirements. For example, once fixed the satisfaction
degree of the goal nfg1 to 0.2, DEER suggests different sets of assemblies while
varying the satisfaction degree of the goal nfg2. Nevertheless, in all cases DEER
suggests to adopt the assemblies A2 and A4, both embedding the component C2

that largely satisfies nfg1. The solutions instead vary in terms of the assembly
that is necessary to adopt to satisfy the goal nfg2. While the satisfaction degree
of the goal nfg2 increases, in fact, it is necessary to adopt a more expensive
COTS component that better satisfies nfg2. In fact, if nfg2 is equal to 0.2 then
it is possible to adopt the assembly A13 that contains C10 that is the cheapest
component. If nfg2 is equal to 0.3 then it is necessary to adopt the assembly
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Figure 5: Acceptable interval and satisfaction function of the goal nfg1.

Figure 6: Acceptable interval and satisfaction function of the goal nfg2.

A12 that is more expensive and contains C9, and so on.
Sometimes, the cost of the system does not increase while raising the satis-

faction degree of a requirement. For example, with the satisfaction degree of the
goal nfg2 to 0.5, DEER always suggests the assembly [A2, A4, A9] while varying
the satisfaction degree of the goal nfg1, because the original solution is good
enough to satisfy the latter goal with minimum costs.

5.2 Second Experiment

The second experiment shows how the DEER framework reacts to a typical event
in the software lifecycle, that is, the introduction of an additional requirement.

In this case, we intend to provide an automated support to tackle the problem
of somehow modifying the selection of components in light of an additional re-
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Figure 7: Model solutions for the first experiment.

Satnfg1= 0.2 Satnfg1= 0.5 Satnfg1= 1

Satnfg2= 0.2 [A2, A4, A13] [A1, A3, A10] [A2, A4, A9]

Cost = 14 Cost = 17 Cost = 18

Satnfg2= 0.3 [A2, A4, A12] [A1, A3, A10] [A2, A4, A9]

Cost = 15 Cost = 17 Cost = 18

Satnfg2= 0.5 [A2, A4, A9] [A2, A4, A9] [A2, A4, A9]

Cost = 18 Cost = 18 Cost = 18

Satnfg2= 0.9 [A2, A4, A7] [A2, A4, A7] [A2, A4, A5]

Cost = 19 Cost = 19 Cost = 21

Satnfg2= 1 [A2, A4, A5] [A2, A4, A5] [A2, A4, A5]

Cost = 21 Cost = 21 Cost = 21

Table 5: Solution vectors and solution values for the first experiment.

quirements that might not be satisfied (enough) by the current selection. Let us
assume that we have to add the functional operational goal fg5, that says: “Pro-
vide authentication of users”. Table 6 shows the additional parameters necessary
for this experiment, that are the satisfaction degrees, for all the assemblies, of
the additional operational goal fg5.

Figure 8 represents two histograms of results of this experiment. Each his-
togram is obtained while varying the satisfaction degree required for the relia-
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Assembly Satfg5
name
A1 0
A2 0
A3 0
A4 0
A5 1
A6 0
A7 0
A8 0
A9 0
A10 0
A11 1
A12 1
A13 0

Table 6: Mail server: additional parameters of the assemblies for the second
experiment.

bility of the anti-virus scanning and fixing the one of the latency of the voice
and video conferencing to 0.2. In the first histogram we do not consider the goal
fg5, while in the second histogram we consider it.

As expected, for a given histogram, the cost of the system increases while
increasing the satisfaction degree required for the reliability of the anti-virus
scanning. On the other hand, by fixing a value on the x-axis and observing the
values on the histograms, the cost of the system almost always increases if the
functional operational goal fg5 is considered.

Table 7 illustrates the results of this example and it is organized as follows:
each row represents a value of the satisfaction degree of the goal nfg2 (i.e. the
reliability of the anti-virus scanning); the first column represents the case of
the satisfaction degree of the goal nfg1 (i.e. the latency of the voice and video
conferencing) set to 0.2 and the set of the operational goals without fg5, whereas
the second column represents the same case with the functional goal fg5. Hence,
in each entry (row, column) we represent the choice of assemblies that DEER
suggests for each specific case (i.e. optimization model). The choice is represented
as a vector, where each element is the name of an assembly. Beside the vector
of assemblies, the cost of the solution is also reported in each entry.

Looking at the results of Table 7, we can make the following considerations.
Sometimes, it is necessary to increase the budget allocated for the system con-
struction in order to meet an additional requirement. For example, once fixed
the satisfaction degree of the goals nfg1 and nfg2 to 0.2, DEER suggests the
assemblies [A2, A4, A13] if fg5 is not considered, and the assemblies [A2, A4, A12]
in the other case. In fact, although the former is a cheaper solution, the assembly
A13 does not satisfy the functional operational goal fg5.

