

Model-Based and Prototyping-Driven User Interface
Specification to Support Collaboration and Creativity

Thomas Memmel
(Workgroup Human-Computer Interaction, University of Konstanz, Germany

memmel@acm.org)

Harald Reiterer
(Workgroup Human-Computer Interaction, University of Konstanz, Germany

Reiterer@inf.uni-konstanz.de)

Abstract: When the user interface is specified, a picture is worth a thousand words, and the
worst thing one can do is write a natural-language specification for it. Because this practice is
still common, it is a challenging task to move from text-based requirements and problem-space
concepts to a final UI design, and then back again. However, this activity is required frequently
and is necessary to drive creative ideas. In our research we found that advanced UI
specifications should therefore be made up of interconnected artefacts that have distinct levels
of abstraction. With regards to the transparency and traceability of the rationale of the
specification process, transitions and dependencies must be visual and traversable. For this
purpose, we introduce a model-based user interface specification method and a corresponding
experimental tool that interactively integrates interdisciplinary and informal models with
different levels of fidelity of user-interface prototyping. With innovative styles of interaction
and user input, our proposed tool supports the collaboration required in a multidisciplinary
context.

Keywords: model-based development, user interface design, prototyping, specification
Categories: H.5.2, H.5.3

1 Introduction

It is generally recognized by both software practitioners and Human-Computer
Interaction (HCI) specialists that structured approaches are required to model, specify,
and build interactive systems with high usability [Metzker et al., 2002]. This structure
should be reflected in the Software Development Life Cycle (SDLC). Nevertheless, in
many organizations, UI design is still an accidental or opportunistic by-product and
HCI methods are not sufficiently embedded in the overall SDLC. If they are
integrated, their contribution remains marginal, thus reducing the expected positive
impact on software quality. This reality can be explained by the fact that most
Integrated Development Environments (IDEs) are inappropriate for supporting actors
from different disciplines in designing interactive systems. Formal UI tools prevent
many actors from taking part in collaborative design if they do not have adequate
knowledge of specific terminologies. On the other hand, being too informal leads to
misunderstandings and conflicts in communication with programmers. Moreover, on
further examination, many tools turn out to be more focused on requirements

Journal of Universal Computer Science, vol. 14, no. 19 (2008), 3217-3235
submitted: 23/7/08, accepted: 29/10/08, appeared: 1/11/08 © J.UCS

management than on providing support in extracting requirements from user needs
and translating them into good UI design. After all, despite - or perhaps precisely
because of - the vast functionality of many tools, the outcome is often unsatisfactory in
terms of UI design, usability and aesthetics. This is described as the high threshold -
low ceiling phenomenon of UI tools [Campos et al., 2004].

1.1 Actors in the UI specification process

Over the last 3 years, we observed UI development practice in the German automotive
industry [Memmel et al., 2007a; Memmel et al., 2007c]. As a consequence of the lack
of appropriate tools, many actors tend to use tools they are familiar with and which
can be categorized as being low threshold – low ceiling – narrow walls IDEs, a
phenomenon that has been thoroughly observed by [Campos et al., 2004]. We
distinguish between two different populations of tool-users, which can be assigned to
two different areas of corporate UI development projects: (1) Client: business
personnel, marketers, domain experts, or HCI experts use Office-like applications
such as MS Word or MS PowerPoint [Memmel et al., 2007a] to document user needs
and context of use in order to define the problem-space. They will translate the needs
as analyzed, and their contextual conditions, into general usage requirements and
evaluate their work at several quality gates. At this stage, responsibility is typically
shared with, or completely passed on to, an IT supplier. (2) Supplier: actors with a
sophisticated IT background (e.g. programmers or designers) translate usage
requirements into UI and system requirements, deliver prototypes and finalise the
outcome in a UI specification. Working with UI builders, and using more formal,
precise and standardized notations, they narrow the solution space towards the final
UI. Ultimately, the described assignment of responsibility leads to a project
environment that is propelled by specification-driven UI prototyping and UI
development. This means that it is primarily the specification that drives the
subsequent prototyping process. In specification-driven prototyping cultures, end
users (i.e. the client) can first access prototypes of the software system only after the
specification sheet has been consolidated and the supplier has started working
[Schrage, 1999].

1.2 Shortcomings of current UI specification practice

The difference between these groups of actors tends to result in a mixture of formats.
This makes it difficult to promote concepts and creative thinking down the supply
chain without media disruptions and loss of precision [Memmel et al., 2007a]. The
following negative factors therefore contribute to UI development failure: (1) The lack
of a common course of action and the use of inappropriate, incompatible
terminologies and modelling languages [Zave et al., 1997] that prevent even the
minimum levels of transparency, traceability and requirements-visualization that
would be adequate for the problem. (2) The difficulty in switching between abstract
and detailed models due to a lack of interconnectivity [Campos et al., 2006]. (3) The
difficulty of travelling from problem space to solution space, a difficulty that turns the
overall UI development into a black-box process. (4) The burial of mission-critical
information in documents that are difficult to research and have very awkward

3218 Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

traceability. Experts are overruled when the UI design rationale is not universally
available in the corresponding prototypes. (5) The perpetuation of unrecognized cross-
purposes in client and supplier communication, which can lead to a premature change
or reversal of UI design decisions, the implications of which will not be realized until
later stages. (6) The resulting misconceptions that lead to costly change requests and
iterations, which torpedo budgets and timeframes, and endanger project goals.

