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Abstract: Inspired by Fagin’s result that NP = Σ1
1 , we have developed a partial

framework to investigate expressibility inside Σ1
1 so as to have a finer look into NP .

The framework uses interesting combinatorics derived from second-order Ehrenfeucht-
Fräıssé games and the notion of game types. Some of the results that have been proven
within this framework are: (1) for any k, divisibility by k is not expressible by a Σ1

1

sentence where (1.i) each second-order variable has arity at most 2, (1.ii) the first-order
part has at most 2 first-order variables, and (1.iii) the first-order part has quantifier
depth at most 3, (2) adding one more first-order variable makes the same problem
expressible, and (3) inside this last logic the parameter k creates a proper hierarchy
with varying the number of second-order variables.
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1 Introduction

The birth of finite model theory is often identified with Trakhtenbrot’s result
from 1950 stating that logical validity over finite models is not recursively enu-
merable, that is, completeness fails over finite structures [Libkin 2004]. In 1974,
R. Fagin proved his celebrated theorem that NP can be exactly captured by ex-
istential second-order logic [Fagin 1974]. This opened up a new area of research
called descriptive complexity. It is a branch of complexity theory that views the
hardness of problems in terms of the complexity of their logical expressiveness
such as the number of object variables, quantifier depth, type, and alternation,
sentences length (finite/infinite), etc.

Fagin’s result has been generalized in [Stockmeyer 1977] to show that the
whole of the polynomial hierarchy is exactly captured by second-order logic.

Inspired by the above results we have developed a partial framework to inves-
tigate expressibility inside Σ1

1 . Currently this framework encompasses sublogics
of Σ1

1 defined as follows.

Definition 1.1 1. Existential second-order logic, or Σ1
1 , is defined to be the

class of sentences of the form

∃X1 . . . ∃Xlϕ (1.1.1)
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where the Xi’s are second-order relational variables of arbitrary finite arities
and ϕ is a first-order sentence.

2. Let monΣ1
1 be the sublogic of Σ1

1 obtained by restricting the arities of the
Xi’s to be at most 1 (hence the prefix mon).

3. Let binΣ1
1 be the sublogic of Σ1

1 obtained by restricting the arities of the Xi’s
to be at most 2 (hence the prefix bin). Note that any sentence in binΣ1

1 is
equivalent to a sentence of the form

∃R1 . . .∃Rn∃S1 . . .∃Smϕ (1.1.2)

where the Ri’s and the Si’s are binary and unary second-order variables
respectively. For simplicity of discussion we will assume that binΣ1

1 consists
exactly of sentences of the form (1.1.2).

4. Let binΣ1
1(p, r) be the sublogic of binΣ1

1 obtained by restricting ϕ to have
at most p first-order variables and quantifier depth at most r. Define
monΣ1

1(p, r) similarly.

Within this framework we plan to study expressibility of some number-
theoretic properties. In this paper we started by studying divisibility.

Definition 1.2 For every integer k ≥ 2, let DIVk denote the problem of deciding
whether a positive integer is divisible by k. Let DIVk denote the complement
problem, that is non-divisibility by k.

Example 1.3 Consider DIV2 which is the famous EV EN problem. It was
shown that EV EN is not expressible in first-order logic ( e.g., see [Libkin 2004]).
However, EV EN can be expressed by the following binΣ1

1 sentence.

σ
def
= ∃R (ϕ1(R) ∧ ϕ2(R) ∧ ϕ3(R)) (1.3.1)

where

ϕ1(R)
def
= ∀x¬R(x, x)

ϕ2(R)
def
= ∀x∀y (R(x, y)←→ R(y, x))

ϕ3(R)
def
= ∀x∃y (R(x, y) ∧ ∀z (R(x, z) −→ z = y))

Notice that σ defines the class of finite simple graphs with isolated edges (1-
regular graphs). The number of vertices in these graphs must be even.

Notation 1.4 Throughout the remaining part of this paper if the variable k is
occurring free (unquantified) in a result, this indicates that the result holds for
every value of k.
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Assuming the empty vocabulary we will prove the following results:

1. DIVk, DIVk are neither in monΣ1
1 nor in monΠ1

1

2. DIVk �∈ binΣ1
1(1, r) for any r

3. DIVk /∈ binΣ1
1(2, 2) and DIVk /∈ binΣ1

1(2, 3)

4. DIVk ∈ binΣ1
1(3, 3). More specifically, given Γ ⊆ binΣ1

1(3, 3) where every
σ ∈ Γ has at most l binary variables then DIVk ∈ Γ for every k ≤ (4l − 1).
Furthermore, DIVk ∈ Γ for only finitely-many k, hence DIVk creates a
proper hierarchy inside the logic binΣ1

1(3, 3).

5. An immediate consequence of the above is that monΣ1
1 ⊂ binΣ1

1 .

6. DIVk �∈ binΣ1
1 when the sizes of the interpretations of the binary variables

are bounded from above by some linear function of the size of the universe.

The main tool used in this paper to obtain the above results is Ehrenfeucht-
Fräıssé (EF ) games. A particular version of these games characterizes express-
ibility in some corresponding logical formalism. In this paper we extend the
traditional first-order version of the game to a second-order one that matches
our framework. Based on the locality of strategies in first-order games, we define
the notion of game types which is used to characterize the winner in the first-
order phase of the extended game. Hence, no need to actually play it which often
involves complicated combinatorial arguments. Our definition of game types is
inspired by that given in [Koucký et al. 2006]. This latter article uses game types
in a combinatorially involved argument (employing the switching lemma) to give
an EF proof of the fact that PARITY is not in the circuit class AC0. Although
this result had already been known, the motivation was to give an easier proof
using EF games. However, it turned out that their EF argument resembles the
classical one. Their context in general is different from ours (circuit-based vs.
algorithmic-based models of computation).

T. Schwentick [Schwentick 1995] gives a similar definition of game types. In
this article the author focuses on the specific problem of expressibility of graph
connectivity. It represented a contribution towards solving the still open conjec-
ture that graph connectivity is not expressible in monΣ1

1 even in the presence
of arbitrary built-in relations. Game types are defined for the class of Gaifman
graphs of graphs with built-in relations with degree at most no(1). Game types
are then used in a rather simple combinatorial argument to show that graph
connectivity is not expressible in monΣ1

1 even in the presence of such built-in
relations. The main part of his argument is the proof of what he calls the exten-
sion theorem. This theorem allows us to extend, under certain circumstances, a
winning strategy of the duplicator on small local parts of the given structures to
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a global winning strategy. This can be thought of as a sort of homogeneity prop-
erty of the given structures. More elaborate treatment of this work, in particular
the extension theorem and its applications, can be found in [Schwentick 1996].

