
Integrating Dialog Modeling and Domain Modeling – the
Case of Diamodl and the Eclipse Modeling Framework

Hallvard Trætteberg
(Norwegian University of Science and Technology, Norway

hal@idi.ntnu.no)

Abstract: For most applications, data-intensive applications in particular, dialog modeling
makes little sense without a domain model. Since domain models usually are developed and
used outside the dialog modeling activity, it is better to integrate dialog modeling languages
with existing domain modeling languages and tools, than inventing your own. This paper
describes how the Diamodl language, editor and runtime have been integrated with the Eclipse
Modeling Framework.

Keywords: Model-based user interface design, dialog modeling, domain modeling, Eclipse
Modeling Framework.
Categories: H.1.1, H.5.2

1 Introduction

Domain modeling is one of the most fundamental software engineering activities.
Besides being a tool for reaching a common understanding of the domain, a domain
model may be utilized for engineering the actual system, both as a guidance for
design and more directly as input to code and schema generators. There exist many
languages that are well suited for this, and object-oriented class diagrams, as found in
the Unified Modeling Language (UML), are very popular and well supported by
modern tools.

A dialog model is an abstract description of the structure and behavior of a user
interface, and in particular what information that each part mediates to the user as
output and from the user as input. Hence, the domain model plays an important part of
a dialog model, as the information that the user senses and manipulates by means of
the user interface, should be part it. This does not mean that the domain modeling
activity must fully precede dialog modeling. E.g. in a user-centered design process,
prototypes are often used to elicit domain knowledge and requirements. If models are
used for rapid prototyping, the domain model may result from or be refined by the
dialog modeling process.

Since domain models are so important for dialog models, a dialog modeling
language needs to include domain modeling concepts, like entity or class, attributes
and associations, operations etc. This does not mean you need to include a full
domain modeling language in your dialog modeling language, but you must be able to
reference, operate on and utilize elements in existing models. At the language level
this means identifying every concept and construct where the domain model is
relevant and where such references may be necessary. At the tool level this means
defining the role and scope of your own tools and existing ones, and their level of

Journal of Universal Computer Science, vol. 14, no. 19 (2008), 3265-3278
submitted: 23/7/08, accepted: 29/10/08, appeared: 1/11/08 © J.UCS

integration and interoperation. At the process level this means identifying good
practices for reaching specific goals.

This paper details how the Eclipse Modeling Framework (EMF) [EMF] has been
integrated into our Diamodl [Trætteberg, 03][Trætteberg, 07] dialog modeling
language, at the language level, tool level and process level. Section 2 gives an
overview of related work. Section 3 and 4 briefly describe the Diamodl language and
tool architecture, respectively, while section presents EMF. Section 5 explains how
EMF concepts are integrated in the Diamodl language and how the EMF framework
is utilized in the Diamodl tools. Section 6 and 7 outlines how the developer utilizes
both EMF and Diamodl tools for developing and executing models, before we
conclude in section 8.

2 Related work

The topic of domain modeling has received some, but surprisingly little attention in
the model-based user interface design (MB-UID) community in recent years. As the
focus has shifted towards task-based design, domain modeling and data management
get less focus than before. [Paternò, 00] lists domain models as one of several
important abstractions, but it does not actually include a single domain model,
although it does discuss UML, including class diagrams. Domain objects are
mentioned as something operated upon by tasks, but little is said about how the
structure of tasks relate to the structure of domain models, e.g. specialization of task
along inheritance relations, navigation along associations, etc.

CTT, the most widely used task modeling notation, does not include objects in
task diagrams itself, although it includes operators for data-based enablement. Several
tools exist for working with CTT models, e.g. CTTE [Mori, 02] and Dialog-Graph-
Editor [Reichart, 07], and although they both are able to generate running prototypes,
they do not seems to be integrated with domain modeling languages or tools
commonly used by industry.