Because of the immaturity of their UI development processes, industrial clients
determined on a shift of responsibility. In our research for Dr. Ing. h. c. F. Porsche AG
and Daimler AG, we found the following sticking points that tend to change current
UI specification practice. (1) Due to the strategic impact of many software products,
clients want to increase their UI-related competency in order to reflect corporate
values by high UI quality [Memmel et al., 2007c]. (2) Whereas conceptual modelling,
prototyping or evaluation have always been undertaken by suppliers, the client himself
now wants to work in the solution space and therefore needs to develop the UI
specification in-house [Memmel et al., 2007a]. This induces a prototyping-driven
specification culture [Schrage, 1999]. (3) The role of the supplier becomes limited to
programming the final system. The client can identify a timetable advantage from this
change, and an important gain in flexibility in choosing her suppliers. Having an in-
house competency in UI-related topics, the client becomes more independent and can
avoid costly and time-consuming iterations with external suppliers. (4) It is nearly
impossible to specify a UI with Office-like applications. The existing actors, who are
nevertheless accustomed to text-based artefacts, now require new approaches. The
task of learning the required modelling languages and understanding how to apply
these new tools must not be an unreasonably difficult one.

1.3 Tool support that is adequate for the problem

This cultural change must be supported by an integrating UI tool that allows the
translation of needs into requirements and subsequently into good UI design. In Table
1 we present a condensed overview of relevant UI tool requirements.

In this paper we present both a set of models and a corresponding tool named
INSPECTOR, still under development, which are designed to support interdisciplinary
teams in collaboratively gathering user needs, translating them into UI-related
requirements, designing prototypes of different fidelity and linking the resulting
artefacts (i.e. a combination of expression and medium [Brown et al., 2008]) to an
interactive UI specification. The term interactive refers to the concept of making the
process visually externalized to the greatest extent possible. This concerns both the
artefacts and the medium of the UI specification itself. The latter should no longer be
a text-based document, but a running simulation of how the UI should look and feel.
Accordingly, we extend the meaning of UI prototypes to also include the provision of
access to information items below the UI presentation layer. Being interactively
connected, all of the ingredients result in a compilation of information items that
together drive creativity and are necessary to specify the UI (Table 2). In Section 2 we
link our research to related work. Section 3 presents the common denominator in
modelling that we developed. We explain how our tool, called INSPECTOR, will
utilize the resulting interconnected hierarchy of notations and UI designs. In Section 4

3219Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

we present the results of two evaluation studies. Accordingly, in Section 5 we deduce
some aspects of our future work. The article ends with a summary and conclusion.

Purpose/Added Value Tool Requirement
Traceability of design rationale;
transparency of translation of models into
UI design

Switching back and forth between
different (levels of) models

Smooth transition from problem-space
concepts to solution space

Smooth progression between abstract and
detailed representations visualizes the
model-based fashion of the process

HCI experts can build abstract and detailed
prototypes rapidly for continuous UI
simulation

Designing different versions of a UI is
easy and quick, as is making changes to
it, and thereby supports creativity

Provide support for design assistance and
creative thinking for everybody; all kinds of
actors can proactively take part in the UI
specification

Concentration on a specific subset of
modelling artefacts, which can be a
UML-like notation or one that best
leverages collaboration

The early detection of usability issues
prevents costly late-cycle changes

Allowing an up-front usability evaluation
of the UI; providing feedback easily

Table 1: Requirements for UI tools for interactive UI specification; on the basis of

[Memmel et al., 2007a; Nunes et al., 2004; Campos et al., 2006]

Interactive UI Prototypes Interactive UI Specifications
Vehicle for requirements analysis Vehicle for requirements specification
Exclusively models the UI layer; may be
inconsistent with specification documents

Allows drill-down from UI to models;
relates UI to requirements and vice versa

Either low-fidelity or high-fidelity Abstract first, specification design later
Supplements text-based specification; mostly
driven by specification

Widely substitutes text-based
specification; driven by prototyping

Design rationale saved in other documents Incorporates design knowledge and
rationale

Table 2: Main differences between prototypes and interactive UI specifications

2 Related Work

Campos and Nunes presented the tools CanonSketch and TaskSketch [Campos et al.,
2006]. CanonSketch was the first tool that used canonical abstract prototypes and an
UML-like notation, supplemented by a functioning HTML UI design layer.
TaskSketch is a modelling tool that focuses on linking and tracing use cases, by means
of which it significantly facilitates development tasks with an essential use-case
notation. Altogether, TaskSketch provides three synchronized views: the participatory
view uses a post-it notation to support communication with end-user and clients, the
task-case view is targeted towards designers and is a digital version of index cards

3220 Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

(well-known artefacts of usage-centred or agile developers) and the UML activity
diagram view is adequate for software engineers. As we will see in this paper, we
closely concur with the concepts of these tools, but our approach differs in some
important areas. Firstly, and in contrast to CanonSketch, we also support detailed UI
prototyping because we found that the high-fidelity externalization of design vision is
especially important in corporate UI design processes. Secondly, we provide more
ways of modelling. INSPECTOR integrates earlier text-based artefacts, as well as task
models and interaction diagrams. Some of them are also grounded in usage-centred
design, but we focused on agile models as they proved to be helpful in bridging the
gaps between the disciplines (see Section 3).

