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Abstract: Evolutionary algorithms are effective search tools for tackling difficult optimization 
problems. In this paper an algorithm based on living processes where cooperation is the main 
evolutionary strategy is applied to the Prize Collecting Steiner Tree Problem, an NP-hard 
combinatorial optimization problem. The Transgenetic Algorithm presented here is hybridized 
with path-relinking. Computational results of an experiment performed with benchmark 
instances are reported. The results obtained for the Prize Collecting Steiner Tree Problem with 
the application of the hybrid Transgenetic Algorithm are compared with the results of three 
effective approaches presented previously. The computational experiment shows that the 
proposed approach is very competitive concerning both quality of solution and processing time. 

Keywords: Prize Collecting Steiner Tree Problem, Transgenetic Algorithm, Evolutionary 
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1 Introduction  

Evolution has been a source of inspiration for developing problem solving methods to 
difficult optimization problems. The underlying idea concerning the design of 
computational techniques based on natural evolution is to develop stochastic search 
methods that operate on a population of candidate solutions. These methods are called 
Evolutionary Algorithms. The search operators used by classical evolutionary 
algorithms are inspired on neo-Darwinian evolutionary mechanisms whose typical 
rules are: selection, crossover and mutation [Mitchell 1998]. As a source of 
inspiration, nature has led to the emergence of a wide variety of types of evolutionary 
algorithms. In this paper an evolutionary algorithm whose metaphor is based on two 
driving forces of evolution is applied to the Prize Collecting Steiner Tree Problem, an 
NP-hard combinatorial optimization problem. The proposed heuristics belongs to the 
class of Transgenetic Algorithms. The algorithms of this class are inspired on the 
endosymbiosis theory of evolution and on natural horizontal gene transfer 
mechanisms [Goldbarg et al. 2007].  
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The term "endosymbiosis" specifies the relationship between organisms which live 
one within another (symbiont within host). The endosymbiotic theory of evolution 
[Margulis 1991] deals with the concept of symbiogenesis that implies the appearance 
of new tissues, new organs, physiologies or other new features that result from the 
endosymbiotic association. In this theory cooperation rather than competition is 
emphasized as a major evolutionary force [Margulis and Sagan 1986]. Horizontal 
gene transfer between the endosymbionts and the host plays an important role in 
endosymbiosis. The horizontal gene transfer is defined to be the movement of genetic 
material between organisms other than by descent in which information travels 
through the generations as the cell divides. The horizontal gene transfer in an 
endosymbiotic process is called endosymbiotic gene transfer [Timmis et al. 2004]. 

The instigating scenario described above led to the development of Transgenetic 
Algorithms, where the concepts of that evolution theory are adapted to the 
computational context in order to search the solution space of optimization problems. 
These algorithms deal with a population of candidate solutions, called endosymbiont 
chromosomes, a population of entities that modify the endosymbiont chromosomes, 
called transgenetic vectors, and information obtained before and during the search 
process that is thought to be in a host cell. Unlike many other evolutionary 
approaches, the chromosomes of Transgenetic Algorithms do not share genetic 
material directly by means of recombination operations. Chromosomes are uniquely 
modified by the transgenetic vectors which are the main intensification and 
diversification tools of the Transgenetic Algorithms. The information utilized by the 
transgenetic vectors to alter the chromosomes is the host’s information. The 
information sources include a priori and a posteriori knowledge about the problem 
and about the search executed by the algorithm, respectively.  

The Transgenetic Algorithm presented here is hybridized with a path-relinking 
procedure. Path-relinking was originally proposed in the context of Tabu Search 
[Glover 1994]. Given two solutions, the idea behind this strategy is to generate new 
solutions exploring trajectories between the two initial solutions. One of these two 
solutions is chosen to be the origin solution, xo, and the other is the target solution xt. 
The roles of origin and target can be interchangeable. Starting from xo, the objective is 
to generate a path in the solution space that leads toward new solutions, also called 
guiding solutions. The attributes of the target solution are iteratively introduced in the 
origin solution leading to a sequence xo, xo(1), xo(2), …, xo(r) = xt, where xo(i+1) is 
obtained from xo(i) by a move that introduces in xo(i+1) an attribute that reduces the 
distance between attributes of the origin and target solutions. Examples of these 
attributes for the Prize Collecting Steiner Tree Problem include nodes and edges of 
the instance graph. A number of metrics can be utilized to measure the distance 
between solutions [Sörensen 2007]. 

This paper is organized as follows.  In section 2 the Prize Collecting Steiner Tree 
Problem is introduced and a review of the methods proposed to solve this problem is 
presented. Section 3 presents the general architecture of a Transgenetic Algorithm. 
Section 4 presents the hybrid algorithm proposed to solve the investigated problem. A 
computational experiment with 114 benchmark instances is reported in section 5. The 
proposed algorithm is compared with three state-of-the-art algorithms for the Prize 
Collecting Steiner Tree Problem. The data obtained with the experiments show that 
the proposed algorithm is very competitive concerning both quality of solution and 
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processing time. Finally, some conclusions and future works are presented in sections 
6 and 7, respectively. 

2 The Prize Collecting Steiner Tree Problem 

Let G = (V, E, c, w) be a connected and undirected graph where V = {v1, …, vn} is the 
vertex set, E = {e1, …, em} is the edge set, c: E → ℜ+ and w: V → ℜ+ are non negative 
cost functions associated with the edge and node sets, respectively. The problem 
consists in finding a subgraph T = (VT, ET), VT ⊆ V, ET ⊆ E, that minimizes the 
objective function described in equation 1 [Goemans and Williamson 1996]. 
 

 f(T) = ( ) ( )∑∑ ∈∉ +
TT EeVv ecvw                                            (1) 

 
The investigated problem is a generalization of the classical Steiner Tree 

Problem. The PCSTP models a number of real world applications, mainly on the 
design of infra-structure networks, such as gas, water, electricity and 
telecommunications [Canuto et al. 2001, Johnson et al. 2000, Ljubić et al. 2004]. The 
general scenario is a set of potential customers demanding services that are network 
distributed. When considering the installation of such a network companies have to 
deal with the trade-off between the sum of potential profits over the selected 
customers and network costs. For instance, consider a network to distribute natural 
gas for customers in an urban area. The graph corresponds to a street map. The edges 
represent the street segments where pipes will be further laid. The nodes represent the 
location of potential customers and street intersections. The cost assigned to each 
node is an estimative of the financial loss that would result if the customer 
represented by that node is not in the selected set of customers. Value w(v) = 0 is 
assigned to every node that represents a street intersection. The cost c(e) assigned to 
edge e corresponds to the cost of laying a pipe on the street segment represented by e. 
Utilizing this model, companies search for networks of customers that are financially 
attractive.  