Just-UI, with its heritage from CASE method, acknowledges domain models by
including a conceptual modeling stage using the object-oriented OO-Method, to
obtain a conceptual schema of an Information System [Molina, 02]. Code generation
techniques are used for building a complete system, and it cannot be considered a
rapid prototyping tool.

Methods with roots from object-oriented design and software engineering, are
perhaps the most data-centric. OVID [Roberts, 98] is a method that combines object-
oriented analysis and user interface design, to bridge the gap to software engineering.
Hence, it has potential for integrating with domain modeling tools, but unfortunately,
there is no tool support for OVID.

CanonSketch [Campos, 04] is a tool for user-centered prototyping of user
interfaces, where sketches of interfaces are evolved through canonical prototypes to
executable HTML-based prototypes. In some ways, it is similar to the Diamodl
approach presented in [Trætteberg, 07], in the focus on concrete representations and
prototyping. However, their focus is on usability of developer-centric tools, while
Diamodl is what they would call formalism-centric. CanonSketch is based on the
Wisdom method [Nunes, 01] and hence supports UML, both for describing the logical
structure of the user interface, the domain model and the link between them.

3266 Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

However, CanonSketch does not seem to have support for combining the prototypes
with rich example data, based on the domain model, e.g. to aid user-centered
evaluation.

UsiXML [Limbourg, 04] is a family of XML-based languages, with a rich set of
sub-languages and accompanying tools. UsiXML includes concepts (and tags) for
task modeling, abstract and concrete user interface modeling and domain modeling
[UsiXML]. The domain model supports object-oriented modeling with classes,
inheritance, attributes, associations and methods. From the documentation on the web
site it is difficult, however, to understand how the domain model is handled by the
many editors, generators and interpreters, e.g. if code is implemented for representing
the domain objects, like EMF does. The domain model has the concept of object and
attribute, there seems to be insufficient support for using rich example data in the
generator and protyping tools.

3 Diamodl and domain modeling

The Diamodl dialog modeling language is a hybrid language based on dataflow and
state logic. The dataflow part of the language includes concepts for storing,
transforming, computing and transmitting data, and is by nature data-intensive. The
main data-oriented language concepts are shown in Table 1.

Concept Notation Description

Variable

A variable holds a single value or
object (top) or a set of objects (bottom)
of a specified type.

Computati
on

A computation contains a function that
takes a set of arguments and computes
a value. The value is recomputed
whenever one of the arguments change.

Gate

A gates is a special computation
attached to the edge of an interactors.
The direction of the gate determines if
it represents output or input. Often the
function is just used for type checking.

Connectio
n

Line connecting the flow

graph nodes.

A connection controls the flow of
values from a node to another. A
connection may contain a unary
function that transforms the value
flowing along the connection.

Table 1: Data-oriented Diamodl concepts

3267Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

Figure 1 shows a simple model fragment, with two variables, several connections,
a computation and two gates attached to an interactor (labeled rectangle). This
particular fragment models how a person (object of type jucs.Person) may be selected
from a set of persons by means of a list widget. The value of the variable named
“persons” flows into the gate pointing into the interactor. This gate is an output-
receive gate, meaning that the interactor should make the value available for sensing
by the end-user. In the case of the fragment in Figure 1, a list widget has been chosen,
as it presents a set of values to the end-user and supports selection. When the gate
receives the set of persons, their names are extracted and used as the list widget’s new
content. If the interactor supports input of (new) values, as in this case, these values
will flow out of the input-send gate, pointing out of the interactor. In the case of the
fragment in Figure 1 the selected item will flow through some internal logic and out
of the lower gate and into the variable named ‘person’.

Figure 1: Diamodl model fragment

All these language elements are related to the domain model, e.g. variables and
gates are typed with class names, connections may access attributes to compute
related values, and all of them (including the connections) operate on actual domain
data.

While not shown in this model fragment, the Diamodl language supports states
and transitions for controlling when various parts of the user interface are active. At
first glance, these concepts are unrelated to the domain model. However, transitions
are triggered by events and guarded by conditions, and they may refer to the domain
data flowing into and out of variables and computations. In addition, transitions
include actions that are executing when they are triggered, and states include actions
that are executed upon entry and exit. These actions may operate on the domain data
accessible in the context of the triggering model element.