Inexpressibility of graph connectivity in monΣ1
1 is further investigated in

[Kreidler et al. 1997] and [Kreidler et al. 1998]. In the former monΣ1
1 is enriched

with a built-in relation that has the shape of a forest. The authors show that this
new logic is not powerful enough to capture graph connectivity. Their technique
is based on finding a winning strategy for the duplicator by searching for a vertex
with a large degree in the built-in relation such that sufficiently large number
of its neighbors are game-theoretically indistinguishable (have the same game
types). This stands in contrast to the traditional Hanf’s method which looks
for vertices that have identical game types but lie sufficiently far away from
each other. Both methods in turn stand in contrast to ours which completely
depends on the notion of game types and the ability of the duplicator to choose
the two structures and to color her own in such a way both of them have the
same game type. In [Kreidler et al. 1998], the same authors took more advanced
step by showing the inexpressibility of graph connectivity in monΣ1

1 even in the
presence of a built-in relation of arbitrary degree that does not have the complete
graph Km as a minor for arbitrary but fixed m. However, the argument in this
article is much more combinatorially involved.

Padding techniques are well-known from computational complexity theory.
T. Schwentick [Schwentick 1997] applies the notion of padding to the context of
descriptive complexity, where it can be viewed as a logical resource that adds
expressibility power to the formalism under consideration. A graph H is a padded
version of G if H consists of an isomorphic copy of G and some additional
isolated vertices. The main idea is that these isolated vertices can be used, for
example, in a monΣ1

1 sentence to enumerate the elements of the original graph
(with the help of built-in relations). Unlike our approach which investigates Σ1

1

by getting separation results, hence proper hierarchy of sublogics of Σ1
1 defined

by restricting the arities of the second-order variables, Schwentick uses padding
and built-in relations to reduce Σ1

1 (hence NP ) to monΣ1
1 . The notion of weak

expressibility is defined to denote expressibility in the presence of sufficiently
large padding. His approach implies that to negatively answer the NP = coNP?
question (consequently P = NP?) we need to find a coNP set that is not weakly
expressible inside monΣ1

1 . In other words we need to find a coNP set that is
not expressible in (monΣ1

1 + padding+built-in relations). The article classifies
different variations of monΣ1

1 based on how padding affects the expressibility
power of the underlying logic. Second-order EF games (Ajtai-Fagin games) are
employed in a direct way in this work.

Section 2 gives axiomatization of a type of colored graphs which will be
the main structures throughout the rest of the paper. Section 3 introduces the
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Ehrenfeucht-Fräıssé (EF ) game. We define a specific version called binΣ1
1(p, r)-

game which will be applied to study the expressibility of DIVk in binΣ1
1(p, r). In

Section 4 we prove that DIVk and its complement are neither in monΣ1
1 nor in

monΠ1
1 . In Section 5, the notion of game types is defined which is a combinatorial

concept based on the locality of first-order logic, it is used to provide necessary
and sufficient conditions for winning EF -games without actually playing them.
In Sections 6 through 9 we prove the other expressibility results mentioned above.
Section 10 concludes the paper with some insights for future work.

2 Colored Graphs

We study expressibility by sentences of the following form

∃R1 . . .∃Rn′∃S1 . . . ∃Sm′ϕ (2.0.1)

where the Ri’s and Si’s are binary and unary second-order variables respectively
and ϕ is a first-order sentence whose vocabulary is exactly the Ri’s and the Si’s.

Such sentences will be modeled by first-order structures of the following form

G′ = (V, U1, . . . , Um′ , E1, . . . , En′)

V is a finite set of vertices. The Ui’s are unary relations over V , these represent
the interpretations of the Si’s in (2.0.1). The Ei’s are binary relations over V

which represent the interpretations of the Ri’s. Consider a vertex u ∈ V . For
each j = 1, . . . , m′, either u ∈ Uj or u �∈ Uj . Hence, there are a total of m = 2m′

different membership possibilities of u in all of the U ′
js. Similarly, consider a pair

of vertices u, v ∈ V . For each k = 1, . . . , n′, exactly one of the following cases
must hold: (1) (u, v) ∈ Ek and (v, u) �∈ Ek, (2) (u, v) �∈ Ek and (v, u) ∈ Ek, (3)
(u, v) ∈ Ek and (v, u) ∈ Ek, and (4) (u, v) �∈ Ek and (v, u) �∈ Ek. Hence, there
are a total of n = 4n′

different membership possibilities of the pair u, v in all of
the E′

ks. It is simpler then to rethink of the structure G′ as a graph G where
the vertices are m-colored and the edges are n-colored. We denote this graph

G = (V, C1, . . . , Cm, D1, . . . , Dn) (2.0.2)

where G is a complete undirected graph, each vertex has a self-edge, each Ci is
a unary relation (for a vertex color), and each Di is a binary relation (for an
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edge color). G must satisfy the following axioms:

∀u
∨

1≤i≤m

Ci(u)

∀u(Ci(u) −→
∧

1≤j≤m,j �=i

¬Cj(u)), for every 1 ≤ i ≤ m

∀u
∨

1≤i≤n

Di(u, u)

∀u(Di(u, u) −→
∧

1≤j≤n,j �=i

¬Dj(u, u)), for every 1 ≤ i ≤ n

∀u∀v
∧

1≤i≤n

(Di(u, v)←→ Di(v, u))

∀u∀v(u �= v −→
∨

1≤i≤n

Di(u, v))

∀u∀v(u �= v ∧Di(u, v) −→
∧

1≤j≤n,j �=i

¬Dj(u, v)) for every 1 ≤ i ≤ n

The first two axioms indicate that every vertex u must have a unique color
from the color list C1, . . . , Cm. The third and fourth axioms indicate that the self-
edge of every vertex u must have a unique color from the color list D1, . . . , Dn.
The last three axioms indicate that the graph is undirected and every edge (u, v)
must have a unique color from the color list D1, . . . , Dn. It can easily be observed
that the axioms for self-edges can be combined into the last two axioms, however,
they are separated since for the rest of the paper they are treated differently from
the other edges.

Notation 2.1 1. Let Gm,n be the class of graphs with exactly m vertex colors
and n edge colors. Let G =

⋃
m,n Gm,n.

2. Let C be the set of m vertex colors and let D be the set of n edge colors.

3 Ehrenfeucht-Fräıssé Games

Ehrenfeucht-Fräıssé (EF ) games are used to characterize expressibility in some
logical formalism. They were invented by Ehrenfeucht [Ehrenfeucht 1961] based
on work done by Fräıssé [Fräıssé 1954]. In our context we apply it to study
expressibility in binΣ1

1(p, r) for positive integers p and r.

3.1 Pebble first-order EF -games

In this section we briefly review pebble first-order EF -games. A pebble first-
order EF -game (for detailed discussion see [Libkin 2004, Immerman 1998]) is
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played over two structures of the same kind, for example two linear orderings.
There are two players: the spoiler denoted by S and the duplicator denoted by
D. The game has two parameters: the number of rounds r and the number of
pebbles p ≤ r. Intuitively, the goal of S is to show that the two structures can
be distinguished in at most r steps using only p pebbles, whereas D wants to
show that this can not be done.