The first time the Steiner tree problem with weights on nodes was investigated 
dates back to 1987 [Segev 1987].  It was shown that if the weights are non-negative 
and the root of a solution tree is known, then the problem corresponds to a directed 
Steiner tree problem. Another NP-hard problem was also presented in the same paper, 
the single point weighted Steiner tree problem, where a new point has to be included 
in a pre-existent solution. The term “prize collecting” [Balas 1989] was introduced in 
the context of the Traveling Salesman Problem. In that version node weights represent 
penalties that have to be added to the cost of the traveling salesman tour when the 
node is not included in the tour. The PCSTP was introduced in a paper where a 3-
approximate algorithm was proposed tackle the problem [Bienstock et al. 1993].  

Once the PCSTP is largely applicable to a number of real world situations, 
several algorithms have been presented to solve it. Many of those algorithms are 
tested in the set of benchmark instances available at 
http:www.research.att.com/~mgcr/data/index.html. This database contains four 
classes of instances [Johnson et al. 2000, Canuto et al. 2001].  Class K is composed of 
geometric graphs randomly generated designed to have a structure similar to a street 
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map, with 100 to 400 nodes and 319 to 1507 edges. Class P is composed of non-
structured graphs with 100 to 400 nodes and 284 to 11144 edges. The instances of 
classes C and D are derived from Steiner tree benchmark instances. The instances of 
class C have 500 nodes and 625 to 12500 edges.  The instances of class D have 1000 
nodes and 1250 to 25000 edges. Other instances also proposed for the PCSTP 
represent real examples of networks of a German city [Ljubić et al. 2004]. 

The first exact algorithm proposed for the PCSTP was a cutting-plane algorithm 
based on an integer programming formulation with a set of constraints called 
generalized subtour elimination constraints [Lucena and Resende 2004]. Those 
constraints were a generalization of the subtour elimination constraints [Dantzig et al. 
1954]. The exact algorithm was applied to the 114 instances of classes K, P, C and D 
solving 96 of them. An effective branch-and-cut algorithm [Ljubić et al. 2006] solved 
all instances of classes K, P, C, D and the instances that represent real networks of a 
German city [Ljubić et al. 2004]. The same set of instances was solved by another 
branch-and-cut algorithm based on Lagrangian and Linear Programming relaxations 
[Cunha et al. 2008]. In the same paper, the authors presented a heuristic method based 
on the dual bound obtained with the Lagrangian relaxation.  

Due to the large applicability of the PCSTP, a number of approximation 
algorithms were proposed for it [Bienstock et al. 1993, Goemans and Williamson 
1996, Johnson et al. 2000, Feofllofl et al. 2007]. A multi-start algorithm with Variable 
Neighborhood Search and Path-relinking [Canuto et al. 2001] was applied to the 
instances of classes K, P, C and D. The initial solutions of the multi-start algorithm 
were built with a primal-dual method [Goemans and Williamson 1996] with 
perturbations. Those solutions were improved in a local search procedure.  A Variable 
Neighborhood Search with Path-relinking was used as a post-optimization step. A 
Memetic Algorithm hybridized with a relaxation of an Integer Programming model 
[Klau et al. 2004] was also presented to tackle the investigated problem. This 
algorithm was also applied to the instances of classes K, P, C and D and the results 
were compared with the ones obtained with the multi-start algorithm. 

Some variants of the PCSTP are named The Net Worth Maximization Problem, 
the Quota Problem and the Budget Problem [Johnson et al. 2000]. The Net Worth 
Maximization Problem consists in finding a subtree T = (VT, ET), VT ⊆ V, ET ⊆ E, that 
maximizes the objective function described in equation 2. Given a prize quota Q > 0, 
the Quota Problem consists in finding a subtree T = (VT, ET) that minimizes 

( )∑ ∈ TEe
ec  subjected to ( ) Qvw

TVv
≥∑ ∈

.  Finally, the Budget Problem consists in, 

given an edge budget B > 0, finding a subtree T = (VT, ET) that maximizes ( )∑ ∈ TVv
vw , 

subjected to ( ) Bec
TEe

≤∑ ∈
. 

 
 ( ) ( ) ( )∑∑ ∈∈

−=
TT EeVv

ecvwTNW                                         (2) 

 
In a generalization of the Quota Problem [Haouari et al. 2008], the vertex set V is 

partitioned in K+1 nonempty disjoint subsets V0, V1, …, VK such that, V0 = {v0} and 
for each subset Vk, k = 1, …, K, a prize quota Qk > 0 is defined. A non negative 
penalty function is associated with each vertex v ∈ V\V0 , γ: V\V0 → ℜ+. The 
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generalized Quota Problem consists in finding a subtree T = (VT,ET) that minimizes 
( ) ( )∑∑ ∈∉

+
TT EeVv

ecvγ , subjected to v0 ∈ VT and ( ){ } kVVv
Qvw

kT
≥∑ ∩∈

. 

3 Transgenetic Algorithms 

Transgenetic Algorithms are evolutionary techniques whose biological inspiration 
comes from the endosymbiotic theory of evolution. That theory states that a new 
organism can emerge from the fusion of two or more independent beings [Margulis 
1991]. The term "endosymbiosis" specifies the relationship between organisms which 
live one within another (symbiont within host) in a mutually beneficial relationship. 
Observing that the DNA is not only in the nucleus of cells, the biologist Margulis 
proposed that eukaryotic cells originated as communities of interacting entities that 
joined together. Those entities became, later, the organelles of a single host. Today, 
researchers recognize the horizontal transfer of functional genes between organisms 
as a determinant factor of the endosymbiotic origin of cellular organelles [Pierce et al. 
2003]. Two natural vehicles of horizontal gene transfer are called plasmids and 
transposons. Plasmids are mobile genetic particles, that is, DNA rings that can be 
exchanged between certain cells and that can replicate independently of the 
chromosome. Transposons or “jumping genes” are genetic elements that can 
spontaneously move from one position to another in a DNA molecule. Some 
microbiologists believe that, during bacterial evolution, the ability of bacteria to adapt 
to new environments most often results from the acquisition of new genes through 
horizontal transfer rather than by the alteration of gene functions through numerous 
point mutations. 

