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Abstract: The definition of the Fuzzy Rule Base is one of the most important and
difficult tasks when designing Fuzzy Systems. This paper discusses the results of two
different hybrid methods, previously investigated, for the automatic generation of fuzzy
rules from numerical data. One of the methods, named DoC-based, proposes the cre-
ation of Fuzzy Rule Bases using genetic algorithms in association with a heuristic
for preselecting candidate rules based on the degree of coverage. The other, named
BayesFuzzy, induces a Bayesian Classifier using a dataset previously granulated by
fuzzy partitions and then translates it into a Fuzzy Rule Base. A comparative analysis
between both approaches focusing on their main characteristics, strengths/weaknesses
and easiness of use is carried out. The reliability of both methods is also compared by
analyzing their results in a few knowledge domains.
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1 Introduction

Systems based on Fuzzy Logic, generally called Fuzzy Systems (FS), have been
successfully used for the solution of problems in many different areas, including
pattern classification, optimization, and control of processes [Pedrycz, 1996].

The Fuzzy Systems of interest in this work are those known as Rule Based
Fuzzy Systems (RBFS). Usually, a RBFS has two main components: a Knowl-
edge Base (KB) and an Inference Mechanism (IM). The KB comprises the Fuzzy
Rule Base (FRB), i.e., a set of fuzzy rules that represents a given problem, and
the Fuzzy Data Base (FDB), which contains the definitions of the fuzzy sets
related to the linguistic variables used in the FRB. The IM is responsible for
carrying out the required computation that uses inferences to derive the output
(or conclusion) of the system, based on both the KB and the input to the system.

Many approaches and methods can be used for the automatic generation of
the KB from data, representing samples (or examples) of a problem. Clustering
algorithms [Liao et al., 1997], neural networks [Jang et al., 1997], and Genetic
Algorithms (GA) [Cordón et al., 2004] are among the most well-succeeded tech-
niques. Recently there has been a considerable research effort focusing on the
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use of GA [Goldberg, 1989] in the design of FS. This initiative coined the term
Genetic Fuzzy Systems (GFS), which are, basically, FS with a learning process
controlled by GA [Cordón et al., 2007, 2004].

As suggested in a few references, a very promising approach is the use of
GA to generate FRBs based on previously defined and fixed fuzzy sets [Hoff-
mann, 2004; González and Pérez, 1999; Ishibuchi et al., 1999]. This approach
was adopted by Castro & Camargo who proposed a method consisting of three
consecutive steps: an attribute selection process, the use of a genetic algorithm
to induce rules and, in sequence, the use of another GA to eliminate unnecessary
rules [Castro and Camargo, 2005]. Depending on the number of variables and
sets in the defined partition, however, the total number of possible rules can be
extremely large, making it difficult to generate and codify the chromosomes and,
consequently, the whole genetic learning process becomes overloaded.

As an alternative approach to deal with the dimensionality problem, Cintra
& Camargo proposed the genetic generation of FRBs from a set of candidate
rules preselected by a heuristic criteria based on the Degree of Coverage (DoC),
named DoC-based method, as described in [Cintra and Camargo, 2007a,b]; the
DoC-based method was used in the experiments described in this paper.

An entirely different proposal for the automatic generation of FRBs from
data can be found in [Hruschka Jr et al., 2007], where the combination of the
fuzzy granulation of datasets with a Bayesian Classifier (BC) learning process is
investigated. The proposed method, named BayesFuzzy, aims at improving the
comprehensibility of an induced BC by translating it into a FRB.

Besides presenting a description of the main characteristics of both, the DoC-
based as well as the BayesFuzzy method, the objective of this paper is to compare
the results of both methods in a few knowledge domains.

The remainder of the paper is organized as follows. In Section 2 the funda-
mental concepts of Fuzzy Classification Systems, Bayesian Networks, as well as
Bayesian Classifiers are presented. Section 3 describes the genetic generation of
FRBs, as well as the DoC-based method, and Section 4 describes the BayesFuzzy
method. Section 5 discusses the experiments and comparisons concerning both
approaches. Finally, the conclusions and perspectives are presented in Section 6.