4 Diamodl system architecture

Prototyping with Diamodl is supported by an editor and a runtime. The editor is based
on GMF, with separate models for the language, notation and mapping between them.
Custom actions are used for inserting model fragments, performing specialized
editing and for launching a runtime and executing the model. The behavior of the
running prototype is animated in the editor to make it easier to understand the

3268 Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

relationship between concrete and abstract structure and behavior. It is also possible
to capture an event trace and inspect the execution in greater detail.

The Diamodl runtime is based on several open source libraries. EMF is used for
managing both domain models and sample instance data. The dataflow behavior is
based on JFace Data Binding [JFaceDataBinding] and includes extensions for binding
EMF data to SWT widgets. Statechart logic is implemented by means of the Apache
SCXML engine [SCXML], while GUI execution utilizes an XML format and
renderer for SWT named XSWT [XSWT]. Finally, Javascript support is implemented
by the Mozilla Javascript library [MozJavascript] (formerly called Rhino). All these
libraries have been adapted and integrated to work well with Diamodl and each other,
as illustrated in Figure 2.

Figure 2: Diamodl editor and runtime architecture

5 Eclipse Modeling Framework (EMF) concepts and tools

EMF is a comprehensive Java-based framework and set of tools for modeling and
managing domain data. Its core consists of a modeling language called Ecore and a
compact runtime for managing models and instance data. Ecore supports a small
subset of UML’s class diagrams, corresponding to the eMOF core of Object
Management Group’s MetaObject Facility [OMGMOF], that is well suited for both
in-memory manipulation and code generation. Since Ecore is its own meta-model, a
fairly small set of concepts and a correspondingly small API may be used for
understanding and managing Ecore objects.

An Ecore model describes a set of classes with attributes, references and
operations. Generalization, multiple inheritance, interfaces, enumerations and Java
data are supported. In the typical case, a developer will generate a complete Java
implementation of the model, and use the generated code in further development, e.g.
by filling in the body of operation stubs. Two standard languages, Java and OCL, are
supported for specifying an operation’s implementation. Both kinds rely on
annotations on the operation that are recognized by the code generator, and
appropriate code templates. Although a special, generated object factory is used to
create the actual instances, the instances themselves will look & feel like ordinary
Java objects and the application programmer will mostly use them as such.

Diamodl editor

Diamodl custom extensions

GMF runtime

Diamodl
metamodel

Diamodl runtime

Data binding

Runtime
controller

XSWT

EMF

Rhino
Javascript

SCXML

build & run

event trace

3269Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

EMF also supports a dynamic, reflective, meta-object-based API for managing
instances, without any code generation. This API is typically used by generic tools
that are independent of a specific Ecore model. In this case, the application typically
loads one or more Ecore models and uses the contained meta-objects for creating
instances and accessing attributes and references.

Figure 3: Tree-based (left) and graphical (right) Ecore editors

Whether you use the generated or reflective API, a comprehensive set of features
is provided by the framework core, including change notification and recording,
automatic management of inverse references and XML-serialization. Several other
Eclipse projects utilize and contribute EMF technology. The EMF Tools (EMFT)
project contributes support for validation (e.g. using OCL), querying and transactions.

EMF provides Eclipse-based views, editors and wizards for working with both
data and models. There are wizards that let you create an Ecore model from scratch,
or built from Java code or an XML schema. The tree-based Ecore editor provides
menu commands for creating model element according to context, a property sheet for
editing details and drag’n drop for moving elements. There also exists a graphical
Ecore editor contributed by the Ecore Tools project, based on the Graphical Modeling
Framework (GMF) project. A screenshot of both the tree-based and the graphical
editor is shown in Figure 3.