In some other cases, instead, DEER reveals that it is not necessary to increase
the cost of the system to meet an additional requirement. For example, if the
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Figure 8: Model solutions for the second experiment.

Satnfg1 = 0.2 without fg5 Satnfg1 = 0.2 with fg5

Satnfg2= 0.2 [A2, A4, A13] [A2, A4, A12]

Cost = 14 Cost = 15

Satnfg2= 0.3 [A2, A4, A12] [A2, A4, A12]

Cost = 15 Cost = 15

Satnfg2= 0.5 [A2, A4, A9] [A2, A4, A9, A12]

Cost = 18 Cost = 20

Satnfg2= 0.9 [A2, A4, A7] [A2, A4, A5]

Cost = 19 Cost = 21

Satnfg2= 1 [A2, A4, A5] [A2, A4, A5]

Cost = 21 Cost = 21

Table 7: Solution vectors and solution values for the second experiment.

satisfaction degree of the goal nfg2 is equal to 0.3, DEER suggests the same
assembly with and without the functional operational goal fg5.

Although the above considerations seem to be intuitive, note that they could
not be quantified without the support of an optimization model like ours.
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6 Related Work

Several interesting approaches have been introduced for supporting the activity
of selection of COTS components (see, for example,[Ncube and Maiden 1999],
[Chung et al. 2004] and [Kotonya and Hutchinson 2004]).

A quite extensive list of these approaches can be found in [Ruhe 2003],
[Mohamed et al. 2007/b] and [Navarrete et al. 2005].
As remarked in [Andrews et al. 2005], some approaches are based on the archi-
tecture of the system, whereas other ones support the selection of COTS given
a set of requirements, so such approaches can be used also in the requirements
phase, in which the component selection activity is related to the definition of
the (functional and non-functional) requirements (see Section 1).

However, all these approaches basically provide guidelines to select the com-
ponents. Only a few of these approaches, some of which are detailed below,
support automation for this task.

In [Grau et al. 2004] the DesCOTS (Description, evaluation and selection of
COTS components) system is presented. DesCOTS is composed by four tools
that collaborate with each other. It is designed for supporting only quality re-
quirements, and the component selection criterion is based on quality models.

In [Krystkowiak et al. 2003] the OPAL tool is presented, which supports the
definition of the requirements and the selection of the COTS components.

Both DesCOTS and OPAL do not consider the possibility that a requirement
can be satisfied by a COTS assembly, whereas we introduce this possibility here.

The DEER framework is based on an optimization model. The optimization
techniques resolve some drawbacks of the Analytic Hierarchy Process (AHP) and
the Weighted Scoring Method (WSM) that are typically used by the component
selection approaches. In fact, “both methods come with serious drawbacks such
as the combinatorial explosion of the number of pair-wise comparisons necessary
when applying the AHP, the need of extensive a priori preference information
such as weights for the WSM, or the highly problematic assumption of linear
utility functions in both cases.”[Neubauer and Stummer 2007]

In [Neubauer and Stummer 2007] it is presented an approach that can be
embedded in a process of COTS selection. They suggest to solve an optimiza-
tion model that, through a multi-objective optimization [Censor 1977], provides
a set of COTS solutions. This so-called Pareto solution of the model is the one
that maximizes a set of objectives (e.g. functionality, usability) under some con-
straints, such as on the resources available (e.g. maintenance cost). Besides, they
suggest how to analyze and explore the space of solutions in order to find the
preferred solution. The approach does not consider the possibility that a require-
ment can be satisfied by a COTS assembly, whereas we introduce this possibility
here.
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Few other experiences have been based on optimization problems to autom-
atize the development of a component-based system. For example, in our previ-
ous work [Cortellessa et al. 2006] an optimization model is generated and solved
within CODER (Cost Optimization under DElivery and Reliability constraints),
a framework that supports “build-or-buy” decisions in selecting components.
Getting as input value the software architecture and the possible scenarios of
the system, CODER suggests the best selection for each component of the sys-
tem, either one of the available COTS products or an in-house developed one.
The selection is based on minimizing the costs of construction of the system un-
der constraints on delivery time and reliability of the whole system. In addition,
for each in-house developed component CODER suggests the amount of testing
to perform in order to achieve the required level of reliability. CODER supports
the selection of (COTS and in-house) component in the design phase, whereas
DEER for the requirements phase. While CODER suggests the best assembly of
components (i.e. the best software architecture), DEER selects a set of COTS
(or assembly of more COTS). Since in the requirements phase the architecture
of the system has not yet been built, DEER does not suggest how to make the
best architectural decisions, whereas it helps to check if the requirements that
do not depend only on the architecture of the system [IBM] are satisfied by a
COTS component or an assembly of more COTS components.