The tools DAMASK [Lin et al., 2002] and DENIM [Newman et al., 2003] use a
Zoomable User Interface (ZUI) approach for switching between different levels of
detail through a visual drill-down process. Based on our own experience with ZUIs,
we followed a consistent implementation of this technique. Calvary et al. [Calvary et
al., 2003] presented the CAMELEON reference framework, which proposes four
levels of abstraction for UI tools: tasks and concepts, abstract UI design, detailed UI
design, and the final UI. We will show that INSPECTOR supports this framework
very well by the nature of the layers of abstraction used and the ZUI approach applied.
However, as INSPECTOR is focused on UI specification rather than on actual UI
development, it supports the final UI stage by means of UIs to other tools in the
supply chain. With respect to DAMASK and DENIM, INSPECTOR borrowed the
idea of using animations to support transitions between contexts of use: when an actor
needs to switch from one view to another, INSPECTOR applies a zoom-in, zoom-out
technique so as to preserve continuity between the contexts of use, which has been
largely demonstrated as a positive impact in SDLC [Lin et al., 2002].

3 A Common Denominator In UI-related Modelling

An advanced IDE must be able to support all actors in actively participating in the UI
specification process (Table 1). This requires it to deploy modelling techniques that
can be used easily by everybody. We know that the Unified Modelling Language
(UML) is a weak means of modelling the UIs of interactive systems [Sutcliffe, 2005].
As well as its shortcomings in describing user interactions with the UI, its notation
also overwhelms most actors with too much (and mostly unnecessary) detail [Ambler,
2004]. Designing UIs is an interdisciplinary assignment and many actors might be left
behind due to unnecessary formality. Altogether, both UML and Office-like artefacts
are inadequate means for the specification of the look and feel of interactive UIs.
Conversely, in agile development useful lightweight artefacts well support
collaboration and design [Brown et al., 2008].

3.1 Bridging the gaps with Agile Modelling

The identification of adequate means of modelling for UI specifications is very much
related to the ongoing discussion on bridging the gaps between HCI and SE. This
discussion is also propelled by the very difference in the way experts from both fields
prefer to express themselves in terms of formality and visual externalization. HCI and

3221Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

SE are recognized as professions made up of very distinct populations. In the context
of corporate UI specification processes as outlined in Section 1, modelling the UI also
requires the integration of the discipline of business-process modelling (BPM). With
regards to UI development, business processes can play an important role. It is
important to maintain a close connection between business processes and the UI.
Business analysts analyze and model business processes that serve as requirements for
the UI. Having high UI quality is normally consistent with business needs. Product
knowledge must not be owned just by business analysts, but must be shared with other
stakeholders. Concerning the UI, interaction designers must have a clear
understanding of the processes of an enterprise. The information buried in various
artefacts of BPM must be externalized visually to be able to design for user
experience. Sousa, Mendonca et al. [Sousa et al., 2008] propose task models as an
intermediate modelling language that could bridge process modelling and UI
development.

The interaction layer - as interface between system and user - is the area where
HCI, SE and BPM are required to collaborate in order to produce high-quality UIs. As
actors in corporate UI specification processes come from all three disciplines, the
question is which modelling notations are adequate to extend and align their
vocabulary. As we found in our previous research, agile methods are close to HCI
practice [Memmel et al., 2007b]. [Brown et al., 2008] found that agile artefacts, for
example use cases [Ambler, 2002; Ambler, 2004] and scenarios [Barbosa et al., 2003,
Rosson et al., 2002] successfully drive discussions between software developers and
designers. Personas [Beyer et al., 1998] additionally raise empathy for user needs and
identification with user roles. Agile development has always emphasized collaboration
and therefore represents a promising pathfinder for a course of action common to all
three disciplines.

Human-Computer
Interaction

High-Fi Prototype

Low-Fi Prototype,
Conceptual Model

UI Storyboard,
Navigation Map

Flow Chart,
Process Model

Task Map

Task Case

Personas, User
Scenario, User Role

Activity, Information,
Interaction Scenario

Software Engineering

Pilot System

Essential UI Prototype

Use Case Storyboard,
UI Flow Diagram

Activity, Robustness &
Sequence Diagram

Use Case Diagram

(Essential) Use Case

User Story, User Role,
Personas

Usage Scenario

Business Process
Modelling

Power Point Prototype

Mockups

UI Slide Show,
UI Storyboard

Activity, Sequence,
& Data Flow Diagram

Use Case Diagram

Business Use Case

Personas, Business
Roles

Business Vision

Identified Common
Denominator

Detailed Prototype

Abstract Prototype

UI Storyboard

Flow Chart, Activity &
Data Flow Diagram

Use Case Diagram,
Task Map

(Essential) Use Case

Personas,
User (Role) Map

Scenario (Map)

Fr
om

 te
xt

 to
 v

is
ua

l U
I e

xt
er

na
liz

at
io

n

Extension and interoperability of modelling languages towards a common denominator

Figure 1: Towards a common denominator in interdisciplinary UI-related modelling

3222 Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

Holt [Holt, 2005] presents a BPM approach that is based on UML class, activity,
sequence and use-case notations. Ambler based his agile version of the Rational
Unified Process (RUP) on a similar, but less formal, BPM approach [Ambler, 2002].
In general, agile approaches already exist in HCI [Memmel et al., 2007b], BPM
[Ambler, 2002] and SE [Beck, 1999] and we can define a common denominator for
all three disciplines. We keep this denominator as small as possible. We filter out
models that are too difficult to be understood by every actor. We do not consider
models that are more commonly used to support actual implementation or that have
been identified as mostly unnecessary by Agile Modelling [Ambler, 2004, Ambler,
2002]. IT suppliers can deduce the structure of the UI much better from the resulting
interactive specification than they can from Office-like documents.