Definition 3.1 (Partial isomorphism) Let A and B be two first-order struc-
tures with vocabulary τ . Assume ā = 〈a1, . . . , an〉 ∈ An and b̄ = 〈b1, . . . , bn〉 ∈
Bn. We say that there is a partial isomorphism from ā onto b̄ if for every m,
for every first-order quantifier-free formula ϕ(x1, . . . , xm) over τ , and for every
{i1, . . . , im} ⊆ {1, . . . , n} the following holds

A |= ϕ(ai1 , . . . , aim) ⇐⇒ B |= ϕ(bi1 , . . . , bim)

Given A and B, the pebble EF -game goes as follows. The players start the
game each having a fixed number of p pebbles. At each round S does the fol-
lowing: (i) she chooses an element x from one of the two structures and (ii)
then she either removes a pebble that has been placed on a previously chosen
element and places it on x or placing a new pebble, if she still has any, on x. D
then responds to the challenge by choosing an element from the other structure
and does the same pebbling so as to preserve the partial isomorphism among
the pebbled elements chosen so far from A and B. At the beginning the pebbles
are not placed on any elements (we can assume having extra pebbles always
placed on the distinguished elements of the structure such as the group identity,
even before the game starts). Assume that at the end of the game p pebbles are
placed on ā = 〈a1, . . . , ap〉 from the structure A and correspondingly p pebbles
are placed on b̄ = 〈b1, . . . , bp〉 from the structure B. Notice that these are in
general subsets of the elements chosen during the course of the game. D wins
the game if ā and b̄ are partially isomorphic, otherwise S wins.

Pebble first-order EF -games characterize expressibility in bounded variable
logic. Let Lp denote first-order logic with at most p variables. For a formula
ϕ ∈ Lp, let qr(ϕ) denote the quantifier rank (depth) of ϕ.

Definition 3.2 (Elementary equivalence) Assume A and B are two struc-
tures over a vocabulary τ . We say that A and B are (p, r)-elementarily equiv-
alent, denoted by A ≡p

r B if and only if for every sentence ϕ ∈ Lp such that
qr(ϕ) ≤ r we have

A |= ϕ ⇐⇒ B |= ϕ (3.2.1)

The following theorem gives the relationship between pebble games and ex-
pressibility in Lp.
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Theorem 3.3 The following are equivalent:

i. A ≡p
r B

ii. D has a winning strategy in the pebble first-order EF -game over A and B
with r-rounds and p-pebbles

This theorem basically says that no sentence in Lp of quantifier rank at most
r can distinguish A and B if and only if the duplicator has a winning strategy
in the EF -game over A and B with r rounds and p pebbles.

3.2 Second-order EF -games

As seen above the first-order game is played over two structures that are fixed
apriori. In contrast the second-order game is played over a class of structures
and consists of two phases: (i) the second-order phase played over a class of
structures K where the duplicator gets to choose two structures A ∈ K and
B ∈ K (the complement of K ) and (ii) the first-order phase which is the regular
pebble first-order game played over A′ and B′ where A′ and B′ are expansions
of A and B as described below. These games are used to study expressibility in
second-order logic.

The second-order game was introduced by Fagin in [Fagin 1975] and then
modified in [Ajtai et al. 1990] to what is called the Ajtai-Fagin game (also called
monadic Σ1

1 game). In our context we slightly modify the Ajtai-Fagin game to a
new game we call binΣ1

1(p, r). The new game has four parameters m, n, p, and
r and has the following rules.

1. D selects a member A ∈ K .

2. Using the domain of A as a set of vertices, S forms a complete undirected
graph in which each vertex has a self-edge.

3. S colors the vertices using colors from C such that each vertex has exactly
one color. She then colors the edges using colors from D such that each edge
has exactly one color. Let A′ be the new expanded colored structure.

4. D selects a member B ∈ K .

5. Using the domain of B as a set of vertices, D forms a complete undirected
graph with each vertex has a self-edge.

6. D colors the vertices from C such that each vertex has exactly one color.
She then colors the edges from D such that each edge has exactly one color.
Let B′ be the new expanded colored structure.

1661Gomaa W.: Expressibility ...



7. S and D play a pebble first-order game over A′ and B′ with parameters r

rounds and p pebbles.

This new game is used to study expressibility in binΣ1
1(p, r). The relation is

indicated in the following theorem.

Theorem 3.4 Let K be a class of structures of the same vocabulary. Then K

is binΣ1
1(p, r) if and only if there are positive integers m, n, p and r such that S

has a winning strategy in the binΣ1
1(p, r)-game with parameters m, n, p and r.

Proof. The proof is very similar to that of Theorem 4.5 in [Ajtai et al. 1990]. The
only difference is that both players now have the additional ability of coloring
the edges as well as the vertices. This should make the game harder for S to win.
However, if K is expressible in binΣ1

1(p, r), then the defining sentence should
indicate to S how to color the vertices and the edges in addition to a winning
strategy in the first-order phase of the game.

Remark 3.5 1. If the coloring is restricted to the vertices (no edge coloring),
then we would call the resulting game monΣ1

1(p, r), this is actually a pebbled
version of the Ajtai-Fagin game.

2. In the definition of the binΣ1
1(p, r)-game, the ordering of the coloring of

the vertices and/or edges (by either of the players) does not matter since the
ordering of the corresponding second-order existential quantifiers is irrelevant
as long as it does not alternate with universal quantifiers.

3. Notice that in the rules of the binΣ1
1(p, r)-game, the spoiler has to color the

vertices and the edges of A before she knows what the other structure B is or
how it will be colored by the duplicator. However, this does not make the game
harder for her since if K ∈ binΣ1

1(p, r), then the coloring is predetermined
completely by the sentence that defines K .

4. In the following discussion we will always assume, unless otherwise stated,
classes of structures over the empty vocabulary (the base language does not
contain any non-logical symbols) so the structure is just a domain of ele-
ments; however, relations are defined over the domains during the course
of the second-order EF -game. More specifically, the pebble first-order games
are played over structures in G.

4 DIVk, DIVk �∈ monΣ1
1(p, r)

Theorem 4.1 DIVk �∈ monΣ1
1(p, r) for any positive integers p and r.

1662 Gomaa W.: Expressibility ...



Proof. We will show that for large enough graphs D has a winning strategy in
the monΣ1

1(r, r)-game. Fix k ≥ 2. Assume m vertex colors. D starts by choosing
a graph G such that |G| (mod k) = 0 and |G| ≥ mr. S then colors the vertices of
G using the given m colors. By the pigeonhole principle there must be at least r

vertices having the same color c ∈ C , let Γ be the set of all such vertices. D then
chooses a graph G′ = (G ∪ {w}) with a new vertex w and does the following:
(i) color G ⊆ G′ exactly as S did and (ii) color w with c. Let Γ ′ = (Γ ∪ {w}).
Now the first-order phase of the EF -game with r rounds. Assume the (i + 1)st

round of the game (i+1 ≤ r) and assume 〈u1, . . . , ui〉 ⊆ G and 〈v1, . . . , vi〉 ⊆ G′

have been chosen such that for every 1 ≤ j ≤ i, uj and vj have exactly the
same color. Assume S chooses ui+1 ∈ G. If ui+1 �∈ Γ , then D responds with the
corresponding vertex in G′ (�∈ Γ ′). If ui+1 ∈ Γ then

- if ui+1 = uj for some j ≤ i, then D responds with vj ,

- otherwise D responds with an arbitrary vi+1 ∈ Γ ′ that has not been chosen
before, this is possible since |Γ ′| ≥ r.