Based on the dynamic monitoring of a system, in [Mikic-Rakic et al. 2004] an
optimization model has been suggested for the best allocation of the components
on the hardware hosts while maximizing the availability of the system under
some constraints, such as the allocation of two components on the same host.

In [Grunske 2006] an optimization model is formulated to allow the best ar-
chitectural decisions, while maximizing the satisfaction of the quality attributes
of the system using multi-objective optimization [Censor 1977] under some con-
straints, such as budget limitations.

In [Mohamed et al. 2007/a] an approach based on an optimization model
supports the resolution of mismatches between system requirements and COTS
components during and after a COTS selection process. The model solution
provides the best set of actions needed to resolve a set of mismatches.

The construction of COTS components and assemblies is outside the scope of
this paper. However the approach presented in [Sjachyn and Beus-Dukic 2006]
could be adopted to identify and classify the components available on the market.
Besides, users need to determine aspects of components, such as functionality,
limitations, pre- and post-conditions in order to decide which component is ap-
propriate [Andrews et al. 2002]. Voas [Voas 1999] suggested an approach involv-
ing black-box testing to determine quality attribute, and interface perturbation
analysis (IPA) and operational system testing to determine the impact of using a
certain component in a system. Sometimes the COTS components do not provide
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a rich documentation that allows to understand their features, especially in rela-
tion to domain requirements. In fact, whereas some requirements (e.g., specific
type of hardware, timing and performance constraints, security) can be found in
product descriptions, the majority is not readily offered by vendors and has to be
specifically requested (e.g., compliance to a domain standard), researched (e.g.,
popularity of a component in a specific domain), or tested (e.g., interoperability
with other COTS) [Beus-Dukic 2000]. In literature there are many approaches
that provide the outlines for defining the specification of a component, but they
do not sufficiently provide the information needed for the selection and the reuse
of components. In [Geisterfer and Ghosh 2006] this problem is faced by analyzing
some possible approaches for component specification while taking into account
the needs of the process of selection and reuse of components. In addition, they
provide some recommendations to address these issues. In order to understand
the features of a COTS component, it can be also adopted a comprehension pro-
cess (e.g. [Andrews et al. 2005], [Ghosh et al. 2005]). A comprehension process
of COTS components provides the outlines for developing the comprehension
model of a component. While for the developers of the system it is difficult to
understand the behavior of the components, at the same time for the end-user it
is difficult to express the requirements. For instance, the non-functional require-
ments imposed on COTS component by end-user organizations are not easy to
elicit and quantify [Beus-Dukic 2000].

The COTS components and the assemblies of COTS available on the market
typically are developed for different domains of application. The knowledge of
the domain of the application (e.g. operating system required) could be used
[Sjachyn and Beus-Dukic 2006] to define filters useful for optimizing their re-
search.
Besides, constraints on the resources available could be very helpful, for exam-
ple, they are used in the approach presented in [Neubauer and Stummer 2007].
To reduce the search space of the model, constraints claiming the compatibil-
ity between components could be also formulated. In fact, the “compatibility
check is useful to reduce the set of candidate components chosen to build a sys-
tem, working as a selection criterion, and eliminating incompatible components”
[Sillitti 2003].

The following major aspects characterize the novelty of our approach with
respect to the existing literature:

– DEER could be adopted to automatize whatever approach supporting the
activity of selection of COTS components (e.g. [Ncube and Maiden 1999],
[Chung et al. 2004], [Kotonya and Hutchinson 2004]). In particular, it could
support the fifth step of a process of COST selection (see Section 2.1).

– DEER is not tied to any particular component-based development process.
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– DEER supports the study of the cost of construction of the system while
adding, replacing and deleting requirements. The solution of the framework
determines the COTS components to select in order to minimize the cost of
construction of the system while assuring the satisfaction of the functional
and non-functional requirements by single COTS or assemblies of COTS
components.

– DEER allows to analyze how the cost of construction of the system varies
while varying the targeted satisfaction degree for each requirement. In fact,
by solving the optimization model with respect to different values of the
satisfaction degree of the non-functional requirements, it is possible to draw
curves that describe this trend (see Section 5.1).