Given an Ecore model it is possible to create and edit a data file containing
instance data in accordance with the model. For instance, if the model contains the
classes Library, Author and Book, the data file may contain instances representing a
specific Library containing a set of specific Books by specific Authors. The data
editor is purely reflective, i.e. it does not rely on generated code, only on the model.
The editor makes sure only valid instance structures can be created, based on the rules
defined in the model and implemented by custom validation code.

3270 Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

Figure 4 shows how the editor ensures that only a message may be created as a
child of a Mailbox. Although the editor is simple and tree-based, it works well for
creating example data for a domain.

EMF has extensive support for XML, in two ways. First, all instance graphs,
including Ecore models are serializable as XML. Second, any XML schema may
translated to an Ecore model. Later, when EMF serializes instance graphs for this
model, it will make sure the XML is compliant with the original XML schema.

Figure 4: Tree-based data editor

EMF-based editors utilize a standard three-tier application architecture with
persistence based on XML, a model layer with centralized command execution and
support for undo/redo, and the user interface as the view and controller. The EMF
API supports extending all relevant aspects of this architecture and many projects
provide more advanced features, like support for database-based persistence (Teneo),
command execution with validation and transaction support (EMFT) and multiple
clients sharing a server-based model (CDO). Custom editors, like the graphical ones
build using GMF, will typically extend relevant layers themselves, and/or utilize
other’s extensions, like those from the mentioned projects. Diamodl replaces the user
interface with two layers, a dialog layer and a surface layer, and builds on the other
layers, without constraining them.

6 Utilizing EMF in the Diamodl language and runtime

Types and functions are the most important diamodl modeling concepts where
elements from the domain model need to be referenced.

A type specifies a limited range of values that a variable may hold, that a function
may take as argument or return, or that may flow along a connection. A type is either
a basic type like Integer, Boolean or String, a user-defined class name or an
array/list of one of the previous kinds. Diamodl does not support the definition of new
classes; instead it relies on Java’s classpath, for looking up Java classes, or Ecore

3271Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

models that are associated with the Diamodl model, for looking up Ecore classes. I.e.
to introduce domain specific data in a Diamodl model, you must either add the
necessary Java classes to your project or model the data using EMF’s tools and
associate the resulting Ecore model with your Diamodl model. As mentioned above,
defining new Ecore classes may be done using the editors provided by the EMF and
GMF projects. Once the Ecore model is associated with the Diamodl diagram, Ecore
class names may be used as the type of variables by selecting from a menu, as shown
in Figure 5.

Functions are used for defining the behavior of computations. Unary functions
may in addition be attached to connections, to transform values as they pass through.
There are many kinds of functions, and there are several kinds that utilize the domain
model in its definition.

Figure 5: Selecting an Ecore class as the type of a variable.

So-called property functions may refer to attributes and associations defined in
the domain model. Such functions take an instance of the class containing the
attribute or association as the only argument and may be used on both computations
and connections. When executed, the property function finds the (Ecore) class of the
argument and returns the value of the specified attribute or association. The
computation named messages in Figure 1 is an example of a property function. It
computes the set of messages in a mailbox, where messages is an association
connecting the Mailbox and Messages classes in the model shown in Figure 3.

A second kind of function, the script function, uses Javascript to operate on the
domain data accessible through the function’s arguments. We use the Mozilla
Javascript library, which is tightly integrated with Java. E.g. it is possible to refer to
any Java class and getters and setters are accessed using the Javascript property
mechanism. To better support Ecore-based data, we have extended the Mozilla
Javascript library to support Ecore instances. When a Javascript property of an Ecore
instance (EObject) is read or set, we use EMF’s dynamic meta-object-based API to
access the corresponding attribute or association. This means that we may navigate
through any instance graph with both ordinary Java objects and Ecore instances using
Javascript’s property access syntax.

As mentioned, Ecore supports specifying the implementation of operations using
annotations. Unfortunately, since the support relies on code generation and

3272 Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

compilation, it is less helpful in our prototyping tool. Therefore, we have added
support for annotating the operation with Javascript, thus avoiding code generation
and compilation.