The case when S chooses vi+1 ∈ G′ is symmetric.

Theorem 4.2 DIVk �∈ monΣ1
1(p, r) for any positive integers p and r.

Proof. The proof is very similar to that of Theorem 4.1. D starts the game by
choosing a graph G such that |G| (mod k) �= 0 and |G| ≥ mr. S does her coloring
and then D responds by choosing a graph G′ = (G ∪W ), where W is a new set
of vertices such that |G′| (mod k) = 0. D colors all the vertices of W with c and
let Γ ′ = (Γ ∪W ). The game then proceeds exactly as in Theorem 4.1.

Corollary 4.3 1. DIVk �∈ monΠ1
1

2. DIVk �∈ monΠ1
1

5 Game Types

The definition of game types given in this section is inspired by a similar one
given in [Koucký et al. 2006].

Definition 5.1 (Isomorphism types) Let u, v, w ∈ G ∈ G.
1. Define the isomorphism type of u in G as

I(u; G) = 〈c, d〉 , c ∈ C and d ∈ D (5.1.1)

where c is the color of u and d is the color of its self-edge.
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2. Define the isomorphism type of the pair u, v in G as

I(u, v; G) = 〈I(u; G), I(v; G), d, eq(u, v)〉 , d ∈ D (5.1.2)

where d is the color of the edge (u, v) and eq(u, v) is true if they are the same
vertex otherwise false.

3. Define the isomorphism type of the triple u, v, w in G as

I(u, v, w; G) = 〈I(u; G), I(v; G), I(w; G),

I(u, v; G), I(u, w; G), I(v, w; G), eq(u, v),

eq(u, w), eq(v, w)〉 (5.1.3)

Remark 5.2 The isomorphism type of any set of vertices corresponds to the
first-order quantifier-free type of these vertices in G over the empty set of pa-
rameters.

Definition 5.3 (Game types) Let u ∈ G ∈ G.
1. Define the (1, r)-game type of u inside G as

ζ1,r(u; G) = I(u; G) (5.3.1)

2. Define the (2, r)-game type of u inside G inductively as

ζ2,1(u; G) = I(u; G)

ζ2,r(u; G) = 〈I(u; G), {〈I(u, v; G), ζ2,r−1(v, G)〉 : v ∈ G}〉 (5.3.2)

3. Define the (3, r)-game type of u inside G inductively as

ζ3,1(u; G) = I(u; G)

ζ′3,1(u, v; G) = I(u, v; G)

ζ′3,r(u, v; G) = 〈I(u, v; G), {〈I(u, v, w; G), ζ3,r−1(w; G)〉 : w ∈ G}〉
ζ3,r(u; G) = 〈I(u; G), {〈I(u, v; G),

ζ′3,r−1(u, v; G), ζ3,r−1(v; G)
〉

: v ∈ G
}〉

(5.3.3)

where ζ′ is a helper function and can be thought of as the game type of edges.

4. For every 1 ≤ p ≤ 3 define the (p, r)-game type of G as

ζp,r(G) = {ζp,r(u; G) : u ∈ G} (5.3.4)

Remark 5.4 The (p, r)-game type of a vertex u corresponds to the first-order
type of u in G over the empty set of parameters where every formula in that type
has at most p variables and has quantifier rank at most r.
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The intuition behind these definitions of isomorphism and game types is the
following: given G, G′ ∈ Gm,n and given u ∈ G, v ∈ G′ such that ζp,r(u; G) =
ζp,r(v; G′), then D has a winning strategy in the r-round first-order game with p

pebbles which starts by placing pebbles on u and v. One can see this by induction,
as D can maintain the invariant that the corresponding pebbled vertices have
always the same game type [Koucký et al. 2006]. If furthermore we have the
stronger assumption that ζp,r(G) = ζp,r(G′), then D can always win no matter
how the game starts.

The following proposition from [Koucký et al. 2006] states the relationship
between game types and first-order expressibility.

Proposition 5.5 Assume G, G′ ∈ Gm,n. Then ζp,r(G) = ζp,r(G′) if and only
if for every first-order sentence σ ∈ Lp such that qr(σ) ≤ r it is the case that
G |= σ ⇐⇒ G′ |= σ.

Notation 5.6 1. We will omit the argument G from isomorphism types and
game types when understood from the context.

2. Fix m and n for vertex and edge colors respectively. Let Λ(p, r; G) denote
the maximum number of possible (p, r)-game types of graphs in Gm,n and
let Λ(p, r; u) denote the maximum number of possible (p, r)-game types of
vertices in such graphs.

6 DIVk �∈ binΣ1
1(1, r) and DIVk �∈ binΣ1

1(2, 2)

We show that DIVk �∈ binΣ1
1(1, r) and DIVk �∈ binΣ1

1(2, 2) by looking at the
(1, r)- and (2, 2)-game types of graphs in G.

Lemma 6.1 Assume m vertex colors and n edge colors. Then Λ(1, r; u) ≤ mn

and Λ(1, r; G) ≤ 2mn.

Proof. Assume some vertex u. From Definition 5.3 we need only to count the
number of isomorphism types of u which is at most mn. Since the game type
of any G ∈ Gm,n is determined by the game types of its single vertices, then
Λ(1, r; G) ≤ 2mn (counting all possible subsets of game types of single vertices).

Lemma 6.2 Let G ∈ Gm,n. Then there exists G′ ∈ Gm,n such that |G′| = |G|+1
and ζ1,r(G′) = ζ1,r(G).

Proof. Choose an arbitrary u ∈ G. Add to G a new vertex v, color it and its
self-edge exactly as u’s, and color its edges to the vertices of G arbitrarily. Let
G′ be the new graph. Clearly, ζ1,r(G′) = ζ1,r(G).
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As a direct consequence of this lemma and Proposition 5.5 we have the
following inexpressibility result.

Theorem 6.3 DIVk �∈ binΣ1
1(1, r)

Next we consider (2, 2)-game types.

Lemma 6.4 Assume m vertex colors and n edge colors. Then Λ(2, 2; u) ≤
(mn)2(mn2) and Λ(2, 2; G) ≤ 2Λ(2,2;u).

Proof. Given a vertex u, the (2, 2)-game type of u is determined by: (i) its
isomorphism type, (ii) the isomorphism type of any other vertex v, and (iii) the
isomorphism type of the edge (u, v). There are (mn) possible vertex and self-edge
colors for u, (mn) vertex and self-edge colors for v, and n possible colors for the
edge (u, v). Hence there are at most a total of (mn2) possible combinations of
colors for v and (u, v) of which there are at most 2mn2

possible subsets that can
be associated with u. Therefore, Λ(2, 2; u) ≤ (mn)2mn2

. As mentioned above the
game type of any G ∈ Gm,n is determined by the set of game types of its single
vertices, hence Λ(2, 2; G) ≤ 2Λ(2,2;u).