We integrate different levels of modelling abstraction to visualize the flow from
initial abstract artefacts to detailed prototypes of the interaction layer. On the vertical
axis in Fig. 1 we distinguish the models according to their level of abstraction. Models
at the bottom are more abstract (i.e. text-based, pictorial), whereas those at upper
levels become more detailed with regard to the specification of the UI. On the
horizontal axis, we identify appropriate models for UI specification. Accordingly, we
differentiate between the grade of formality of the models and their purpose and
expressivity. The models with a comparable right to exist are arranged at the same
level. At each stage we identify a common denominator for all three disciplines as a
part of the evolving interactive UI specification.

3.2 Text-based notations of needs and requirements: personas and scenarios

Scenario Info Bubbles-

Scenario Shape

Integrated PDF

Problem Scenario

Figure 2: Scenario map as entry stage to the modelling process (left); scenario info-
bubble (right)

Text-based notations can be used at any stage to document early usability
attributes (usability and user experience goals, constraints, etc) with INSPECTOR’s
information bubbles (Fig. 2, left). For describing users and their needs, HCI
recognizes user profiles, (user) scenarios [Rosson et al., 2002], role models
[Constantine et al., 1999], and personas [Beyer et al., 1998]. Roles and personas are
also known in SE and BPM and are therefore appropriate for initial user-needs
modelling. As an interdisciplinary modelling language, research suggests scenarios

3223Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

[Barbosa et al., 2003] - known as user stories (light-weight scenarios) in agile
development [Beck, 1999]. In SE, scenarios – as a sequence of events triggered by the
user – are generally used for requirements gathering and for model checking. Such a
scenario is used to identify a thread of usage for the system to be constructed and to
provide a description of how the system will be used. HCI applies scenarios to
describe in detail the software context, users, user roles, activities (i.e. tasks), and
interaction for a certain use-case. BE uses scenario-like narrations to describe a
business vision, i.e. a guess about users (customers), their activities and interests.
Altogether, written stories are for raising problems, defining scope, articulating early
requirements, and keep the design activity interesting and fun [Brown et al., 2008],
which in turns drives creativity. On starting INSPECTOR, the user can create a
scenario map that relates all scenarios that will be modelled (Fig. 2, left). The user can
first describe a single scenario in a bubble shape (Fig. 2, right). For this purpose,
INSPECTOR provides a built-in text editor with appropriate templates and enables
the direct integration of existing requirement documents into its repository. Later, the
user will zoom-in and fill the scenario shape with graphical notations and UI design
(see Section 3.3).

3.3 Graphical notations: requirements, usage and behaviour modelling

Entering this stage, the user needs artefacts that support the important process of
translating needs into requirements. Role maps [Constantine et al., 1999] help to relate
created personas to each other (Fig 3, left). Although different in name, task cases
(HCI), essential-use cases (SE), and business-use cases (BPM) can be created in a
classical use-case notation (Fig. 3, centre).

Use-case diagrams (SE, BE) overlap with use-case and task maps (HCI)
[Constantine et al., 1999]. The latter also help to separate more general cases from
more specialized (essential) sub-cases. We considered different models for task and
process modelling and, following Ambler [Ambler, 2002; Ambler, 2004], we again
selected related modelling languages.

Figure 3: Personas (left), Use-Case Diagram (center); Activity Diagram (right)

Activity diagrams (Fig. 3, right) are typically used for business-process modelling, for
modelling the logic captured by a single use-case or usage scenario, or for modelling
the detailed logic of a business rule. They are the object-oriented equivalent of flow
charts and data-flow diagrams.

3224 Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

Data-flow diagrams model the flow of data through the interactive system. With a
data-flow diagram, actors can visualize how the UI will operate depending on external
entities. For the storyboard layer we decided to keep the typical UI storyboards we
know from HCI [Beyer et al., 1998]. The storyboard serves as interface layer between
needs and requirement models and the UI design (Fig. 4).

UI Storyboard

Task Map

Overview

UI Design / UI Flow

Abstract UI Design

Figure 4: UI storyboard with UI design and models; magnified areas show embedded
artefacts

3.4 UI prototyping and simulation: modelling look and feel

Prototypes are already established as a bridging technique for HCI and SE [Zave et
al., 1997; Blomkvist, 2005]. HCI mainly recognizes them as an artefact for iterative
UI design. Avoiding risk when making decisions that are difficult to retract is a reason
why prototyping is also important for business people. Accordingly, we chose
prototypes as a vehicle for abstract UI modelling. Sketches are required to make note
of good design ideas [Brown et al., 2008]. Low-fidelity prototypes will help to design
and evaluate the UI at early stages and they support traceability from models to
design. Alternate designs can be maintained in the specification landscape to
safeguard the design rationale. UI elements can be assembled to templates in order to
ease and speed up the design process. The visually most expressive level is the high-
fidelity UI prototyping layer (Fig. 5). It serves as the executable, interactive part of the
UI specification and makes the package complete.