In Javascript, a method is a property with an anonymous function as its value. We
have augmented the property lookup mechanism to look for our custom annotation. If
the property currently has no value and the custom annotation contains source code of
a function, an anonymous function object is created on-the-fly, installed as the
property value and returned. E.g. the prettyString operation defined by the
Message class and shown in the class diagram in Figure 3, is implemented by the
following Javascript: $1.from + ":" + $1.subject; (The $1 symbol refers
the implicit object argument, while $n for higher n’s refers to the explicit arguments.)
By supporting a scripting language like Javascript, more of the domain’s meaning
may be captured in the model and used it in our prototyping tool, without the need for
code generation and a costly build operation.

Sometimes there is a need for referencing classes and other model elements in the
domain model in Javascript code. This is necessary for testing whether some object is
an instance of a specific Ecore class or for creating new instances of a specific Ecore
class. To support this, all the Ecore packages associated with the Diamod model are
defined as global variables in Javascript’s top-level scope. E.g. in the model in Figure
1, Javascript code will be able to refer to the Ecore package named email just by
using its name. By using the getEClassifier()-method from the reflective
Ecore-API it’s then possible to locate a specific class by name, e.g.
email.getEClassifier(“Message”) will return the Ecore class named
Message. Since looking up contained objects by name is fairly common, we have
introduced a shortcut that lets you read it as a property. E.g. the expression
email.Message will iterate across all objects contained by the email variable’s
value and return the one with a name attribute with the value “Message”. This
mechanism works for all Ecore instances, so any domain model using containment
associations and name-attributes will support this shortcut.

The behavior of Diamodl is partly dataflow and partly Statecharts. The variables,
computations, gates and connections define a network through which data is
propagated whenever some change occur. E.g. when a variable changes, the value is
propagated through the outgoing connections. Similarly, when one of the input values
of a computation changes, a new output value is (re)computed and propagated
through the network.

In addition to reacting to changes of values, the Diamodl runtime also support
reacting to changes of value properties, as this is necessary to ensure that dependent
values are correctly updated. E.g. a form field showing some property P of variable O
must be updated both when O changes and when O’s P property changes. In the
Diamodl runtime, this is implemented by means of the JFace Data Binding framework
and its observable values. Out of the box, this framework supports Java’s standard
way of listening to property changes. However, we have added support for Ecore’s
notification mechanism, to allow Ecore instances to also fully participate in dataflow.
This makes it possible to have a variable typed with an Ecore class and ensure that
property changes are reacted upon. E.g. in the example in Figure 1, this may be used
to ensure that the listbox presenting the messages contained by the mailbox variable is
correctly updated when a message is added or removed.

3273Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

The network of connected variables and computations and the various function
types represents explicit declarations of relations between data in the user interface,
and this is the basis for configuring the data bindings. The Javascript-based functions
may, however, hide such relationships. Consider a list of mailboxes, which is
populated by running Javascript code that extracts their names, and a separate dialog
for renaming the mailboxes. To make sure the list is updated when a mailbox is
renamed, we must somehow notice that this change affects the Javascript function.
Therefore, the Javascript engine has been extended to record dependencies and report
those to the data bindings engine. Hence, when the list of names are extracted from
the mailbox objects, the data binding engine knows that subsequent changes to the
‘name’ property of these mailboxes must trigger re-computation of the Javacript
function. In general, after executing a Javascript function, appropriate listeners are
attached to Ecore objects based on the dependencies, and when notifications are
received, dependent values are re-computed.

Conditions and actions are related to the Statechart “nature” of Diamodl. As
mentioned above, they may both be attached to transitions and actions may also be
attached to states. Conditions are evaluated in the context of some event, to guard the
triggering of a transition after the appropriate event has been received. The event may
include an event object which the condition may refer to. E.g. if we want something
special to happen when a message with a certain property is selected, the event will be
that an object flows out of the appropriate gate, while the condition will check the
property. Again, the domain model becomes central, and as for functions, Javascript
support has been introduced as a generic solution. I.e. conditions may be defined by
means of Javascript expressions. Similarly, actions may be defined by Javascript
statements, that are executed in the context of the triggered model element, whether
transition or state.