2 A Brief Overview of Fuzzy Classification Systems and
Bayesian Networks

The goal of this section is to highlight the main concepts of fuzzy classification
systems and Bayesian Networks and Classifiers, in order to provide the necessary
technical background for the sections that follow.
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2.1 Fuzzy Classification Systems

Classification is an important task employed in many different areas such as
pattern recognition, decision making and data mining. A classification task can
be roughly described as: Given a set of objects E = {e1, e2, ..., eM}, also named
patterns, which are described by n attributes, assign a class Cj from a set of
classes C = {C1, C2, ..., CJ} to an object ep, ep = (ap1 , ap2 , ..., apn).

Fuzzy Classification Systems (FCS) are RBFS designed to perform a clas-
sification task that requires the attribute domains to be granulated by means
of fuzzy partitions. The linguistic variables in the antecedent part of the rules
represent attributes, and the consequent part represents a class. A typical clas-
sification fuzzy rule can be expressed by:

Rk : IF X1 is A1l1 AND ... AND Xn is AnlnTHEN Class = Cj (1)

where Rk is the rule identifier, X1, ..., Xn are the attributes of the pattern
considered in the problem (represented by linguistic variables), A1l1 , ..., Anln are
the linguistic values used to represent the values of the attributes, and Cj (j ∈
{1, ..., J}) is the class, fuzzy or crisp, the pattern belongs to.

An inference mechanism runs the pattern through the FRB aiming at de-
termining the class it belongs to. Many FCS use the Classic Fuzzy Reasoning
Method (CFRM) [González and Pérez, 1999] that classifies a pattern using the
rule that has the highest compatibility degree with the pattern, as described
next.

Let ep = (ap1 , ap2 , ..., apn) be a pattern to be classified and {R1, R2, ..., RS}
the set of S rules of a classification system, each with n antecedents. Let Aili(api),
i = 1, ..., n, be the membership degree of attribute value api to the i-th fuzzy set
of fuzzy rule Rk as defined in (1). The CFRM applies the three following steps
to classify the pattern ep:

1. Calculates the compatibility degree between the pattern ep and each rule
Rk, for k = 1, ..., S, given by

Compat(Rk, ep) = t(A1l1(ap1), A2l2(ap2), ..., Anln(apn))

where t denotes a t-norm.

2. Finds the rule Rkmax with the highest compatibility degree with the pattern,
i.e.,

Compat(Rkmax, ep) = max{Compat(Rk, ep)}, k = 1, 2, ..., S

3. Assigns the class Cj to the pattern ep, where Cj is the class predicted by
the rule Rkmax found in the previous step.

2458 Cintra M.E., Camargo H.A., Hruschka Jr. E.R., do Carmo Nicoletti M.: Automatic ...



2.2 Bayesian Networks and Classifiers

A Bayesian Network (BN) [Pearl, 1988] has a directed acyclic graph structure.
Each node in the graph corresponds to a discrete random variable in the domain.
In the BN graph, an edge Y → X describes a parent child relation, where Y

is the parent and X is the child. All parents of X constitute the parent set
of X , denoted by π(X). Each node X of the BN structure is associated to a
Conditional Probability Table (CPT) specifying the probability of each possible
state of X , given each possible combination of states of π(X). If a node X has
no parents, its CPT gives the marginal probabilities of X .

In a Bayesian network where λ(X) is the set of children of X , the subset of
nodes containing π(X), λ(X), and the parents of λ(X) is called Markov Blanket
(MB) of X (see Figure 1). As shown in [Pearl, 1988], the only nodes that have
influence on the conditional distribution of a given node X (given the state of all
remaining nodes) are the nodes that form the MB of X . Thus, after constructing
the network structure from data, the MB of the class attribute can be used as a
criterion for selecting a subset of relevant attributes for classification purposes.

Figure 1: The Markov Blanket of X , represented by the shadowed nodes.