Transgenetic Algorithms are evolutionary algorithms whose context is thought to 
occur in a cell, where a population of endosymbionts co-evolves with its host, 
improving the fitness of the system endosymbionts/host [Goldbarg et al. 2007]. The 
evolutionary process is accomplished by means of genetic rearrangement and 
exchanging between the host cell and the endosymbiont chromosomes. Biologists 
argue that the term chromosome does not apply to bacteria, although it is often used 
[Margulis 2004]. The reason for that concerns significant differences in the DNA 
structure of bacteria. The appropriate term is chromoneme. However, in order to avoid 
introducing a new nomenclature in the context of evolutionary algorithms when 
referring the elements of a population, the authors maintain the term chromosome in 
this paper. 

During the search process executed by the Transgenetic Algorithms, the genetic 
codes of the endosymbionts are modified. The alterations made in the chromosomes 
are accomplished by means of manipulation vectors that mimic the action of natural 
vehicles of horizontal gene transfer, such as plasmids and transposons. 

The population of endosymbiont chromosomes is the base of the search process. 
Alike another evolutionary algorithms, chromosomes represent problem solutions. 
The chromosomes are manipulated by the transgenetic vectors, the second component 
of the search process. Those vectors are the main tools for search intensification and 
diversification. The transgenetic vectors have “instructions” of how to manipulate the 
code of chromosomes. Rather than breeding to generate offspring, the random 
variation of solutions is uniquely operated by means of these vectors. Thus, unlike 
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other evolutionary approaches, the chromosomes of Transgenetic Algorithms do not 
share genetic material directly. The third component of the algorithm is the host, 
where information about the problem being tackled (a priori information) and 
information about the search process (a posteriori information) is thought to be 
stored. This final component of the algorithm is called host’s repository. The 
information stored in the host’s repository is used in the transgenetic vectors to 
manipulate the chromosomes. As a result of the manipulation by the transgenetic 
vector, the codes of chromosomes are modified, yielding the random variation 
necessary for searching the space of solutions of the investigated problem. To 
summarize, three contexts are considered in Transgenetic Algorithms:  

• The endosymbiont chromosomes: a population of candidate solutions 
• The host’s repository: a base of information about the problem or about 

the search. 
• The transgenetic vectors: entities that modify the candidate solutions, 

transporting information from the host’s repository to the population of 
chromosomes or, simply, rearranging the genetic code of chromosomes. 

 
The three contexts together are thought to form a small ecosystem where the 

evolutionary process occurs. Rather than be subjected to an external environmental 
pressure, the evolution in this small ecosystem is guided and directed to the 
absorption of the endosymbionts.  

 
1. Generate and evaluate an initial population of chromosomes 
2. Initialize the host’s repository (HR) 
3. Repeat 
4.    Generate transgenetic vectors    
5.    Select chromosomes for manipulation  
6.    Manipulate chromosomes 
7.    Update HD 
8.  until a stopping criterion is satisfied 

Figure 1: Framework of a Transgenetic Algorithm 

Figure 1 shows the general steps of a Transgenetic Algorithm. Initially, a 
population of candidate solutions is generated and evaluated. The host’s repository 
with information to be used during the search is initialized in step 3 and updated in 
step 7. This repository is initialized with a priori information about the investigated 
problem. This information regards known lower or upper bounds of the problem, 
heuristic solutions, information obtained from statistical analysis of the problem 
instance, among others. A posteriori information is obtained during the algorithm 
execution, such as solutions or partial solutions obtained during the search and 
information obtained from statistics of the population. 

In step 4 the transgenetic vectors are generated. A transgenetic vector, λ, is a pair 
λ = (I, Φ), where I stands for information and Φ is a method to manipulate the genetic 
code of chromosomes. The method Φ is formed by a set of procedures, Φ = (p1,...,ps). 
The procedures that form the method of a given transgenetic vector depends on the 
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type of the vector. In this paper, two transgenetic vectors are utilized: plasmids and 
transposons.  

The information used in the plasmids is structured as in the chromosomes. Thus, 
the information of plasmids represents partial solutions. The size of a given plasmid is 
the length of its information string. The manipulation method of the plasmids contains 
two procedures: p1 and p2. Procedure p1, called attack, verifies whether a chromosome 
C is susceptible or not to the manipulation of a transgenetic vector λ. Thus, procedure 
p1 implements a function A: C, λ → {false,true}. If p1 returns “true”, then the 
information string of the plasmid λ is transcribed into the chromosome C. Procedure 
p2 defines how the transcription is done, that is, the steps that describe how to transfer 
the information of the plasmid to the chromosome are defined in p2.  

Transposons are transgenetic vectors whose information is a rule for gene 
rearrangement. Besides procedures p1 and p2 defined previously, the manipulation 
method of transposons utilizes a third procedure, p3 that identifies the positions in the 
target chromosome that will be manipulated by the transgenetic vector, that is, the 
genes that will be rearranged. 

A subset of chromosomes is selected to be manipulated by one or more 
transgenetic vectors in step 5 of the algorithm shown in figure 1.  The manipulation of 
the chromosomes by the transgenetic vectors (step 6) may generate new interesting 
information for the evolutionary process, for example, new best solutions. In this case 
the host’s repository is updated with the new information (step 7). The algorithm 
iterates until a stopping condition is reached (step 8).  

Concerning the update of the host’s repository, it is important to make clear that 
full solutions, such as the ones represented in chromosomes, are never utilized in their 
totality to compose the information of the transgenetic vectors. Existing solutions that 
are selected to update the host’s repository are used as information sources, only 
fragments of those solutions are utilized by the transgenetic vectors. 

Mechanisms of horizontal gene transfer and endosymbiotic interactions, 
separately, were sources of inspiration for other evolutionary algorithms. There are 
two general directions followed by previous approaches that deal with the concept of 
horizontal gene transfer mechanisms. The algorithms that follow the first direction are 
standard Genetic Algorithms increased with operations based on some lateral gene 
transfer mechanism [Chan et al. 2005, Yeung et al. 2008]. The other direction 
followed for developing evolutionary algorithms concerns the substitution of 
crossover operations in standard Genetic Algorithms by operations based on 
horizontal gene transfer mechanisms [Perales-Graván and Lahoz-Beltra 2008]. The 
algorithms based on endosymbiotic interactions are variations of cooperative co-
evolutionary algorithms [Kim et al. 2001, 2006]. They have different populations that 
consist of partial solutions of the investigated problem and another population that 
consists of complete solutions. The populations of partial solutions combine to form 
the one that consists of complete solutions. Each population evolves, separately, by 
means of a standard genetic algorithm. Then the individuals of each population of 
partial solution compete with another of the population of complete solutions in order 
to obtain new individuals of the latter population. 