7 Using the EMF and Diamodl tools together

In this section we will outline how the EMF and Diamodl tools are used together in
practice, by means of an example.

It is often a matter of taste whether domain modeling is done before, during or
after dialog modeling. Fairly often, we model user interfaces for existing systems, and
in such cases it is natural to develop the domain model first. EMF provides both tree-
based and diagram-based editing of Ecore models, as shown in Figure 3. In the initial
development of the model, we prefer the diagram editor, but we find ourselves using
the tree-based for details and annotations as it is more responsive and has complete
coverage of the Ecore language.

The example domain model is shown left in Fig. 6 and contains the two classes
Person and UoD and the URI datatype. The Person class includes name and
homePage attributes, while the UoD class has a containment reference to the
Person class named allPersons. In Ecore, all objects in a resource, e.g. a data
file, must be contained in a single root object, and therefore we include the UoD (for
Universe of Discourse) class. Hence, if we have a reference to the UoD object, we
may reach all other objects in our “universe”. The URI datatype lets us include

3274 Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

objects of ordinary Java classes as types in our model. In this example, it is used as
the type of the homePage attribute.

Once a domain model is available, we can start referring to domain concepts in
the Diamodl model, e.g. define variables with type information and computations that
access attributes and associations. In the example model shown in Fig. 7, we have
three variables named uod, persons and person, with the types UoD,
Person[..] and Person ([..] indicates a multiplicity of more than one). If
a type name is missing from the domain model, the Diamodl editor will insert so-
called problem markers, which is an Eclipse mechanism for indicating warnings or
errors with small icons in top of the faulty object. The Diamodl editor includes toolbar
buttons for opening the domain model in the tree-based or graphical editor, so it is
easy to add missing classes to the domain model.

Figure 6: Example domain model and sample data

A qualitative evaluation is possible without actual domain data, but little of the
behavior may be tested without actual data to operate on. The Ecore editor includes an
action for instantiating the model in a data file. A complete graph of Ecore instances
may then be created using the reflective data editor, as shown right in Fig. 7.
Contained by the UoD object, we find two Person objects, and we can see that one
of them have ‘Hallvard Trætteberg’ as its name and ‘http://www.idi.ntnu.no/~hal’ as
the homePage. The same Person instances appear in the list widget at the far left in
the prototype in Fig. 7. Since the XML serialization format is based on the open XMI
standard, it is straight-forward to export data from existing sources, using appropriate
queries and transformations. instead of creating sample data manually.

The example model and corresponding GUI prototype is shown in Figure 7, and
contains the following functionality:

• The solid circle contains a variable named uod holding the root UoD object, in

which all other objects are contained (directly or indirectly). All the Person

3275Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

objects are extracted by following UoD’s allPersons association and sent to
the persons variable.

• The solid rectangle contains the list widget that is used for viewing the Person
objects. It includes Javascript for extracting the Person instances’ names. The
person variable holds the selected Person.

• The person variable is connected to personInteractor inside the dashed
rectangle, which models the fields used for viewing and editing the name and
homePage properties.

• The browser widget and “Try” and “Use” buttons are modeled inside the dashed
oval. The “Try” button triggers a computation which sends the selected
Person’s homePage property to the browser, while the “Use” button triggers a
computation that sets the same Person’s homePage property to the URI
currently shown by the browser.

• The “Add person” button is modeled inside the stippled circle and creates a new
Person instance and adds it to the UoD object’s allPersons association.

Figure 7: The example model(above) and GUI prototype (below)
with corresponding parts highlighted

The main dependencies are modeled by the connections, while some hidden
dependencies are handled by the integration of Javascript, Ecore and the databinding
engine. E.g. when a Person’s name property is edited, the list widget showing these

3276 Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

properties is automatically updated. Similarly, when a new Person is created and
added to the UoD object’s allPersons association, the list content is updated.