– Sometimes the exact satisfaction degree value with which a COTS com-
ponent or an assembly of COTS meet a non-functional requirement is not
available, whereas it is possible to get a range over which the satisfaction de-
gree value may lie. For example, it may be more feasible to predict the range
over which component reliability may lie for a given cost based on prior ex-
perience rather than predicting the exact reliability value [Gokhale 2007]. If
ranges over which the satisfaction degree with which the COTS component
or the assemblies of COTS meet the requirements are available, DEER helps
to address such a problem. In fact, by solving the optimization model with
respect to different values with which the COTS component or the assem-
blies of COTS meet the requirements, it is possible to analyze the cost of
construction of the system.

– The output of DEER can be an input of the design phase. In fact, the design-
ers of the software architecture, basing on the set of assemblies provided by
the framework, can start designing the non-COTS components of the system
(if any) and, mostly, the necessary gluecode to adapt and assemble them.

7 Conclusions and Future Directions

We have presented DEER, a framework that supports the selection of COTS
components in the requirements phase of a component-based development pro-
cess. The solution of the framework determines the COTS component to select
in order to minimize the cost of construction of the system while assuring the
satisfaction of the requirements, which does not depend only on the architecture
of the system [IBM]. A requirement can be satisfied by a single COTS component
or an assembly of several COTS components. We have applied DEER to an ex-
ample. We have conduced two experiments. The first one showed how accurately
DEER provides support for automated analysis of the cost of construction of the
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system while varying the satisfaction degree targeted for requirements. The sec-
ond one showed how DEER allows to analyze the sensitivity of the cost of the
system upon introducing an additional requirement.

Experiments show that the use of a tool is very helpful to make decisions
during the activity of component selection in the requirements phase. By resolv-
ing the optimization model for different parameters it is possible to analyze the
cost of the system with respect to different scenarios (e.g. different values for the
satisfaction degree targeted for requirements, or introduction of an additional
requirement).

We are investigating several future directions, for example, we intend to en-
hance DEER in order to support the resolution of conflicts between requirements
by assigning priorities to requirements and introducing the risk that considers
the degree of uncertainty associated with the selection of a certain assembly
of COTS components (like in [Mahmood and Lai 2006]). Besides, we intend to
deal with the dependencies that may exist between the requirements. In fact,
a functional requirement could be tied to a set of non-functional requirements.
For example, a mail server (see Section 5) could require an anti-virus with a
certain level of reliability and availability. So, DEER could provide an assembly
of COTS that provide an anti-virus with the required characteristics. Therefore,
the DEER framework could be constrained to suggest the assembly of COTS
that satisfies both the functional and the related non-functional requirements.

As we remarked in Section 1, DEER could be used to decide whether in-house
developed software has to be maintained or replaced by some COTS components.
We plan to enhance DEER in order to better support the possibility to develop
a component in-house by taking into account their typical characteristics. For
example, in DEER we assume the cost of a COTS component as an input value,
whereas for in-house components we intend to introduce a development cost
model (e.g. COCOMO [Boehm 1981]). Also, the cost of a COTS component can
be refined into direct costs, maintenance costs and return of investment, which
can in total decrease the initial cost.

Besides, we intend to refine the cost of an assembly of COTS (i.e. adaptation
and integration cost) by expressing it as a function of the satisfaction degree with
which an assembly satisfies a goal. The rationale behind this direction is that an
adaptation cost very likely depends on how well the acquired COTS satisfies the
requirement(s) for which it has been selected. For example, we want to study the
applicability of the optimization model by introducing the relationship that we
have provided for the adaptation cost (see Section 3.2.1). Since this relationship
makes the model integer non-linear it would be interesting to study its scalability
while adding new COTS components.

With regard to the parameters estimation we also intend to study techniques
for the estimation of the satisfaction factor of a COTS components (e.g. how to
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estimate the reliability of a software component). Following this issue we also
intend to study the sensitivity of the model result with respect to the accuracy
of parameters estimation.

In order to address computation effort problems that may raise, we intend to
investigate the use of metaheuristics techniques [Blum and Roli 2003] for solv-
ing the model (e.g. the tabu search algorithm). Furthermore, we intend to en-
hance DEER by introducing a multi-objective optimization [Censor 1977], as
the approach presented in [Neubauer and Stummer 2007] suggests, to provide
the configuration of components that minimizes, for example, both the cost of
construction of the system and some non-functional requirements of the system.

We also intend to enhance DEER for allowing to specify ranges for model
parameters and to experiment the model and the DEER tool on larger size
systems.

Finally, as a long term goal, we work on the automatization of the process of
selection of (COTS and in-house) components in all the phases of a component-
based development process, as we have discussed in Section 2.1. In particular,
we are designing an integrated tool, based on several optimization models (such
as the ones in CODER, DEER and others), that may assist software designers
during the whole software component lifecycle.
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