The approaches described in the previous paragraph are fundamentally different 
from the one proposed in this paper. One of the main differences regards the contexts 
of information that exist in the algorithms. Besides the endosymbiont chromosomes 
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that represent a short-term memory of the search, there is information in the 
Transgenetic Algorithms also in the host's repository and in the transgenetic vectors. 
These three components of the Transgenetic Algorithms are interdependent, 
autonomous and equivalently important for the search process. The information of the 
host is not necessarily encoded on chromosomes, nor necessarily represents solutions 
of the optimization problem being tackled. This information represents a long-term 
memory, not exclusively associated with the search performed by the algorithm. The 
information of the host’s repository can be evaluated regarding the expectation of 
producing transgenetic vectors that are successful in manipulating the chromosomes. 
The transgenetic vectors are dynamic and volatile elements without a perfect match to 
the elements of traditional evolutionary algorithms. They cooperate with the evolution 
of the system host/endosymbiont, being guided by the information of the host in the 
task of accomplishing their transcriptions in the chromosomes. 

The endosymbiont chromosomes do not reproduce or share genetic material 
directly. They are uniquely subjected to the pressure that results from the 
manipulation performed by the transgenetic vectors. The mixture of information of 
the host's context with those existing in the population of endosymbiont chromosomes 
has the potential to produce, in many cases, the diversification needed to escape from 
local minima. The process ends when the exchange of information between the host 
and the population of endosymbionts does not result in further changes 
(improvements) in the fitness of the endosymbionts. 

4 The Hybrid Transgenetic Algorithm Applied to the PCSTP 

In this section, the details of the Transgenetic Algorithm for the PCSTP are described. 
Let G be an undirected graph, G = (V, E, c, w) and |V| = n. Figure 2 shows a PCSTP 
instance, where the weights of the vertices are listed in the table beside the graph.  
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Figure 2: A PCSTP instance 

The chromosome is an n-array in which the indices represent the nodes of the input 
graph, and each element is 1 or 0 whether the correspondent vertex belongs or not, 
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respectively, to the solution tree represented in the chromosome. The nodes of the 
solution tree are connected by means of a minimum spanning tree. Figure 3 shows a 
solution of the instance of figure 2. The fitness is given by the value of the objective 
function defined in equation 1. The cost of the minimum spanning tree correspondent 
to the chromosome of figure 3 (a) is 32. Node 7 is a demand node that is not in the 
solution tree. The penalty for the exclusion of node 7 is 50. Thus, the fitness of the 
chromosome represented in figure 3(a) is 32+50 = 82. 

10011011 10011011

1 2

4

5

8

1

1

10

20

 
                                         (a)                                                       (b) 

Figure 3:(a) Chromosome representing a solution of the PCSTP instance of figure 2  
(b) the  minimum spanning tree correspondent to the chromosome of figure 3 (a) 

The information utilized by the transgenetic vectors to manipulate the 
chromosomes in the proposed algorithm is described in the following. A priori 
information is given by a square matrix of order n containing the vertices of the 
shortest paths between every pair of nodes. A posteriori information is given by the 
five best chromosomes found up to a given iteration. Those solutions compose a set 
called elite pool. 

There are two types of plasmids. The information string of the first type plasmid 
is the shortest path between a node in the solution tree and a demand node out of the 
solution tree. In order to build this information string, a demand node outside the 
solution tree is selected at random. The shortest path between this node and any node 
in the solution tree is chosen to be the information string of a first type plasmid. To 
illustrate the first type plasmid, consider the solution tree of figure 3(b). The shortest 
path between node 7 and a node of the solution tree is 57. This path corresponds to go 
from node 7 to node 2, using the intermediary node 6. The information string of the 
first type plasmid for this example is formed by vertices 2, 6 and 7 (length equals 3). 
This plasmid is represented in figure 4(a). The transcription operator (procedure p2) 
creates a clone of the chromosome that will be manipulated and copies the elements 1 
from the plasmid to the correspondent positions of the clone chromosome. Figure 4 
(a) shows the manipulation of the chromosome of figure 3(a). Figure 4(b) shows the 
minimum spanning tree that corresponds to the manipulated chromosome of figure 
4(a). In this paper, procedure p1 utilizes the fitness to evaluate the susceptibility of a 
given chromosome to the manipulation by a transgenetic vector.  In this case, if the 
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fitness of the clone chromosome after the inclusion of the plasmid’s string is better 
than the fitness of the original chromosome, then the original chromosome is 
susceptible to the manipulation. Therefore, the manipulated clone replaces the 
original chromosome in the population. In the example shown in figure 4, the 
manipulated chromosome with fitness 79 is better than the original one since the latter 
has fitness 82 and this is a minimization problem. 

 

01100010 01100010

10011011 10011011

11111011 11111011

1 2

4

5 6 7

8

1

1

10

50

7

20

plasmid

chromosome

manipulated chromosome  
  

(a) (b) 
Figure 4:(a) Chromosome manipulated by a first type plasmid  (b) the  minimum 

spanning tree correspondent to the manipulated  chromosome of figure 4 (a) 
 
A chromosome, C’, selected at random from the elite pool is the source of 

information for the second type plasmid. The information string of the second type 
plasmid is a segment between two indices, r and s, also randomly selected, |r-
s| ≤ ⎣n/4⎦ of C’. The elements 1 in the selected fragment form the information string 
of the second type plasmid. The manipulation method utilized by the second type 
plasmid is the same utilized by the first type plasmid. The manipulation, however, 
may result on a tree with leaves that are not demand nodes. In this case, a pruning 
procedure removes those leaves. The pruning procedure is described further. 
Procedure p1 is the same defined for the first type plasmid. 