While a BN encodes a joint probability distribution over a set of random
variables, a BC aims at correctly predicting the value of a designated discrete
class variable, given a vector of attributes. Methods for inducing BNs can be
used to induce BCs as well. The BC learning algorithm used in the BayesFuzzy
method described in Section 4 is based on the BN learning algorithm known as
K2 [Hruschka Jr et al., 2007; Cooper and Herskovits, 1992].

3 The Genetic Generation of Fuzzy Rules - The DoC-based
Method

When Genetic Fuzzy Systems focus specifically on the generation or optimization
of RBFS, they are named Rule Based Genetic Fuzzy Systems (RBGFS). In the
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context of the RBGFS, the well-known methods that combine the genetic and
fuzzy approaches for the generation of KBs can be divided into two main groups:
methods that adjust KB components (Genetic Adaptation) and methods that
build KB components (Genetic Construction).

Included in the group of Genetic Adaptation are the methods that initiate the
process with an existing FRB (or FDB) and use GA to improve the performance
of the system by adjusting or adapting one or more parts of the KB [Casillas
et al., 2005; Gurocak, 1999; Ishibuchi et al., 1997; Bonissone et al., 1996; Herrera
et al., 1995]. The group called here Genetic Construction includes the methods
that use GA to effectively build or design one or more components of the KB,
and comprises the approaches that produced the largest number of researches
[Hoffmann, 2004; Cordón et al., 2001; Ishibuchi et al., 1999].

The DoC-based method described in this section, which has been previously
introduced in [Cintra and Camargo, 2007a,b], can be included in the group
of the Genetic Construction methods that require an additional preprocessing
step. This method uses fuzzy partitions defined before the whole learning process
starts and also some criteria based on heuristic knowledge for the preselection
of candidate rules to be considered by the genetic algorithm when building the
final FRB. The preselection of candidate rules aims at reducing the search space
and simplifying the chromosomes codification.

A similar approach can be found in [Ishibuchi and Yamamoto, 2004] where
a genetic algorithm is used to select the rules that will form the FRB from a set
of candidate rules, generated from numerical datasets, based on the confidence
and support measurements.

In the automatic generation of a FRB using GA, the search space is defined
by the combinations of a certain number of rules from all the possible rules,
considering the variables of the problem, as well as the defined fuzzy sets. As
the number of variables increases, the set of possible rule combinations that will
form the KB exponentially increases, interfering in both, the learning process
and its output; in some situations, it makes de whole process unfeasible.

The DoC-based method deals with this problem by using the DoC (Degree
of Coverage) of rules in order to reduce the number of rules. Although the DoC
value alone is not a selection parameter that tells which rules should be part
of the FRB, it allows to discard a large number of possible rules, without any
quality loss for the generated FRB. The rules to be discarded are the ones with
low or null DoC value. The calculation of the DoC is presented next.

Let E = {e1, e2, ..., eM} be a set of examples. The DoC of the rule R with
relation to E (DoCR) is defined as:

DoCR =
M∑

i=1

DoC(R,ei)

where DoC(R,ei) is the DoC of rule R with respect to example ei, obtained by
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aggregating the membership degrees of the attribute values of ei in the corre-
sponding fuzzy sets that are in the antecedent part of rule R.

In the DoC-based method, once the fuzzy partitions of the attribute domains
are defined, the DoC values are calculated for all possible rules; the rules are then
decreasingly ordered by their DoC values. This step allows the use of very simple
criteria to select candidate rules as well as a simple representation of rules in the
chromosomes. Two criteria were independently used to preselect the candidate
rules. One of them uses the Wang & Mendel (WM) method [Wang, 2003; Wang
and Mendel, 1992] as a reference. The two criteria are:

1. Select the rules from the ordered set until all the rules present in the FRB
generated by the WM method have been selected;

2. Select the rules from the ordered set with non-null DoC values.

The two criteria originated two different versions of the method concerning
the preselection phase. In both cases, the set of candidate rules is then used as
a reduced search space for the generation of the FRB using GA.