3225Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

Figure 5: INSPECTOR-made high-fidelity UI design

Figure 6: INSPECTOR-made UI design opened in Microsoft Expression Blend

3226 Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

From this point, actors can then explore, create and change models by drilling
down to the relevant area of the UI specification. Moreover, programmers can pop-up
the interactive UI specification to get guidance on the required UI properties.
Therefore, all UI designs that have been created can be saved in two XML formats.
On the one hand, the XAML export guarantees the reusability of the specified UIs
during the development by the supplier. The XAML code can, for example, be
imported to MS Expression Blend (Fig. 6). The XAML helps to provide simulations
of the UI in a web browser such as Microsoft Internet Explorer. On the other hand, as
a member of the UsiXML supply chain [Memmel et al., 2008], INSPECTOR can
contribute to the early phases of needs analysis and requirements engineering. With its
UI design layer, INSPECTOR can also be compared to tools such as GrafiXML
[Lepreux et al., 2006].

3.5 Travelling through the UI specification process with INSPECTOR

INSPECTOR is based on the metaphor of a whiteboard, which is a very common tool
in collaborative design environments. Information can flow from source to need, from
abundance to absence, and both ends can influence the flow. The flow is also affected
by temporal and spatial arrangements. Designers therefore heavily rely on whiteboards
for telling stories and recording their design ideas and design rationale [Brown et al.,
2008]. Basically, actors can therefore apply the models and design capabilities of
INSPECTOR in arbitrary order along the UI specification process. However, the
scenario map is very well suited to work on early assignments of UI specification
processes. Usability and user-experience goals, business and design vision as well as
reusable requirements can be captured within the information bubbles at the scenario
layer. At this initial stage, problem scenarios can be textually documented. They will
be enriched by concrete artefacts at the UI storyboard layer, which functions as the
mediator between interconnected models and designs. It encapsulates the collection of
linked and interrelated artefacts by means of panning and zooming as major
interaction techniques [Lin et al., 2002; Newman et al., 2003]. This provides actors
with a feeling of diving into the information space of the UI specification whiteboard.

The appearance of INSPECTOR’s UI is based on a linear scaling of objects
(geometric zooming) and on displaying information in a way that is dependent on the
scale of the objects (semantic zooming) [Ware, 2004]. Automatic zooming
automatically organizes selected objects on the UI. Animated zooming supports the
user in exploring the topology of an information space and in understanding data
relationships. For switching between models and UI designs, the user can manually
zoom in and out and pan the canvas. During user modelling, for example, a user shape
can be linked to, and be part of, user roles, personas, and use-cases. Zooming-in on a
user shape reveals more details about the underlying personas. The use-case shapes
can be part of a superordinate task map and can be linked accordingly (Fig. 7).

Moreover, zooming in a particular case could link to an essential use-case
description and reveal more detail on user and system responsibilities. At this stage,
activity and data-flow diagrams help during interaction modelling. The user can link
every model to UI designs of different fidelity and vice versa (Fig. 7). During
modelling, or while traversing relationships by panning and zooming, hints about the
current zoom factor and the current position in the information space can be given in

3227Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

order to avoid disorientation. A common way of supporting the user’s cognitive (i.e.
spatial) map of the information space is an overview window (Fig. 4). Navigating
between artefacts can be an extensive task, however, if objects are widespread in
terms of being some distance along the three dimensions of the ZUI canvas. For a
much faster navigation, actors can switch between artefacts with a tree-view explorer
that allows a jump zoom into areas far removed from the current user focus.

Figure 7: Exemplified modelling and design throughput with INSPECTOR

In order to support the assessment of the UI specification quality, we are also
working on a feedback component for INSPECTOR. Annotations can be attached to
any canvas object. They will be used to review requirements models, to integrate
results of UI evaluation studies or to incorporate notes about trade-offs or design
decisions. Annotations will be accessible through a management component, which
allows a direct zoom-navigation to the artefacts concerned. This well supports the
identification and decomposition of contradictions, as they frequently occur during
reflection phases [Brown et al., 2008]. Equally important for design rationale, the
feedback will also be stored in the UI specifications such as XAML.

3228 Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

4 Expert Feedback and Usability Study

4.1 Expert Interviews

We interviewed software and UI specification experts (n=6) in a questionnaire-based
usability study. The participants were introduced to INSPECTOR through a short
demonstration, a video and a supplementary text explaining the motivation for our
approach. Each expert was provided with an installation of the tool and had two weeks
to return their feedback by means of a questionnaire that was divided into 5 parts.

The first part was designed to (1) identify the field of activities of every
respondent, (2) get an overview of the models and tools typically applied, and (3) get
an assessment of difficulties along the supply chain. The second to fourth parts asked
about INSPECTOR in terms of (1) the applicability of the modelling notations, (2) the
completeness of the UI design capabilities and their practicability for UI evaluation,
and (3) the assessment of the tool’s general usability and the user experience provided.
The fifth part asked if INSPECTOR could, in general, improve the UI specification
practice.