The  other transgenetic vector utilized in this paper is the transposon. It rearranges 
the genes of a given chromosome in the locci that are determined by procedure p3.  In 
this work, procedure p3 selects two indices, at random, in the target chromosome. 
Those indices define a segment of the target chromosome. The transposon’s 
information string is a rule to withdraw vertices from the segment determined by 
procedure p3. The removal of those vertices, operated by the transposon’s procedure 
p2, is done one vertex at a time. Iteratively, each element 1 in the segment is set to 0. 
The other elements remain the same as in the original chromosome. If leaves 
representing non demand nodes remain in the solution tree, they are pruned. The best 
resultant solution tree is considered as the manipulated clone chromosome. Procedure 
p1 is the same designed for the plasmids. Let the manipulated chromosome of figure 
4(a) be the original chromosome for the next example with r =2 and s = 6. Then, each 
element 1 of the chromosome is removed and the resultant chromosome is analyzed. 
Figures 5(a) and 5(b) show two resultant chromosomes with the removal of vertices 2 
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(figure 5 (a)) and 4 (figure 5(b)). The solution trees corresponding to those 
chromosomes have cost 312 and 97, respectively. 
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                             (a)                                                              (b) 
 

Figure 5: Chromosome manipulated by a transposon (a) with vertex 2 set to 0 
and (b) with vertex 4 set to 0 

 
The pseudo-code of the hybrid transgenetic algorithm developed for the PCSTP is 

shown in figure 6.  Initially, a population of chromosomes is generated (step 1). Each 
chromosome is the result of the following process. At first, a set of nodes is obtained 
with an implementation of a primal-dual algorithm with processing time in O(n2log n)  
[Johnson et al. 2000]. The set of nodes returned by this algorithm induces a subgraph 
of the original graph. If this subgraph is connected, a minimum spanning tree is built 
with the nodes of the induced subgraph, otherwise the solution returned by the 
algorithm is discarded. To generate distinct solutions, perturbations are done in the 
original graph. The two methods used to disturb the graph are: vertex elimination and 
prize change [Canuto et al. 2001]. In the first perturbation method, each demand node 
of the last solution returned by the primal-dual algorithm has a probability of 50% to 
have their prizes set to zero in the original graph. In the second perturbation method a 
disturbing factor α is generated in the interval [0,1] for each demand node of the 
original graph. Then, the prize w(v) of each demand node v is replaced by α × w(v). 
The leaves of the minimum spanning tree obtained with the set of vertices returned by 
the primal-dual algorithm are scanned. If the prize of any leaf is less than the cost of 
the edge connecting this leaf to the tree, then the leaf is withdrawn. If new leaves are 
obtained after this process, then they are scanned too. The processing time of the 
pruning algorithm has complexity O(n2). 

The host’s repository is initialized with the matrix of shortest paths and the 5 best 
chromosomes of the initial population (step 2). Chromosome C* is initialized with the 
best chromosome of the initial population (step 3). In step 4, variable β is initialized. 
This variable controls the search stage, storing the number of the current iteration. 
While a maximal number of iterations, #generations, is not reached, the algorithm 
iterates between steps 5 and 25. 
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Input: Graph G 
Output: Chromosome C* 
1 Generate population Pop 
2 Load host’s repository (HR) 
3 C* ← Best chromosome of  Pop 
4 β ← 1 
5 while (β  ≤ #generations) do 
6     for j ← 0 to |Pop| do 
7          u ← random(#generations) 
8          if (u >β) then 
9             C’ ← attack_plas(Cj, β) 
10        else 
11           C’ ← attack_trans(Cj) 
12       C’← path_relinking(C’) 
13       if C’ ∈ Pop then 
14           C’ ← disturb(C’) 
15       if  (f(C’) < f(C*) ) then 
16           C* ← C’ 
17           update_elite_pool_HR(C*) 
18       if (f(C’) < f(Cj) ) then 
19           Cj ← C’ 
20       else 
21            x ← random(100) 
22            if (x ≤ 5) then  Cj ← C’  
23   end_for_j 
24  β ← β + 1 
25 end_while 

 
Figure 6: Pseudo-code of the hybrid algorithm for the PCSTP 

 
Variable u stores a pseudo-random integer, chosen with uniform probability 

between 1 and #generations (step 5). On each iteration step, a transgenetic vector is 
selected to manipulate the chromosomes of the whole population. If a plasmid is 
chosen in a given iteration, then the type of plasmid to be used has also to be defined. 
Variables u and β are compared and the probabilities of selecting a plasmid or a 
transposon, as well as the probability of selecting a plasmid of the first or second type, 
are established. Plasmids are more likely to be chosen at initial iterations. The same 
occurs with the probability of choosing a first type plasmid that is also higher than the 
probability of choosing a second type plasmid at initial iterations. As the algorithm 
runs, those probabilities are modified and, at the end, transposons and the second type 
plasmid are more likely to occur. This strategy is adopted to benefit the search in each 
stage. For instance, in early stages of the search process the quality of solutions 
represented in the population is weak. As a result, the elite pool in the initial iterations 
has, probably, low quality solutions. Thus, the information that comes from the matrix 
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of shortest paths is more useful at initial iterations. The quality of the elite pool tends 
to be improved during the search. An analogous reasoning is done concerning the 
choice of plasmids or transposons.  

 Procedure attack_plas() (step 9) implements the manipulation of chromosome Cj 
by a plasmid. Chromosome Cj and the parameter β are the input data for this 
procedure. The resultant chromosome is stored in C’. Likewise, the procedure 
attack_trans() (step 11) implements the manipulation of chromosome Cj by a 
transposon.  

After the manipulation, the resultant chromosome is the input of a path-relinking 
procedure (step 12). Procedure path_relinking() returns the best chromosome that 
results from a path-relinking operation between chromosome C’ and the closest 
chromosome of the 5 chromosomes in the host’s database. A previously presented 
path-relinking procedure [Canuto et al. 2001] is adapted to be utilized in the proposed 
algorithm. First, the algorithm finds the solution (chromosome) X which is closest to 
the solution represented in C’. The Hamming distance is utilized. The vector M of 
differences between X and C’ is computed. An element of M is 0, if the vertex 
corresponding to an index is in or out both solutions, 1 if the vertex is in C’ and not in 
X or 2 if the vertex is in X and not in C’. M is scanned. If an element 1 (resp. 2) is 
found, the vertex is removed from (resp. inserted in) C’. A minimum spanning tree is 
built with the vertices of each intermediary solution that corresponds to a vertex 
insertion in (resp. removal from) C’. The best intermediary solution is returned by the 
procedure path_relinking().  

In step 13 the algorithm checks if the resultant chromosome is already in the 
population. If this is the case, then the chromosome is disturbed (step 14). A demand 
node which is not in the solution represented in that chromosome is added to it and a 
new spanning tree is generated. Step 15 checks if the resultant chromosome is a new 
best current solution. If this is the case, then the resultant chromosome is copied to C* 
(step 16) and the elite pool of the host’s database is updated (step 17). The updating of 
the elite pool is done with the inclusion of the new best solution and the removal of 
the worst solution. 