Lemma 6.5 Let G ∈ Gm,n. Assume |G| > Λ(2, 2; u). Then there exists G′ ∈
Gm,n such that |G′| = |G|+ 1 and ζ2,2(G′) = ζ2,2(G).

Proof. From Lemma 6.4, there must be u1, u2 ∈ G that have the same (2, 2)-
game type. Add to G a new vertex v, color it and its self-edge exactly as u1.
Connect v to every vertex in G. For every w ∈ G such that w �= u1, use the color
of the edge (u1, w) to color the edge (v, w). Use the color of the edge (u1, u2)
to color (v, u1). Let G′ be the new graph. It is easy to check that ζ2,2(v; G′) =
ζ2,2(u1; G) and for every w ∈ G, ζ2,2(w; G) = ζ2,2(w; G′). Hence, ζ2,2(G′) =
ζ2,2(G).

As a direct consequence of this lemma we have the following inexpressibility
result.

Theorem 6.6 DIVk �∈ binΣ1
1(2, 2)

7 DIVk �∈ binΣ1
1(2, 3)

We show that DIVk �∈ binΣ1
1(2, 3) by looking at the (2, 3)-game types of graphs

in G.

Remark 7.1 Assume G ∈ G and let u ∈ G. Then ζ2,3(u; G) can be characterized
by the set of all paths in G of length 2 starting from u. This includes paths of the
form uvu (going from u to v then back to u). Actually as we will see below these
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latter kind of paths is the main reason for the inexpressibility in binΣ1
1(2, 3).

Given one such path uvw (two or all vertices may be identical) we will represent
it by the tuple

t = (c1c2c3, d1d2d3, e1e2)

where the first triple represents the colors of the vertices u, v, and w respectively,
the second triple represents the colors of their self-edges, and the last pair repre-
sents the colors of the edges uv and vw respectively. In the following discussion
the (2, 3)-game type of a single vertex u will be taken to be the collection of all
possible such tuples. So we can say things like t ∈ ζ2,3(u). Sometimes we will
need to ignore the vertex and self-edge colors when they do not play any role in
the discussion. In such cases we consider t = (e1e2) ∈ ζ2,3(u).

Lemma 7.2 Assume m vertex colors and n edge colors. Then Λ(2, 3; u) ≤
(mn)2nΛ(2,2;u) and Λ(2, 3; G) ≤ 2Λ(2,3;u).

Proof. Given the recursive nature of the definition of game types, the (2, 3)-
game type of a single vertex u is determined by (i) its isomorphism type which
is represented by the first multiplicand (mn) and (ii) all possible combinations
of the pairs: 〈 the isomorphism type of (u, v), the (2, 2)-game type of v 〉 for
every vertex v ∈ G. There are nΛ(2, 2; u) such pairs (excluding the isomorphism
type of u for it is already counted in (i) and the isomorphism type of v for it is
already counted in Λ(2, 2; u)), hence all possible subsets of such pairs is given by
the multiplicand 2nΛ(2,2;u). The upper bound on Λ(2, 3; G) is clear.

Lemma 7.3 Let G ∈ Gm,n. Assume |G| > Λ(2, 3; u). Then there exists G′ ∈
Gm,n such that |G′| = |G|+ 1 and ζ2,3(G′) = ζ2,3(G).

Proof. By Lemma 7.2 there must be two vertices u1, u2 ∈ G such that ζ2,3(u1) =
ζ2,3(u2) = γ. Add a new vertex v to G. Color v and its self-edge exactly as u1’s.
Connect v to every other vertex in G. For every w ∈ G such that w �= u1,
use the color of the edge (u1, w) to color the edge (v, w). Finally, use the color
of (u1, u2) to color (v, u1). Let G′ be the newly constructed graph. As already
mentioned in Remark 7.1, for every edge emanating from u1 of color e it must
be the case that (ee) ∈ ζ2,3(u1; G). This corresponds to putting the first pebble
p1 on u1, the second p2 on v, where (u1, v) has color e, and then removing p1

and reinserting it onto u1. Another way through which (ee) can be in ζ2,3(u1; G)
is that there is a path in G of distinct vertices u1ww′ of color ee. Actually the
addition of v as done above will create these latter monochromatic paths starting
from v for every color e of an edge emanating from v. Such monochromatic
paths of distinct vertices that start from u1 may not exist, however, u1 can
not be distinguished from v using them since there are only two pebbles, hence
ζ2,3(u1; G) = ζ2,3(u1; G′) = ζ2,3(v; G′). It is also obvious that for any other
w ∈ G, it is maintained that ζ2,3(w; G) = ζ2,3(w; G′). Hence, ζ2,3(G′) = ζ2,3(G).
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As a direct consequence of this lemma we have the following inexpressibility
result.

Theorem 7.4 DIVk �∈ binΣ1
1(2, 3)

8 DIVk ∈ binΣ1
1(3, 3)

In this section we show that DIVk ∈ binΣ1
1(3, 3) by looking at the (3, 3)-game

types of graphs in G. From the proofs one could extract out the actual defining
sentence. We will do this in the case of k = 2.

Remark 8.1 Assume G ∈ G and let u ∈ G. Then ζ3,3(u; G) can be characterized
by the set of all paths in G of length 2 starting from u. Given one such path uvw

we will represent it by the tuple

t = (c1c2c3, d1d2d3, e1e2,¬eq(u, w))

where the first triple represents the colors of the vertices u, v, w respectively, the
second triple represents the colors of their self-edges, e1e2 represents the colors
of the edges uv, and vw respectively, and finally ¬eq(u, w) represents the truth
value of whether u and w are not identical, it is assigned either t for true or f for
false. Notice that the existence of three pebbles enables the spoiler to overcome
the problem raised in the proof of Lemma 7.3 and caused her to lose the EF

game, namely the inability to distinguish between monochromatic paths of the
form uvu and monochromatic paths of the form uvw where u �= w. Actually, as
we will see below, this distinction is the main reason for successful expressibility
of DIVk in binΣ1

1(3, 3).

Definition 8.2 (Symmetric game types) Let γ be a (3, 3)-game type of a
vertex u ∈ G ∈ Gm,n. Let C be the set of m vertex colors and let D be the set of
n edge colors. Assume k ≤ n.