The preselection of candidate rules and their ordering allow the identification
of each rule by its position in the ordered list and induce a simple binary codifi-
cation. The size of each chromosome was set as the total number of preselected
rules with a direct correspondence between the rule position in the ordered list
and the gene position in the chromosome, so that 0 represents an inactive rule,
and 1 represents an active rule. Figure 2 presents a binary chromosome with
10 positions representing 10 rules, with rules 1, 4, 5, 6 and 9 active and all the
others inactive.

Figure 2: Binary chromosome representing a complete Rule Base with 5 active
and 5 inactive rules.

The WM method was used as a reference for the definition of aditional pa-
rameters in the DoC-based method. For instance, in the initial population, each
chromosome was created with a percentage of active rules based on the number
of rules generated by the WM method for a specific dataset. The chromosomes
were randomly generated and conflicting rules were eliminated.

To avoid the occurrence of redundancies and to improve the clearness and
understanding of the generated FRB, the fitness value was defined based on the
Correct Classification Rate (CCR) as well as on the number of rules in the base
using the self-adaptive algorithm presented in [Cintra and Camargo, 2007a]. This
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way, chromossomes with high CCR and small number of rules were awarded a
higher CCR, leading the whole genetic process to a faster convergence. Thus,
for each chromosome, the fitness function evaluates its CCR and then divides
this value by a penalty constant. This constant is based on the relation between
the number of active rules in the chromosome and a reference value found as the
best (smallest) number of rules (Best NR) for the best (highest) CCR found so
far (Best CCR). The constant values used for the penalization, shown in Table
1, were empirically defined.

Table 1: Penalization rates for the fitness of the chromosomes according to the
number of active rules they codify.

Number of Rules Fitness Value Becomes

If ≤ Best NR CCR

Otherwise If ≤ Best NR ∗ 1.5 CCR/1.25
Otherwise If ≤ Best NR ∗ 2 CCR/1.5
Otherwise If ≤ Best NR ∗ 3 CCR/2
Otherwise CCR/3

The number of rules and CCR of the FRB generated by the WM method were
used as initial values for the reference parameters Best NR and Best CCR re-
spectively. For each generation, the two parameters were automatically updated.

4 The BayesFuzzy Method

The BayesFuzzy method proposed in [Hruschka Jr et al., 2007] allows translating
the knowledge represented by a Bayesian Classifier (BC) into a Fuzzy Rule Base
(FRB). Considering D a domain described by N attributes, the method applies
a fuzzyfication process in the attribute values of D, producing a fuzzyfied dataset
D′. BayesFuzzy then induces a BC from D′ and extracts, from the BC, a set
of classification rules that can be used as the FRB of a fuzzy system. In the
conducted experiments described in Section 5, the K2 algorithm [Cooper and
Herskovits, 1992] was used to induce the BCs.

Algorithm 1 presents the BayesFuzzy procedure used by BayesFuzzy to ex-
tract rules from a given BC [Hruschka Jr et al., 2007].

Lines 1 to 9 in Algorithm 1 are the initialization steps. In lines 10 up to 21
the rules are extracted from the BC and inserted into the FRB (called RSR in
the algorithm) using the MAP approach; this part of the pseudocode is based on
the intuition that the best explanation for a piece of evidence is the most prob-
able state of the world, given the evidence. Each rule corresponds to a specific
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instantiation of each variable (antecedents) and the most probable inferred class
(consequent). Line 22 consists of removing from the set of rules those containing
superfluous conditions; this can be seen as a naive pruning step.

Algorithm 1 BayesFuzzy

input BC: Bayesian classifier with N nodes
X1: Class variable

output: RSR {Reduced set of rules}
begin

1: RSR← � {reduced set of rules is empty}
2: CMB ←MB(X1) {Markov Blanket of X1 (class variable)}
3: M ← |CMB|
4: Rename the variables in CMB as X2, X3, ...,XM+1