If the resultant chromosome is better than the original one, the former replaces the 
latter (steps 18-19). However, if the manipulated chromosome is worse than the 
original one, the former can still replace the latter with a probability of 5% (steps 21-
22). 

5 Computational Experiments 

The proposed algorithm was coded in C and run on a Pentium IV, 2.8GHz, 256 Mb, 
with Linux, gcc compiler. The experiment was done with 114 instances of classes: K, 
P, C and D, available at http://www.research.att.com/ flmgcr/data. The solutions of 
those instances were obtained with exact algorithms [Lucena and Resende 2004, 
Ljubić et al. 2004]. Fifty independent runs of the proposed algorithm were executed 
for each instance. The size of the population is 25, the maximal number of 
generations is 60. An additional stopping criterion was utilized, being 20 generations 
without improvement of the best solution. 
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The performance of the hybrid transgenetic algorithm, HTA, was compared with 
the published results of the multi-start algorithm with Variable Neighborhood Search 
and Path-relinking [Canuto et al. 2001], LSP, the Memetic Algorithm [Klau et al. 
2004], MA, and the Lagrangian heuristic [Cunha et al. 2008], LH. The results for each 
instance are presented in tables 1-3.  Table 4 summarizes the results of tables 1-3, 
showing average results for each class and instance size. Tables 1-3 show the results 
of the computational experiment for groups P, K, C and D. The identification of each 
instance is given in the first column. Columns labeled gap show the percent 
difference from the best solution found by each algorithm and the optimal solution. 
Columns labeled T(s) show the average processing time in seconds.  

Running time comparisons are, in general, difficult to make, even when the same 
codes, the same machines and the same compiler options are utilized. In this paper, 
this comparison is still more difficult, since the test platforms are different. The 
platforms of LSP, MA and LH are, respectively, Pentium II, 400 MHz, 64 Mb of 
RAM; Pentium IV, 2.8 GHz, 2Gb of RAM; and Pentium IV, 3.0 GHz, 512Mb of 
RAM. Running the tests in the same platform was not possible, once the authors of 
the other algorithms could not make their codes available. Those authors utilize 
software packages that are not available. A re-implementation of those algorithms 
could introduce errors and the results obtained with the new implementations could 
produce results that differ largely from the published ones. The platforms of MA and 
LH are close to the platform of HTA. The test platform of the LSP, however, is 
significantly inferior to the platform of the other algorithms. Then, following the 
procedure adopted in other papers [Klau et al. 2004], we divide the processing time of 
the LSP by a factor of 10, a very good estimate of LSP’s processing time in machines 
similar to the ones utilized by the other algorithms. As well, no significance statistical 
tests could be done in order to compare the three algorithms. 

The results for class P are shown in Table 1. The four algorithms find the optimal 
solution of the five instances of class P100. Only algorithm LH does not find the 
optimal result for instance P200. Regarding the five instances of class P400, table 1 
shows that the LSP finds the optimal solutions of all instances, the MA and the HTA 
do not find the optimal solution of two instances and the LH does not find the optimal 
solution of any instance. HTA exhibits the best processing times for instances of class 
P, with an exception for instance P400.3 which the best processing time is obtained 
by the LH. In average, the HTA presents processing times 12.9, 7.2 and 1.8 times 
lower than the LSP, the MA and the LH, respectively.  

The proposed algorithm finds the optimal solution of 22 of the 23 instances of 
class K shown in table 1. LSP, MA and LH fail in obtaining the optimal solution of 3, 
7 and 12 instances, respectively.  The proposed algorithm is approximately 34, 20 and 
17 times faster than LSP, MA and LH, respectively. 

Table 2 shows that the HTA and the LSP do not find the optimal solution of 1 
instance of the 20 instances of class Cxx-A. The MA and the LH do not present 
optimal results for 3 and 8 instances of class Cxx-A, respectively. Concerning 
instances Cxx-B, the HTA does not find the optimal result of 2 instances. The LSP, 
the MA and the LH do not find the optimal result of 1, 6 and 15 instances, 
respectively. In average, the HTA is 10.5 and 1.3 times faster than the LSP and the 
MA, respectively, and 1.8 times slower than the LH for instances of class Cxx-A. 
Nevertheless, the HTA presents quality of solution 5.9 times, in average, better than 
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the LH for instances of class Cxx-A.  In average, the HTA is 17.7, 3.8 and 1.3 times 
faster than the LSP, MA and LH, respectively, for instances of class Cxx-B. 

 
LSP MA LH HTA Instance gap t(s) gap t(s) gap t(s) gap t(s) 

P100 0 1.5 0 2.7 0 0.25 0 0 
P100.1 0 1.4 0 3.3 0 0.32 0 0.01 
P100.2 0 0.5 0 2.4 0 0.31 0 0.03 
P100.3 0 1.0 0 2.8 0 0.23 0 0.03 
P100.4 0 1.0 0 2.3 0 0.18 0 0.01 
P200 0 7.2 0 7.2 0.45 1.58 0 0.7 
P400 0 39.7 0.2 29.3 0.37 5.74 0.2 1.4 
P400.1 0 38.2 0 19.3 1.14 7.52 0 1.3 
P400.2 0 39.6 0 17.8 0.26 5.18 0 2.1 
P400.3 0 50.0 0 23.1 0.44 5.99 0 11.6 
P400.4 0 56.5 0.5 21.4 0.89 6.28 0.2 1.1 
K100 0 0.2 0 1.7 0 0.11 0 0 
K100.1 0 0.2 0 1.6 0 0.09 0 0 
K100.2 0 0.3 0 1.6 0 0.18 0 0 
K100.3 0 0.3 0 1.5 0 0.25 0 0 
K100.4 0 0.6 0 1.9 0 0.04 0 0 
K100.5 0 0.2 0 1.4 0 0.06 0 0 
K100.6 0 0.2 0 1.2 0 0.02 0 0 
K100.7 0 0.2 0 1.6 0 0.10 0 0 
K100.8 0 0.2 2.3 1.5 0 0.34 0 0 
K100.9 0 0.2 0 1.4 0 0.02 0 0 
K100.10 0 0.1 0 1.4 0 0.03 0 0 
K200 0 0.9 0 2.4 3.96 0.74 0 0 
K400 0 6.8 0 6.9 7.09 2.73 0 0 
K400.1 0 19.4 0 6.7 9.32 2.75 0 0 
K400.2 0.2 23.4 0.2 7.1 11.73 5.57 0 1.5 
K400.3 0 14.0 0 7.4 6.20 2.39 0 0 
K400.4 0 20.4 0.1 7.7 6.20 2.07 0 0.8 
K400.5 0 12.2 0.3 7.1 4.87 2.33 0 0.2 
K400.6 0 6.0 0 8.3 6.34 3.34 0 0.1 
K400.7 0.1 30.6 0.1 7.7 7.46 3.07 0 0.9 
K400.8 0 4.2 0 6.7 4.94 3.42 0 0 
K400.9 0 7.6 0.1 7.5 7.21 3.00 0 1 
K400.10 0.4 23.1 0.7 8.7 12.73 2.76 0.2 0.4 