1. γ is called k-symmetric if the following hold:

(a) there exist c ∈ C and d ∈ D such that if (c1c2c3, d1d2d3, e1e2, ∗) ∈ γ, (∗
means ‘do not care’) then c1 = c2 = c3 = c and d1 = d2 = d3 = d (so γ

is monochromatic with respect to the vertex and self-edge colors)

(b) there exists D ⊆ D such that |D| = k and for all distinct e, e′ ∈ D ,
(ccc, ddd, ee′, t), (ccc, ddd, e′e, t) ∈ γ

(c) if (ccc, ddd, ee′, t), (ccc, ddd, e′e, t) ∈ γ and e �= e′ then it must be the case
that e, e′ ∈ D

2. γ is called fully symmetric if γ is n-symmetric.
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3. A graph G ∈ Gm,n is called k-symmetric if all vertices in G have the same
(3, 3)-game type γ where γ is k-symmetric.

Notation 8.3 Most often in the following discussion we will only consider game
types ζ3,3(u) that are monochromatic with respect to the vertex and self-edge
colors and/or be concerned only with paths of length 2 of distinct vertices starting
from u. For simplicity in such cases, ζ3,3(u) will be viewed as the collection of
pairs (dd′) that represent the colors along the path of length 2 starting from u.

Let G be a graph. Let Δ(G) denote the maximum degree of G and let χ′(G)
denote its edge chromatic number. The following theorem gives bounds for χ′.

Theorem 8.4 (Vizing 1964, p.119 in [Diestel 2006])

Δ(G) ≤ χ′(G) ≤ Δ(G) + 1

Vizing’s theorem divides the finite graphs into two classes based on their
edge chromatic number. Those with χ′ = Δ are called class I, and those with
χ′ = Δ + 1 are called class II [Diestel 2006]. The following lemma applies this
classification to complete graphs.

Lemma 8.5 (Theorem 4.1 in [Fiorini et al. 1977]) Consider the complete
graph Kn. If n is even, then it is class I, otherwise it is class II.

Lemma 8.6 Let G ∈ Gm,n be fully symmetric of minimum size k. Then n+1 ≤
k ≤ n + 2.

Proof. Since there are n distinct colors, then k ≥ n + 1. If n is odd, then let
k = n + 1. Since k is even, then by Lemma 8.5 we have χ′(Kn+1) = n. If n is
even, let k = n + 2. Again by Lemma 8.5, χ′(Kn+2) = n + 1. Add a new color
c′ to the list of given n colors and use the new list to get a proper edge coloring
of Kn+2. Choose a color c arbitrarily from the original list, and for every edge
of color c′ change its color to c.

Remark 8.7 Let G ∈ Gm,n be fully symmetric. Let γ = ζ3,3(u) for any u ∈
G. Let d ∈ D and assume that (dd) �∈ γ. Then it must be the case that |G|
(mod 2) = 0. Otherwise either there exists some u ∈ G with two edges incident
on it of color d, hence (dd) ∈ γ which contradicts the assumption or u has no
edge incident on it of color d which contradicts the definition of G being fully
symmetric.

Lemma 8.8 Let k be an even positive integer. Then there exist a pair of positive
integers (m, n) and a (3, 3)-game type Γ for graphs such that for any G ∈ Gm,n

the following holds: ζ3,3(G) = Γ implies that |G| = bk for some integer b ≥ 1.
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Proof. We will build Γ to be monochromatic with respect to the vertex color
and the self-edge color, hence m = 1. Let d be the self-edge color. Assume
k = 2j. Construct symmetric vertex game types γ0, . . . , γj−1 such that γi =
{(dγi , d), (d, dγi ), (d, d)} where dγi �= d and is unique for every i < j (each pair
in γi represents the colors of some path of length 2 starting from the vertex).
Let D = {di,i+1 (mod j) : i < j} be a collection of colors such that: (i) if j = 1,
then d0,0 = d and D will just represent the color of self-edges, (ii) if j = 2, then
d0,1 = d1,0, and (iii) if j ≥ 2, then d �∈ D and dγi �∈ D for every i.

d o

d o

d 1

d 1

do,1

d (j-1)do,1

do,1

d (j-1)

do,1

Ho H1 Hj-1

Figure 1: An arbitrary graph with game type Γ must have size multiple of k for
k even (all unlabeled edges are colored d)

For every i < j, let Hi be a 2-symmetric graph such that (i) for every
u ∈ Hi, ζ3,3(u) = γi, hence |Hi| must be even since (dγi , dγi) �∈ γi (see Remark
8.7) and (ii) for every i, i′, |Hi| = |Hi′ |. Connect all the graphs Hi’s and let H

denote the resulting graph. For every i and for every u ∈ Hi choose a unique
vu ∈ H(i+1) (mod j) and use di,(i+1) (mod j) to color the edge (u, vu) (in case
j = 1, then H = H0 and vu = u and this is just coloring the self-edge of u). For
all the remaining uncolored edges use d to color them. Hence for any i < j, we
have (di,(i+1) (mod j), di,(i+1) (mod j)) �∈ ζ3,3(u; H) for any u ∈ H . See Figure 1.

We can easily notice that: (i) for every i, all vertices of the subgraph Hi have
the same (3, 3)-game type inside H , let δi denote this type, (ii) δi is an extension
of γi, (iii) for all distinct i, i′, we have δi �= δi′ (δiΔδi′ ⊇ {(dγi , d), (dγi′ , d)}),
and (iv) each δi is 2-symmetric with respect to the two colors dγi and d. Let
n = |{dγi : i < j}|+ |{di,(i+1) (mod j) : i < j}|+ 1 = 2j + 1 (the last 1 is for the
color d). Let Γ = {δi : i < j}.

Let G ∈ Gm,n such that ζ3,3(G) = Γ . Each γi ⊆ δi, which represents the 2-
symmetric part of δi, must be realized inside G by a subgraph Hi such that |Hi|
(mod 2) = 0. Notice that for every i, i′ < j, (di,(i+1) (mod j), di,(i+1) (mod j)) �∈
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δi′ , hence all H ′
is must have the same size (the edges di,(i+1) (mod j) may be

thought of as creating one-to-one maps between the Hi’s so they are forced to
have the same size). Therefore, |G| = 2bj = bk for some positive integer b. So
(1, 2j + 1) = (1, k + 1) and Γ satisfy the conclusion of the lemma.

From this lemma we can immediately derive the following expressibility re-
sult.

Theorem 8.9 Let k be an even positive integer. Then DIVk ∈ binΣ1
1(3, 3).

More specifically, DIVk can be expressed by a sentence of the following form

∃R1 . . . ∃Rlϕ

where ϕ is a first-order sentence with 3 first-order variables and quantifier depth
3. Each Ri is a binary second-order variable and l ≤ �log4 (k + 1)�.

Proof. Let Γ be the game type obtained in Lemma 8.8. We will show that S
has a winning strategy in the binΣ1

1(3, 3) game over the class of structures of
cardinalities divisible by k. Assume D starts the game by choosing a structure
A such that |A| (mod k) = 0. Let S colors A to get a graph G ∈ G such that
ζ3,3(G) = Γ . D has then two possible responses: (i) choosing a structure B and
coloring it to obtain G′ ∈ G such that ζ3,3(G′) = Γ , but then by Lemma 8.8
it must be the case that |G′| (mod k) = 0 and hence D loses the game at its
second-order phase or (ii) choosing a structure B such that |B| (mod k) �= 0
and color it to obtain G′ ∈ G with ζ3,3(G′) = Γ ′ but again by Lemma 8.8 it
must be the case that Γ �= Γ ′ hence by Proposition 5.5, D loses the game at its
first-order phase. So in any case S wins the game, hence DIVk ∈ binΣ1

1(3, 3).
The upper bound for l is obtained from the value of n derived in the proof of
Lemma 8.8 and by realizing that each binary second-order variable contributes
exactly 4 new colors.