Questionnaire topic Avg.
Ability to integrate documents and logic with INSPECTOR 3.66
Opportunity to capture conceptual and schematic ideas 3.83
Support for user, task and interaction modelling 4.00
Link models and thereby increase the traceability and transparency 3.66
Text-based and graphical requirements modelling (aggregated) 3.79
Accessibility of the prototyping features 3.16
Functionality provided at the UI design layer 3.40
Applicability of the UI designs for usability evaluations 3.33
Possibility to link UI designs in order to create a simulation 3.25
Overall UI prototyping capabilities (aggregated) 3.28
Opportunity to get both overview and detail on the specification space 3.33
Helpfulness of the zoom-interaction style during prototyping and modelling 3.00
Support for switching between created artefacts 3.50
Accessibility of all necessary information on the zoom canvas 3.50
Overall rating of the interaction with INSPECTOR (aggregated) 3.33
Overall contribution of INSPECTOR to existing UI specification practice 3.83
Improvement of work style through a combination of different models with
multi-fidelity UI design

4.83

Table 3: Overview on feedback; average points based on a 5-point Likert scale

With regards to the results of our survey (see Table 3), all respondents have stated
that INSPECTOR, as a tool that combines models with UI Design, contributes great
value to their work style (average 4.83 pts; on a 5-point Likert scale). The added value
was particularly identified in terms of an increased coherence of models and design
artefacts, whereby INSPECTOR enhances traceability and transparency. Even the

3229Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

very early version of INSPECTOR was therefore already expected to be able to
improve existing UI specification practice (average 3.83 pts). The participants of the
study were quite satisfied with INSPECTOR's support for text-based and graphical
requirements modelling (average 4.00 pts).

Nevertheless, the feedback pointed to the necessity for a better linking
functionality between the modelling artefacts. Some experts stated that while creating
a UI design, the interaction with INSPECTOR could be enhanced by a contextual
layer. This could give the expert the chance to easily cross-check the design with
underlying models. Instead of frequently jumping back and forth on the canvas, it is
then possible to temporarily visualize models and UI concurrently. Consequently, we
implemented a visualization that highlights all outgoing and incoming links of a model
in order to enhance traceability. Due to the experimental stage of INSPECTOR’s
design and prototyping facilities, the experts missed some important features such as
master components and templates. These are needed to allow for rapid prototyping
and quick generic changes. In addition to a copy & paste mechanism that was required
for the UI design layer, we therefore also implemented support for grouping UI
elements and storing them in a template repository. In order to improve the utility of
INSPECTOR during usability evaluations of modelling and design artefacts, we also
developed an annotation component. During meetings, discussions and feedback
sessions, sticky notes can be attached to all artefacts on the specification canvas. This
allows the recording of feedback and design decisions for later consideration during
subsequent specification tasks. The notes can be accessed in a spreadsheet component
that allows sorting and filtering, as well as jump navigation towards them.

4.2 Long-term Diary Study

Other usability issues concerned the general interaction with the tool and were similar
to those found during a diary study. As proposed in [Shneiderman et al., 2006] we
used diaries to evaluate the long-term usability of INSPECTOR. We therefore used
INSPECTOR during an interaction design lecture. Three groups of computer science
and HCI students (n=8) were asked to use the tool during a use-case study on the
specification of rear-seat entertainment systems.

For a period of three weeks, every student wrote their own diary to give insight
into (1) the kind of models created, (2) additional tools that were applied, (3)
problems that occurred, (4) ratings of the user experience, (5) general issues and
opinions about the tool. We decided on the diary study in order to evaluate
INSPECTOR over a longer period of time. Because we were interested in how the
empirical results change with the duration and intensity of usage, we preferred a long-
term study to classical usability tests. In weekly workshops, we discussed the
intermediary results and recorded the issues for subsequent correction.

By means of the diary study, we found, for example, that objects on the ZUI
canvas occasionally behaved inconsistently after the tool was used for several hours
and an extended amount of zoom operations had been performed. Students also
reported issues with integrated external documents (PDF, Word, etc.), when these
were repeatedly saved and opened. This led to a disarrangement of the XML structure
in saved project files and significantly prevented a fluent and enduring work style. To
have identified these problems in a much shorter lab-based usability study would have

3230 Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

been pure chance. Thanks to the diary study, we were able to solve these issues
quickly.

Moreover, we found that some participants preferred to create the first abstract
prototypes initially with paper and pencil. We realized that the use of the built-in
sketching mechanism increased as soon as we provided a pen tablet as an input device.
In addition, it proved to be very difficult to rapidly prototype UIs with point and click
interaction on the canvas. We will therefore evaluate different pen tablet technologies
that we could permanently combine with INSPECTOR. This will significantly
increase the application performance during design sessions. In addition, students
were initially not comfortable with all the notations provided and required assistance
on their proper application. We addressed this issue by making a start on including a
help feature that explains notations as well as their scope of application. In addition,
we enhanced the affordance of templates for personas or essential-use cases, for
example, to ease the understanding of the artefacts.

Ultimately, the diary study and the upgrades resulted in an improvement of the
feedback on the tool usability. Rated with an average of 1.75pts (std. 0.46) (on a 5-
point Likert scale) after the first week and 3pts (std. 0.00) after the second,
participants assessed INSPECTOR with an average of 4.25pts (std. 0.46) at the end of
the study. A repeated-measure ANOVA revealed a significant main effect for the
rating across the weeks (F(2,14)=105.00, p<0.001). Furthermore the differences
between each week are also very significant statistically (week 1 vs. week 2:
F(1,7)=58.33, p<0.001; week 2 vs. week 3: F(1,7)=58.33, p<0.001). The according
inter-rater agreement was assessed by calculating the intraclass correlation. This
revealed a significant correlation of 0.99 (p=0.000), indicating a high homogeneity in
subjects' ratings of the system across the three weeks.