Table 1: Results for instances of classes P and K 
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LSP MA LH HTA Instance gap t(s) gap t(s) gap t(s) gap t(s) 
C01-A 0 3.0 0 1.9 0 0.18 0 0 
C01-B 0 5.8 0 2.3 2.30 0.84 0 0 
C02-A 0 7.0 0 1.8 0 0.18 0 0 
C02-B 0 5.4 0 2.2 1.15 0.85 0 0 
C03-A 0 8.7 0 2.9 0 0.50 0 0 
C03-B 0 29.4 0 10 0.47 2.16 0 6 
C04-A 0 14.8 0 4.5 0.16 1.60 0 7.6 
C04-B 0 38.7 0.36 39 0.82 3.49 0.09 10.9 
C05-A 0 44.7 0 9.4 0 1.48 0 10.6 
C05-B 0 39.7 0 20.1 0.16 2.56 0 0 
C06-A 0 0.9 0 4.1 0 0.21 0 0 
C06-B 0 17.9 0 5.6 9.11 3.28 0 0.05 
C07-A 0 3.4 0 3.5 0 0.38 0 0 
C07-B 0.98 16.7 3.92 5.7 0 2.36 0.98 0.9 
C08-A 0 31.3 0 8.5 0.34 4.78 0 0.5 
C08-B 0 40.4 0.4 29 0.70 6.52 0 8 
C09-A 0 47.5 0 13.4 0.56 6.57 0 27.4 
C09-B 0 58.3 0.76 38.5 0.58 10.28 0 24.3 
C10-A 0 62.8 0 35.4 0.24 5.90 0 90.3 
C10-B 0 47.4 0 39.4 0.17 6.67 0 9.5 
C11-A 0 12.8 0 6.1 0 1.00 0 0 
C11-B 0 1.4 0 9.1 7.69 5.50 0 0.02 
C12-A 0 16.2 0 9 0 2.24 0 0 
C12-B 0 15.6 0 8.7 4.83 6.38 0 0 
C13-A 0.42 105.0 0.42 17.9 0.55 11.08 0.84 6.8 
C13-B 0 73.3 0 35.9 0.79 14.71 0 2.8 
C14-A 0 82.9 0 21 1.00 13.20 0 4.2 
C14-B 0 76.6 0 29.8 0.91 13.69 0 2.3 
C15-A 0 95.7 0 45.4 0.58 16.49 0 15.3 
C15-B 0 83.7 0 45.7 0.36 14.89 0 0.01 
C16-A 0 192.0 9.09 10.6 0 5.09 0 0.7 
C16-B 0 175.8 9.09 11.5 0 9.38 0 0.9 
C17-A 0 54.9 5.55 11.2 0 7.84 0 0.2 
C17-B 0 43.4 0 12.7 0 7.80 0 0.3 
C18-A 0 399.0 0 24.1 1.523 15.52 0 9.5 
C18-B 0 326.2 0 26.2 1.670 16.75 0 16.7 
C19-A 0 392.8 0 17.9 0 5.58 0 7.3 
C19-B 0 339.0 2.05 15.8 0 4.33 0 12.3 
C20-A 0 431.1 0 7.3 0 2.88 0 8.1 
C20-B 0 380.0 0 5.2 0 1.41 0 7.4 

Table 2: Results for instances of class C 
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LSP MA LH HTA Instance gap t(s) gap t(s) gap t(s) gap t(s) 
D01-A 0 0.6 0 3.1 0 0.75 0 0 
D01-B 0 25.7 0 3.8 1.84 2.34 0 0.6 
D02-A 0 0.7 0 3.5 0 0.74 0 0 
D02-B 4.58 48.6 0 7.3 0 1.98 0 7.1 
D03-A 0 73.4 0 7.4 0 2.75 0 34.4 
D03-B 0.06 218.4 0.47 51 0.32 8.21 0.66 255.3 
D04-A 0 126.3 0 10.4 0.24 5.10 0.41 99.1 
D04-B 0 223.3 0.22 49.6 0.16 7.46 0.21 537.1 
D05-A 0 335.2 0 29.1 0.09 8.07 0.27 669.7 
D05-B 0 255.5 0.08 65.1 0.35 10.16 0.09 1200.2 
D06-A 0 2.0 0 7.7 0 0.93 0 0 
D06-B 4.47 70.2 8.35 10.5 8.66 11.40 1.49 8.7 
D07-A 0 19.5 0 8.2 0 1.78 0 0 
D07-B 1.94 71.1 1.94 9.5 2.27 11.11 0 0 
D08-A 0 172.7 0 19.1 0.40 17.84 0.39 160.7 
D08-B 0.19 317.5 0.93 123.8 0.42 33.46 0.19 346.1 
D09-A 0.18 410.9 0.43 52.1 0.41 22.52 0.56 365.5 
D09-B 0 275.4 1.15 151.2 0.32 47.73 0.07 224.8 
D10-A 0 419.3 0.2 122.2 0.17 37.11 0.11 878 
D10-B 0 264.4 0.51 107.3 0.20 43.25 0.04 1108.6 
D11-A 0 54.0 0 15.4 0 4.82 0 0 
D11-B 3.44 128.0 0 17.4 11.96 20.58 3.44 2.2 
D12-A 0 84.4 0 13.9 3.73 28.64 0 0 
D12-B 0 68.7 0 15.1 3.25 23.98 0 0.1 
D13-A 0 504.7 0.38 58.7 0.50 58.28 0 195.4 
D13-B 0 428.8 1.17 97.2 0.42 81.47 0.2 359.3 
D14-A 0 638.8 0.59 102.3 0.62 86.95 0 302.9 
D14-B 0 617.8 1.38 102.8 0.41 121.85 0 452.9 
D15-A 0 784.0 0.64 145.7 0.29 105.53 0 274.4 
D15-B 0 522.0 0.6 95.6 0.18 92.06 0 389.6 
D16-A 0 139.7 7.69 23.1 0 22.83 0 0 
D16-B 0 104.3 0 26.4 0 23.47 0 0 
D17-A 0 350.6 0 24.8 5.16 43.90 0 0.07 
D17-B 0 208.9 0 23.7 5.20 47.58 0 0.08 
D18-A 0 3004.4 1.28 81.4 0.87 76.55 0.45 215.5 
D18-B 0.44 3664.3 3.22 98.7 0.66 71.48 1.34 312.5 
D19-A 0.65 4095.5 3.82 87.6 0.35 89.42 1.3 525.2 
D19-B 0.32 3860.0 2.51 81.9 0.43 71.23 0.64 700.5 
D20-A 0 2813.9 0.18 18.4 0.19 38.75 0 111.9 
D20-B 0 2210.4 0 12.7 0.19 9.21 0 170.7 