In the introduction we gave a sentence that defines DIV2. In the following
example we will use the proof of Lemma 8.8 to show how this sentence can be
derived systematically.

Example 8.10 Consider the EV EN problem. We need two edge colors d1 and
d2 and one vertex color c. In the second-order phase of the EF game, D will first
choose G1 which is just a set of unconnected vertices with |G1| (mod 2) = 0. S
will then convert G into a complete graph with all self-edges, let G′

1 denote the
new graph. S colors G′

1 as follows: (i) use c to color all the vertices, (ii) use d1

to color all the self-edges, (iii) for every distinct pair of vertices ui, vi ∈ G′
1, use

d2 to color the edge (ui, vi), and (iv) use d1 to color all the remaining edges.
This coloring implies that every u ∈ G′

1 has exactly one edge of color d2 incident
on it, hence d2 corresponds to dγi in the proof of Lemma 8.8. G′

1 can be viewed
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as a 1-regular graph (a graph with isolated edges) by looking exclusively at the
edges of color d2. It can be easily checked that all the vertices in G′

1 have the
same game type γ ⊇ {(d1d2, t), (d2d1, t), (d1d1, t)} (ignoring the vertex and self-
edge colors and considering only paths of length 2 with distinct vertices). Next
D chooses a set of unconnected vertices G2 with |G2| (mod 2) = 1. D converts
G2 into G′

2, a complete graph with all self-edges, and then tries to color it so
as to have the same (3, 3)-game type as G′

1. Since (d2d2) �∈ γ, then by Remark
8.7, this is impossible, in other words G′

2 can not be converted into a 1-regular
graph. There must exist some vertex u ∈ G′

2 such that either (d2d2) ∈ ζ3,3(u; G′
2)

or (d2d1) �∈ ζ3,3(u; G′
2). Hence, S can win the first-order phase of the game by

playing the differentiating path using her 3 pebbles. In the following we construct
a sentence σ ∈ binΣ1

1(3, 3) that defines EVEN

ϕ1(R)
def
= ∀x¬R(x, x), coloring the self-edges of G′

1 with c

ϕ2(R)
def
= ∀x∀y (R(x, y)←→ R(y, x)) , G′

1 is undirected

ϕ3(R)
def
= ∀x∃y (R(x, y) ∧ ∀z (R(x, z) −→ z = y)) , the d2 coloring of edges in G′

1

σ
def
= ∃R (ϕ1(R) ∧ ϕ2(R) ∧ ϕ3(R)) (8.10.1)

Remark 8.11 From Example 8.10, it is clear that 1-regular graphs can be used
to characterize divisibility by 2. This observation has been used in the proof of
Lemma 8.8 to construct the subgraphs H ′

is such that each one of them must be of
even size. Additionally, the coloring scheme of the interconnections among the
H ′

is ensures that they have identical sizes. Hence, the total size of the resulting
graph must be a multiple of 2j which is the desired goal.

Next we turn to expressibility of divisibility by odd numbers.

Lemma 8.12 Let k �= 1 be an odd positive integer. Then there exist a pair of
positive integers (m, n) and a (3, 3)-game type Γ for graphs such that for any
G ∈ Gm,n the following holds: ζ3,3(G) = Γ implies that |G| = bk for some integer
b ≥ 1.

Proof. We will build Γ to be monochromatic with respect to the vertex color
and the self-edge color, hence m = 1. Assume k = 2j + 1 for j ≥ 1. Let Γ ′ be
the game type Γ constructed in the proof of Lemma 8.8. Let H ∈ Gm,n be the
graph constructed in the proof of Lemma 8.8 such that H is constructed exactly
from the subgraphs H0, . . . , Hj−1 with |Hi| = 2b for some positive integer b.

Let u0, . . . , ub−1 be new vertices, connect them together and to every vertex
in H . Use d to color all the edges between the ui’s. For each i < j choose an
arbitrary set of vertices Vi such that (i) Vi ⊆ Hi, (ii) |Vi| = b, and (iii) for every
w, w′ ∈ Vi, the edge (w, w′) is colored d. For every i < j and for every i′ < b,
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choose a unique wui′ ∈ Vi, and use dγ(i+1) (mod j) to color the edge (ui′ , wui′ ). Use
d to color the remaining uncolored edges from the ui’s to H . Call the new graph
H ′ and notice that H ′ ∈ Gm,n where n = 2j + 1 is the number of colors used to
color the edges of H ′. See Figure 2.

u1uo

d o

d o

d 1

d 1

d (j-1)

d (j-1)

d 2

do,1

d 2

do,1

do,1

do,1

Ho H1 Hj-1

Figure 2: An arbitrary graph with game type Γ must have size multiple of k for
k odd (all unlabeled edges are colored d)

Notice the following: (i) for each color dγi , ui has an edge of that color incident
on it, (ii) all the ui’s have the same (3, 3)-game type inside H ′, let ρ denote that
game type, (iii) (dγi , dγi) �∈ ρ for every i < j, however, (dγi , dγ(i+1) (mod j)) ∈ ρ,
and (iv) (d, d) ∈ ρ. Now look at the new emerging game types inside H ′. For
every i < j, δi no longer exists, but is broken into two new game types: (i) δ0

i

which is the game type of every vertex in Vi and (ii) δ1
i which is the game type

of every vertex in Hi\Vi. Each vertex ui has the new game type ρ. An important
observation is that for every u ∈ H ′, (dγi , dγi) �∈ ζ3,3(u) for every i < j. Let

Γ = {δ0
i : i < j} ∪ {δ1

i : i < j} ∪ {ρ}

Let G ∈ Gm,n be such that ζ3,3(G) = Γ . Notice that for every vertex v ∈ G with
ζ3,3(v) = δ0

i , there must exist exactly one vertex wv such that ζ3,3(wv) = δ1
i and

the edge (v, wv) is colored dγi . The converse also holds for vertices of game type
δ1
i . Hence there is a one-to-one correspondence between