5 Future Work

In meeting or decision-room set-ups, INSPECTOR supports collaboration and
decision-making. Users can cooperatively work on requirement models or UI designs
during brainstorming sessions. Utilized as an electronic whiteboard, INSPECTOR
records all created artefacts in a structured manner. Actors can also work
asynchronously using their own workspace, for example on a desktop installation.
Modelled artefacts are then exported into XML documents and re-imported into a
shared workspace, which resembles the common design rationale. Initial experimental
setups with our high-resolution powerwall installation (4640 x 1920 pixels) allowed a
comprehensive view on our zoomable specification space (see Fig. 7). This high-
resolution display supports our ZUI approach by displaying a wide range of artefacts
and relations (overview) to all actors. Laser-pointer interaction enables an easy-to-use
cooperative and more collaborative interaction style (see Table 4). Through point and
click operations, actors explore and manipulate the UI specification space. In order to
ease the collaboration with multi-modal input devices and to align INSPECTOR more
consistently with an electronic whiteboard metaphor, we will follow a more
straightforward zoom approach. Therefore, we will partly dissolve the nesting of
modelling and design objects on the specification canvas in favour of a large

3231Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

zoomable object-information landscape. The handling of complexity will then be
possible through search and filter functions, which provide quick access to artefacts.

Figure 7: Utilizing INSPECTOR for collaborative meetings at a megapixel powerwall
with laser-pointer interaction

Aspect Detailed information
Simulation Simulations propel the design process. An easy-to-use UI design

layer must provide support for prototyping-driven development
Creativity By interfaces to multi-modal input devices, such as laser-pointer

or table-tops, creativity can be well supported. Depending on the
situation, suitable input devices help to model what is required

Collaboration Simulation and support for creativity help to establish a
collaborative UI specification style. By using different input
devices and large high-resolution displays, actors can work in a
computer-aided design room, equipped with an artefact
repository. For the latter, we envision a database-supported
versioning system that allows management and comparison of the
stored artefacts.

Table 4: Overview on future work on INSPECTOR

In order to provide the whole functionality of INSPECTOR at the high-resolution
display, multi-modal input devices are necessary to foster creativity and collaboration.
In addition to the laser-pointer as an input device, we therefore consider a PDAs or
iPhone for text-input (e.g. writing text or annotations) and optionally for panning and
zooming as well. Moreover, several stakeholders could work in parallel with
INSPECTOR using multiple devices, such as laser-pointer or table-top, at the same
time. Naturally, the UI of INSPECTOR must be adapted in some extent to be usable

3232 Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

without mouse and keyboard in every situation. Because browsing menu structures is
an ungrateful activity using a laser-pointer, interaction with INSPECTOR could as
well be supported by speech-recognition. After all, a thoughtful combination of
modalities for interacting with INSPECTOR will be a major part of our future
research.

6 Summary

Based on our experience in UI specification and design, we have come to the
conclusion that the typical methods and tools available are not adequate. A recent
study from [Brown et al., 2008] has outlined that the key tools in design meetings are
sketches (i.e. prototypes or agile graphical notations), lists (e.g. essential use cases)
and design stories (i.e. text-based artefacts). Their role extends beyond representing
UI design in terms of noting good ideas and making a point. In this context,
whiteboards help to focus attention and serve as collaborative design repository. With
INSPECTOR, actors are supported in applying informal models they are familiar with,
and are given the opportunity of UI prototyping with different fidelities. Design
artefacts, as we make them available with INSPECTOR, can extend the designers’
ability to collaborate more effectively and to develop a joint vision of a software
product. Being logically linked, transitions from abstract to detailed artefacts increase
the transparency of design decisions and enhance the traceability of dependencies on
an electronic whiteboard. This helps to reveal errors, to dissolve contradictions, and
improves communication, consistency, and lastly, the necessary understanding of the
overall problem space that has to be made accessible through an innovative UI. Based
on a ZUI approach, INSPECTOR integrates and innovatively interconnects the
required artefacts in an interactive UI specification that provides good support for
roundtrip engineering at any design stage. As thoughtfully selected artefacts in
combination are more powerful [Brown et al., 2008], enhancing INSPECTOR in
terms of collaboration (multi-modality), creativity (modelling and prototyping) and
simulation (‘living’ specification) will make it an innovative and fully capable
alternative to the tool landscape found in current industrial practice.