5: for i← 2 to M + 1 do
6: Vi ← the possible values of variable Xi

7: Ji ← |Vi|
8: end for
9: RI ← 1 {rule index}

10: for k2 ← 1 to j2 do
11: for k3 ← 1 to j3 do
12: ...................
13: for kM+1 ← 1 to jM+1 do
14: Rule antecedent← X2 = v2k2

and X3 = v3k3
and ... and XM+1 =

vM+1kM+1

15: • propagate Rule antecedent throughout BC and determine the
class value V al Class

16: • define rule RRI as: If Rule antecedent then X1 = V al Class

17: RSR← RSR ∪ {RRI}
18: RI ← RI + 1
19: end for
20: end for
21: end for
22: RSR← remove irrelevant rules (RSR)

end

The rule extraction process is guided by the MAP (maximum a posteriori)
approach. Thus, based on a BC, one rule is created for each possible value of
the classifier variables and the class identification is carried out following the
most probable state of the class attribute. This is a computationally expensive
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procedure mainly because the presence of hundreds or thousands of variables in
probabilistic models [Druzdzel, 1996] is very common. In most cases, however,
many variables may only be relevant for some types of reasoning; very rarely
all of them will be relevant in the reasoning process associated to one single
query. Therefore, focusing only on the relevant part of a BC is fundamental
when translating it into a set of rules. In this sense, BayesFuzzy explores the
Markov Blanket concept, described in Section 2, to select the attributes to be
used in the antecedent part of the rules. Thus, the number and the complexity
of rules are minimized along with the rule extraction process. The attribute
selection strategy, however, does not guarantee a minimal rule set. Therefore, a
pruning step may be conducted after the rule set generation.

An interesting issue about the BayesFuzzy method is that the BC structure
provides a simple and efficient mechanism (Markov Blanket) to reduce the num-
ber and the complexity of the rule set. Another interesting characteristic is that
the BC built by BayesFuzzy can be used for predicting the value of any variable
(i.e., each variable can be seen as a class variable). This allows a reduction in
the time needed to build models when more than one variable can play the role
of the class variable.

5 Experiments and Analysis of Results

In this section, the data domains and the results of a few experiments using
the two previously described methods are presented and discussed. The results
of the Friedman test [Demšar, 2006], suitable for comparing the performance of
multiple algorithms in multiple datasets, are also presented and discussed.

All experiments with GA were performed with 250 iterations, elitism rate of
5%, crossover rate of 70% and mutation rate of 5%. For the BayesFuzzy method,
the experiments were performed using a 10-fold cross validation strategy. The
experiments with GA and WM were performed with a 5-fold cross validation
strategy due to time restrictions.

The four domains used are available at the UCI Machine Learning repository
[Asuncion and Newman, 2007]. The choice of each dataset was based on their
attribute type (numerical-valued ones). Only four randomly selected attributes
for each domain were used in an attempt to reduce the computational time of the
process. Table 2 summarizes the domain characteristics giving the total number
of instances, the percentage of instances for the majority class, and the selected
attributes.

For each domain three distinct partitions were defined, with three, five and
seven fuzzy sets for each input attribute, totalizing 12 different experiment se-
tups. For each of the 12 setups, four distinct approaches were evaluated: GA with
preselection of the best rules (GA I) (selecting all rules in the FRB generated
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by the WM algorithm), GA with preselection of rules with non-null DoC (GA
II), the BayesFuzzy method, and the WM method.

Table 2: Domain characteristics.
Domain # Instances Majority Class Selected Attributes

Diabetes 724 65.60% glucose concentration, body mass,
insulin level, blood pressure.

MPeG 392 38.52% acceleration, number of cylinders,
weight, power.

Iris 150 33.33% sepal length, sepal width,
petal length, petal width.

Machine 209 57.89% processor speed, max. memory,
cache memory, # of channels.

Table 3 shows the total number of possible rules for each created partition
(column Total) and the number of rules in the FRBs produced by each of the
four approaches. The numerical suffix added to each domain name represents the
number of fuzzy sets for each input variable. To allow further comparisons, the
Average number of active rules Per Domain (APD) in the FRBs is presented.

The preselection of candidate rules implemented by the DoC-based method
has proved to be a promising approach to reduce the search space and, thus, ac-
celerate the learning process as a whole. The possible refinements of this method
can be explored as an efficient tool to cope with the dimensionality problem.