Table 3: Results for instances of class D 
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Regarding the number of optimal solutions found by each algorithm of class D, table 
3 shows that the LSP exhibits the best performance obtaining the optimal solution for 
30 of the 40 instances. The LSP is followed by the HTA, the MA and the LH. Those 
algorithms find the optimal solution of 22, 18, and 9 instances respectively.  Table 4 
shows that considering quality of solution, in average, the LSP obtains the best results 
for instances of class Dxx-A, and the HTA is the best algorithm for instances of class 
Dxx-B. The HTA presents worse runtimes than the LSP for 6 instances, however, in 
average, the former is 3.6 and 2.2 times faster than the latter for instances of classes 
Dxx-A and Dxx-B, respectively. Concerning quality of solution the HTA outperforms 
the MA and the LH in 19 and 23 instances, respectively. MA and LH present better 
solutions than HTA in 7 and 8 instances, respectively. In average, table 4 shows that 
the HTA exhibits quality of solution better than the MA and the LH for classes D-A 
and D-B. The quality of solutions of MA for classes D-A and D-B is improved by a 
factor of 4.4 and 3.7 times, respectively, by the HTA. The HTA exhibits higher 
processing times than the MA, in average, for instances of class D, being 4.6 and 5.3 
times slower than the latter for classes D-A and D-B, respectively. The LH is faster 
than the HTA by a factor of 5.9 and 8.2 times for instances of classes D-A and D-B, 
respectively. The HTA presents better quality of solution than the LH, improving the 
average solutions of the latter by a factor of 3.7 and 4.4 times for classes D-A and D-
B, respectively. 

LSP MA LH HTA Instance gap t(s) gap t(s) gap t(s) gap t(s) 
100 0 0.25 0.209 1.53 0 0.11 0 0 
200 0 0.90 0 2.40 3.96 0.74 0 0 K 
400 0.064 15.25 0.136 7.44 7.645 3.04 0.018 0.45 
100 0 1.08 0 2.70 0 0.26 0 0.02 
200 0 7.20 0 7.20 0.450 1.58 0 0.70 P 
400 0 44.80 0.140 22.18 0.620 6.14 0.080 3.50 
A 0.021 99.88 0.753 12.80 0.248 5.14 0.042 9.43 C B 0.049 90.74 0.829 19.62 1.586 6.69 0.054 5.12 
A 0.042 701.53 0.761 41.71 0.651 32.66 0.175 191.64 D B 0.772 679.17 1.127 57.53 1.862 37.00 0.419 303.82 

Table 4: Average results 

Table 4 shows that the LSP obtains 8 best average results from the 10 classes of 
instances regarding quality of solution. The proposed algorithm obtains the best 
average results in 6 of the 10 classes. The average processing times spent by the HTA 
are significantly lower than the processing times of the LSP for all classes of 
instances.  The MA and the LH do not present any average result, concerning quality 
of solution, better than the HTA. The MA and the LH present better average 
processing times than the proposed algorithm for instances of class D. The LH 
presents the best average processing times for instances of class C-A. Nevertheless, 
those gains in processing times result in loss of quality of solution for the MA and the 
LH.  
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6 Conclusions 

In this paper a Transgenetic Algorithm hybridized with a path-relinking procedure 
was applied to the Prize Collecting Steiner Tree Problem. Alike bacteria that 
exchange precious information for survival, evolution in Transgenetic Algorithms 
takes place by cooperation rather than by competition. These algorithms base the 
search process in information obtained a priori and in information obtained from the 
search process itself. In this paper the a priori information was a matrix of shortest 
paths between all pairs of demand nodes. That information was utilized by the 
plasmids to alter the code of chromosomes, mainly at early stages of the search 
process. Another type of information, also inserted in chromosomes by the plasmids, 
was obtained from a very simple source of information about the search process, 
being the five best chromosomes found up to a given iteration. The utilization of those 
sources of information aimed at guiding the search to promising regions of the space 
of solutions. For the purpose of search intensification, a randomized local search 
procedure was applied to restricted parts of chromosomes. It was operated by means 
of transposons. Another intensification strategy is implemented by means of a path-
relinking procedure. The proposed heuristic algorithm was applied to 114 benchmark 
instances and its results were compared with other heuristics presented previously for 
the investigated problem. Three algorithms were utilized for performance 
comparison: a multi-start algorithm with Variable Neighborhood Search and Path-
relinking [Canuto et al. 2001], a Memetic Algorithm [Klau et al. 2004], and a 
Lagrangian heuristic [Cunha et al. 2008]. The results show that, in average, the 
proposed algorithm outperforms the Memetic Algorithm in 7 of the 10 instance 
classes utilized in the computational experiment, and outperforms the Lagrangian 
heuristic in 8 of the 10 classes, concerning quality of solution. The Memetic 
Algorithm and the Lagrangian heuristic do not present better average solutions than 
the proposed algorithm for any class of instances. The multi-start algorithm [Canuto 
et al. 2001] presents 4 average solutions better than the proposed algorithm and the 
latter presents 2 better average solutions than the first. The comparison between the 
processing times exhibited by the proposed algorithm and the multi-start algorithm 
shows that significant better results are achieved by the proposed algorithm.   

7 Future Work 

Concerning the Prize Collecting Steiner Tree Problem a number of alternatives exist 
for testing as sources of information of Transgenetic Algorithms which can make 
those algorithms still more powerful for the investigated problem concerning both 
processing time and quality of solution. Future works will investigate lower bounds 
and statistics of the search process as sources of information for the transgenetic 
vectors. Other related problems will also be tackled by the Transgenetic Algorithms.  
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