References

[Ambler, 2002] Ambler, Scott W.: Agile Modeling (John Wiley & Sons, NY, 2002)

[Ambler, 2004] Ambler, Scott W.: The Object Primer - Agile Model-Driven Development with
UML 2 (Cambridge University Press, 2004)

[Barbosa et al., 2003] Barbosa S.D.J., Paula, M.G. (2003): Interaction Modelling as a Binding
Thread in the Software Development Process, In Proc. of the workshop on bridging the gaps
between software engineering and human-computer interaction, Oregon, USA

[Beck, 1999] Beck, K., Extreme Programming Explained (Addison-Wesley, 1999)

[Beyer et al., 1998] Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered
Systems (Morgan Kaufmann, 1998)

3233Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

[Blomkvist, 2005] Blomkvist, S. (2005): Towards a model for bridging agile development and
user-centered design. In: Human-centered software engineering – integrating usability in the
development process, Springer, 219-244

[Brown et al., 2008] Brown, J.; Lindgaard, G.; Biddle, R. (2008): Stories, Sketches, and Lists:
Developers and Interaction Designers Interacting Through Artefacts. In Proc. of the Agile
Conference 2008, Toronto, Canada, 39-50

[Calvary et al., 2003] Calvary G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,
Vanderdonckt, J. (2003): A Unifying Reference Framework for Multi-Target User Interfaces.
In Interacting with Computer 15(3): 289–308

[Campos et al., 2004] Campos, P., Nunes, N. (2004): Canonsketch: a User-Centered Tool for
Canonical Abstract Prototyping. In Proc. of 11th International Workshop on Design,
Specification and Verification of Interactive Systems, Springer: 146-163

[Campos et al., 2006] Campos, P., Nunes, N. (2006): Principles and Practice of Work Style
Modeling: Sketching Design Tools. In Proc. of Human-Work Interaction Design. Springer

[Constantine et al., 1999] Constantine, L.L., Lockwood, L.A.D.: Software for Use: A Practical
Guide to Models and Methods of Usage-Centered Design (Addison-Wesley, 1999)

[Holt, 2005] Holt, J.: A Pragmatic Guide To Business Process Modelling (British Computer
Society, UK, 2005)

[Lepreux et al., 2006] Lepreux, S., Vanderdonckt, J., Michotte, B.. (2006): Visual Design of
User Interfaces by (De)composition, In. Proc. of DSV-IS'2006, Vol. 4323, Springer, Berlin,
157-170.

[Lin et al., 2002] Lin, J., Landay, James A. (2002): Damask: A Tool for Early-Stage Design
and Prototyping of Multi-Device User Interfaces. In Proc. of the 8th International Conference
on Distributed Multimedia Systems, San Francisco: 573-580

[Memmel et al., 2007a] Memmel, T., Bock, C., Reiterer, H.. (2007): Model-driven prototyping
for corporate software specification. In: Gulliksen, Jan (Eds.) Engineering Interactive Systems
2007 (EHCI-HCSE-DSVIS 2007), Salamanca, Spain

[Memmel et al., 2007b] Memmel, T., Gundelsweiler, F., Reiterer, H. (2007): Agile Human-
Centered Software Engineering, In Proc. of the 21st BCS-HCI, Lancaster, UK, 167-175

[Memmel et al., 2007c] Memmel, T., Reiterer, H., Ziegler, H., Oed, R. (2007): Visual
Specification As Enhancement Of Client Authority In Designing Interactive Systems. In:
Kerstin Roese, Henning Brau (Eds.): Usability Professionals 2007, Frauenhofer IRB Verlag,
Stuttgart, 99-104

[Memmel et al., 2008] Memmel, T., Reiterer, H. (2008): Inspector – Interactive UI
Specification Tool. In Proc. of the 7th International Conference On Computer Aided Design of
User Interfaces (CADUI) 2008, Springer, Albacete, Spain, 161-174

[Metzker et al., 2002] Metzker, E., Reiterer, H. (2002): Evidence-Based Usability Engineering.
In C. Kolski, J. Vanderdonckt (Eds.), Computer-Aided Design of User Interfaces III, Kluwer
Academic Publishers, Dordrecht, 323-336

[Newman et al., 2003] Newman, M. W., Jason, J. L., Hong, I., Landay, J. A. (2003): DENIM:
An Informal Web Site Design Tool Inspired by Observations of Practice. HCI, 18(3): 259-324

[Nunes et al., 2004] Nunes, N. J., Campos, P. (2004): Towards Usable Analysis, Design and
Modeling Tools. In Proc. of MBUI’2004, CEUR Workshop Proceedings, Vol. 103

3234 Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

[Rosson et al., 2002] Rosson, M. B., Carroll, J. M.: Usability Engineering: scenario-based
development of human computer interaction (Morgan Kaufmann, San Francisco, 2002)

[Schrage, 1999] Schrage, M.:. Serious Play: How the World's Best Companies Simulate to
Innovate (Harvard Business School Press, 1999)

[Shneiderman et al., 2006] Shneiderman B., Plaisant C. (2006): Strategies for evaluating
information visualization tools: multi-dimensional in-depth long-term case studies. In Proc. of
the 2006 AVI workshop on Beyond time and errors: novel evaluation methods for information
visualization, Venice, Italy, 1-7

[Sousa et al., 2008] Sousa, K. S., Mendonca, H. et al. (2008): User Interface Development
Lifecycle for Business-Driven Enterprise Applications. In Proc. of the 7th International
Conference on Computer-Aided Design of User Interfaces CADUI’08

[Sutcliffe, 2005] Sutcliffe, G. (2005): Convergence or competition between software
engineering and human computer interaction, In: Human-centered software engineering –
integrating usability in the development process, Springer: 71-84

[Ware, 2004] Ware, C.: Information Visualization: Perception for Design (Morgan Kaufmann,
2004)

[Zave et al., 1997] Zave, P., Jackson, M. (1997): Four Dark Corners of Requirements
Engineering. ACM Transactions on Software Engineering and Methodology 6, 1: 1-30

3235Memmel T., Reiterer H.: Model-Based and Prototyping-Driven User ...