As the rule set reduction carried out by BayesFuzzy is based on the identi-
fication of the most relevant attributes for the classification task, the Bayesian
and fuzzy techniques collaboration, proposed by this method, is suitable mainly
in applications having irrelevant attributes. In such domains, the Markov Blan-
ket attribute selection principle, embedded in BayesFuzzy, enables the reduction
of the number of rules as well as their complexity (number of variable in the
antecedent part of each rule). Considering also that BayesFuzzy uses a Bayesian
classification approach to perform the class prediction, domains in which tradi-
tional BCs perform well also favor the BayesFuzzy classification rates.

Table 4 presents the CCRs for the FRBs generated in each experiment, as well
as the ranking of the algorithms according to the Friedman test 1(in parentheses).
Notice the average rank of the algorithms in the last line of the table, which
themselves, provide a fair comparison of the algorithms. Also, to allow further
1 The Friedman test is the nonparametric equivalent of the repeated-measures

ANOVA. See [Demšar, 2006] for a thorough discussion regarding statistical tests
in machine learning research.
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comparisons, the Average CCR Per Domain (APD) is presented.

Table 3: Number of rules and average per domain (APD).
Domain Total GA I GA II BayesFuzzy WM

Diabetes 3 162.0 14.2 28.4 8.0 24.0
Diabetes 5 1250.0 51.0 67.4 16.3 84.4
Diabetes 7 4802.0 38.6 75.4 37.1 159.2

APD 2071.3 34.6 57.1 20.5 89.2

MPeG 3 243.0 13.0 16.4 4.6 20.0
MPeG 5 3125.0 36.8 46.0 13.6 46.2
MPeG 7 16807.0 34.4 51.2 5.2 76.6

APD 6725.0 28.1 37.6 7.8 47.6

Iris 3 243.0 7.6 13.8 7.7 15.0
Iris 5 1875.0 15.0 41.2 21.4 44.8
Iris 7 7203.0 54.4 61.4 42.0 67.2
APD 3107.0 25.7 38.8 23.7 42.3

Machine 3 243.0 6.2 12.8 9.5 13.8
Machine 5 3125.0 21.6 25.4 50.5 29.0
Machine 7 16807.0 26.0 27.8 109.0 33.0

APD 6725.0 17.9 22.0 56.3 25.3

General Average 4657.1 26.6 38.9 27.1 51.1

The results in Tables 3 and 4 show that the preselection of the best rules,
implemented by the GA I scheme produces FRBs with higher CCRs in almost
all experiment setups. Compared to GA II, the GA I scheme needed a lesser
number of iterations to reach convergence.

The main characteristics of a good FRB are: i)to be described by a small set
of high quality rules and ii)to produce high CCR. Thus, the results presented in
Tables 3 and 4 should not be analysed independently. In this sense, it is possible
to notice that concerning the Diabetes domain, the most accurate FRB is the
one having only 29.9 rules on average. Such a FRB was produced by GA I and
can be considered the best combination of good CCR and small number of rules
in this domain since all other methods produced either FRBs with lower CCR,
or a bigger number of rules, or even both.

Concerning the MPeG domain, the best CCR was produced by the FRB
generated by GA I. Also for this domain, this method can be considered better
than the others because of its combination of the best CCR and a considerable
small number of rules.
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Table 4: Correct Classification Rates (CCR), Ranks for the Friedman test
(RFT) and Average Per Domain (APD).