{
u ∈ G : ζ3,3(u) = δ0

i

}

and
{
u ∈ G : ζ3,3(u) = δ1

i

}
, therefore

∣∣{u ∈ G : ζ3,3(u) = δ0
i or ζ3,3(u) = δ1

i

}∣∣ =
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2b′ for some positive integer b′ ≥ 1. Let Wi denote this last set of vertices.
Similarly, we can show that (see also the proof of Lemma 8.8) there is a one-
to-one correspondence between Wi and Wi′ for all i, i′ < j. Hence, |⋃{Wi : i <

j}| = 2b′j. Then any u ∈ G\⋃{Wi : i < j} must be of game type ρ.
Let Ti =

{
u ∈ G : ζ3,3(u) = δ0

i

}
. Note that all the Ti’s must have the same

size. Let P = {u ∈ G : ζ3,3(u) = ρ}. From the construction of H ′ it must be
the case that every u ∈ Ti uniquely determines a distinct vu ∈ P such that
(u, vu) is colored dγ(i+1) (mod j) (since (dγ(i+1) (mod j) , dγ(i+1) (mod j)) �∈ δ0

i ). Hence
|Ti| ≤ |P |. Similarly, every v ∈ P uniquely determines a vertex wv ∈ Ti such that
(v, wv) is colored dγ(i+1) (mod j) (since (dγ(i+1) (mod j) , dγ(i+1) (mod j)) �∈ ρ). Hence
|P | ≤ |Ti|. Therefore, |P | = |Ti| = b′. Now we count the number of vertices
in G. |G| = |⋃{Wi : i < j}| + |P | = 2b′j + b′ = b′(2j + 1) = b′k. Hence,
(1, 2j + 1) = (1, k) and Γ are as desired.

From Lemmas 8.8 and 8.12 we can derive the following general result.

Lemma 8.13 Fix a positive integer k �= 1. Let m = 1 and n = k + 1. Then
there exits a (3, 3)-game type Γ for graphs in Gm,n such that for any G ∈ Gm,n

the following holds: ζ3,3(G) = Γ implies that |G| = bk for some integer b ≥ 1.

This directly implies the following expressibility result.

Theorem 8.14 Let k �= 1 be a positive integer. Then DIVk ∈ binΣ1
1(3, 3). More

specifically, DIVk can be expressed by a sentence of the following form

∃R1 . . . ∃Rlϕ

where ϕ is a first-order sentence with 3 first-order variables and quantifier depth
3. Each Ri is a binary second-order variable and l ≤ �log4 (k + 1)�.
Proof. Similar to the proof of Theorem 8.9.

Corollary 8.15 monΣ1
1 ⊂ binΣ1

1

Proof. This follows directly from the inexpressibility result in Theorem 4.1 and
the expressibility result in Theorem 8.14.

Lemma 8.16 Let l1, l2 be two non-negative integers. Define Θ ⊆ binΣ1
1(3, 3)

that consists exactly of sentences that have at most l1, l2 unary and binary second-
order variables respectively. Then DIVk ∈ Θ for only finitely many k.

Proof. Let m, n be the corresponding vertex and edge colors respectively. There
are at most finitely many (3, 3)-game types for graphs in Gm,n. Assume the
conclusion does not hold, then there are two distinct positive integers k1, k2 that
can be distinguished by the same (3, 3)-game type. But this implies that D can
win the binΣ1

1(3, 3) game by choosing a structure of cardinality k such that
exactly one of k1 and k2 is a factor of k. This is a contradiction.
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Theorem 8.14 and Lemma 8.16 imply that DIVk creates a proper hierarchy
into binΣ1

1(3, 3).

9 Bounding the Binary Relation Variables

The following theorem gives an inexpressibility result for DIVk in binΣ1
1 when

the sizes of the interpretations of the binary relation variables are bounded.

Theorem 9.1 Let σ ∈ binΣ1
1 be of the following form

∃R≤f(l)
1 . . .∃R≤f(l)

t ∃S1 . . . ∃Ssϕ

where f(l) < l
2t − r2s

2t , where l is the size of any structure that models this
sentence and r is the quantifier depth of ϕ. Then DIVk can not be expressed by
σ.

Proof. We show D has a winning strategy in the second-order EF game with r

rounds in the first-order phase (assume the number of pebbles p = r). D starts
by choosing a complete uncolored graph G with all self-edges such that

|G| (mod k) = 0 (9.1.1)

|G| > r2s + 2tf(|G|) (9.1.2)

There are a total of m = 2s vertex colors. For the edges it is easier to directly
handle each Ri separately than to consider the colors resulting from their com-
binations. S does the following with G: (i) color the vertices using the given m

colors and (ii) construct the edge sets E1, . . . , Et among the vertices of G such
that |Ei| ≤ f(|G|) for each i. From 9.1.2, there must be at least r2s vertices with
degree 0, that is there is no edge from any of the Ei’s that is incident on any of
these vertices. Then by the pigeonhole principle there must be at least r of those
vertices that are monochromatic, let their color be c. Let Γ be the collection of
vertices in G that are colored c and with degree 0, then |Γ | ≥ r. In order for the
inequality in 9.1.2 to make sense it must be the case that f(|G|) < |G|

2t − r2s

2t as
given in the theorem hypothesis. D then chooses a graph G′ = (G ∪ {w}) with
a new vertex w and does the following: (i) color the vertices of G ⊆ G′ exactly
as S did, (ii) color w with c, (iii) construct the edge sets E1, . . . , Et among the
vertices of G ⊆ G′ exactly as S did, and (iv) leave the vertex w unconnected to
any other vertex. In the first-order phase of the game D can win by following a
similar strategy to that described in the proof of Theorem 4.1.

10 Conclusion and Future Work

In this paper we have provided a partial framework for the study of expressibility
in Σ1

1 . This framework uses interesting combinatorics based on second-order EF -
games and the notion of game types. We have studied the expressibility of DIVk
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in different sublogics of Σ1
1 getting inexpressibility results until expressibility is

obtained inside binΣ1
1(3, 3). Based on k, DIVk creates a proper hierarchy inside

this sublogic. In the future I plan to pursue research in the following points:

1. Finding tight lower/upper bounds for the DIVk hierarchy in binΣ1
1(3, 3).

This is mainly a combinatorial problem and helps understanding game types
specially for future plans when using second-order variables with higher ar-
ities.

2. Study the expressibility of DIVk in binΣ1
1(3, 3).

3. Study natural extensions of binΣ1
1(3, 3) inside Σ1

1 within the framework de-
veloped above. The parameters (logical resources) used in the abovemen-
tioned research, and hence in future extensions, are the following: (i) the ar-
ity of the second-order variables, (ii) the second-order quantifier depth, (iii)
the number of first-order variables, and (iv) the first-order quantifier depth.
Other parameters may also be studied such as the number of alternations of
first-order quantifiers and also parameters that arise from the interleaving of
first- and second-order quantifiers such as depth and alternation, however,
this may require a dramatic change in the rules of the EF games. I plan
to use number-theoretic properties for the study of expressibility such as
primeness, number and sizes of equivalence classes of a definable equivalence
relation, whether two definable subsets of a structure form an amicable num-
ber, etc. The main goals of this study are: (i) create proper hierarchies into
sublogics of Σ1

1 and into Σ1
1 itself, hence giving more insight into NP and (ii)

the study of expressibility of some interesting number-theoretic properties
for its own sake.

4. Extending the above to Π1
1 and the whole of second-order logic, hence es-

sentially looking into the whole polynomial hierarchy.
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