GA I GA II BayesFuzzy WM
Domain CCR (RFT) CCR (RFT) CCR (RFT) CCR (RFT)

Diabetes 3 1.000 (1.0) 0.998 (2.0) 0.711 (4.0) 0.911 (3.0)
Diabetes 5 1.000 (1.0) 0.994 (2.0) 0.743 (4.0) 0.890 (3.0)
Diabetes 7 0.929 (2.0) 0.949 (1.0) 0.765 (4.0) 0.869 (3.0)

APD 0.976 (1.3) 0.975 (1.6) 0.739 (4.0) 0.890 (3.0)

MPeG 3 0.875 (1.0) 0.863 (2.0) 0.839 (3.0) 0.793 (4.0)
MPeG 5 0.787 (1.0) 0.741 (3.0) 0.637 (4.0) 0.768 (2.0)
MPeG 7 0.648 (1.0) 0.518 (3.0) 0.509 (4.0) 0.623 (2.0)

APD 0.777 (1.0) 0.702 (2.7) 0.661 (3.7) 0.728 (2.7)

Iris 3 0.997 (2.0) 0.987 (3.0) 0.957 (4.0) 1.000 (1.0)
Iris 5 1.000 (2.0) 1.000 (2.0) 0.947 (4.0) 1.000 (2.0)
Iris 7 0.983 (1.0) 0.973 (2.0) 0.947 (3.5) 0.947 (3.5)
APD 0.993 (1.7) 0.987 (2.3) 0.950 (3.5) 0.982 (2.2)

Machine 3 0.942 (2.0) 0.951 (1.0) 0.932 (4.0) 0.937 (3.0)
Machine 5 0.943 (2.0) 0.920 (4.0) 0.932 (3.0) 0.956 (1.0)
Machine 7 0.914 (2.0) 0.869 (3.0) 0.864 (4.0) 0.928 (1.0)

APD 0.933 (2.0) 0.913 (2.7) 0.909 (3.7) 0.900 (1.7)

General Average (1.500) (2.333) (3.792) (2.375)

For the Iris domain GA I produced the best CCR, and its number of rules
is very close to the best (smallest) number of rules produced by BayesFuzzy,
which, although having the best number of rules, produced the lowest CCR.

For the Machine domain, it is easy to verify that GA I produced the best
results since it produced the best CCR and the best number of rules.

To verify if there are statistically significant differences in performance among
the four methods, the Friedman test was run under the null-hypothesis, which
states that the algorithms are equivalent, so their ranks should be equal. Based
on the results, the null-hypothesis can be rejected with 95% confidence level.

6 Conclusion

This work has presented a comparative analysis of two different approaches for
the automatic generation of Fuzzy Rule Bases from datasets, namely a genetic-
based approach (DoC-based) and a Bayesian-based approach (BayesFuzzy).

The main idea of the genetic approach is the use of an easily obtained knowl-
edge about the dataset to reduce the number of possible rules and thus reduce
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the search space. The reduction is accomplished in the initial phase by the selec-
tion of candidate rules; potential rules that cannot cooperate in the classification
process are discarded before the genetic process begins. Two different criteria
were used to direct the choice of the rules; experiments have showed that the
criterion based on WM was more successful as far as the CCR values and the
number of rules are concerned.

It is important to emphasize that both GA approaches proposed are depen-
dent on the number of variables of the domain as well as on the initial fuzzy
partition of each variable domain to generate the initial search space. Particu-
larly, the influence of the initial partition on the results can be observed in Tables
3 and 4 because, for most of the experiments, the ones with smaller number of
fuzzy sets defined in their partitions were the ones producing the best FRBs,
i. e., they produced the FRBs with the best CCR associated with the smallest
number of rules.

In the Bayesian approach, a Bayesian Classifier is used to generate rules from
a dataset that has been previously granulated, meaning that the attribute do-
mains were previously organized into categories represented by fuzzy partitions.
In the sequel, the classifier is translated into a Fuzzy Rule Base.

A domain characteristic that favors the use of BayesFuzzy is the presence
of more than one class attribute. It can be illustrated considering a domain D

having M class attributes. In such a domain, BayesFuzzy will build a single BC
to extract M classification Rule Sets. Thus, the computational effort to induce
the BC is not proportional to the number of class attributes. For this reason
as future work it is intended to explore data domains which allow a better
understanding of this characteristic.

The paper has discussed the very relevant topic of fuzzy rules generation,
focusing on two hybrid approaches, since it has become clear that the automatic
generation of fuzzy knowledge bases can substantially profit from using learning
techniques based on different methodologies.
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