Once the example data are in place, they may be loaded by the runtime and
utilized by the model elements. E.g. each variable in the model has an enter action,
that is executed when that part of the model is activated as a state. To initialize the
variable with data from the data file, you will usually write a simple Javascript
expression that navigates from the root instance to the desired data. A special action is
provided for the common case where a variable is initialized to all the instances of a
certain class.

To test a dialog, all the concrete user interface elements are assembled into an
XSWT file and the diamodl runtime renders the GUI and executes the diamodl model.
The initialization of the variables will trigger the data binding engine and the GUI
prototype will become alive, as the user interface elements are populated with data.
The end-user may then start interacting with the prototype and cause values to flow
according to the modeled behavior. In the example prototype shown in Fig. 7, the user
has selected a person from the list and pressed the “Try” button to view the selected
person’s home page. If the evaluation indicates that the functionality should be
changed, the model may be edited and the GUI prototype rebuilt and run again.

The model may be executed and the GUI rendered in several contexts. In the
simplest case, the GUI appears in a view below the diamodl editor. This is useful
when running small examples and debugging. The GUI may instead be shown in an
application frame, which may be resized and moved around like ordinary
applications. A third variant is showing the widgets of the GUI inside the diamodl
editor itself. This mode is relevant for visualizing the executing, but since the layout
is based on the model’s, it is not useful for end-user testing. Finally, the GUI may be
executed as part of an editor application utilizing EMF’s layered architecture.
Although not yet completely implemented, this will allow full support for opening
XMI documents, editing the contained data using commands, undoing and redoing
these commands and saving the XMI documents.

8 Conclusion and further work

The current version of the Diamodl editor and runtime, is the third in a series of
implementations and the first that has been fully integrated with Eclipse and EMF.
The EMF integration allows us to utilize a plethora of modeling tools within the
Eclipse ecosystem, since most of these also support EMF. Hopefully, this will make
dialog modeling easier to combine with model-driven software engineering. The code
is open source and available from the recently established diamodl project at
sourceforge.net.

We are currently using Diamodl editor and runtime and the EMF tools in our
master course TDT4250 on model-driven development of Information Systems. In
this course, we combine business process modeling with BPMN, domain modeling
with EMF and dialog modeling with Diamodl. Our experiences show that this
combination works well from a modeling perspective. The next step is integrating
Diamodl and EMF runtime systems with a BPEL engine, to enable Diamodl-based
prototypes to participate in modern SOA-based process-oriented architectures. By
building on Eclipse and EMF, we believe we have good foundation for this work.

3277Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

References

[Campos, 04] Campos, P., Nunes, N. CanonSketch: a User-Centered Tool for Canonical
Abstract Prototyping. Proceedings of the EHCI/DSV-IS’2004, International Conference on
Engineering Human-Computer Interaction / International Workshop on Design, Specification
and Verification of Interactive Systems, Hamburg, Germany, 2004.

[EMF] The Eclipse Modeling Framework home page: http://www.eclipse.org/modeling/emf/

[JFaceDataBinding] JFace Data Binding: http://wiki.eclipse.org/index.php/JFace_Data_Binding

[Limbourg, 04] Limbourg, Q., Vanderdonckt, J., UsiXML: A User Interface Description
Language Supporting Multiple Levels of Independence, in Matera, M., Comai, S. (Eds.),
Engineering Advanced Web Applications, Rinton Press, Paramus, 2004, pp. 325-338.

[Molina, 02] Molina, P.J., Meliá, S., Pastor, O. JUST-UI: A User Interface Specificaiton
Model. Ch. Proceedings of the 4th International Conference on Computer-Aided Design of
User Interfaces CADUI'2002, Kolski, J. & Vanderdonckt, J. (eds.), Valenciennes, France.
Kluwer Academics Publisher, Dordrecht, 2002.

[Mori, 02] Mori, G., Paternò, F., Santoro, C.. CTTE: Support for Developing and Analyzing
Task Models for Interactive System Design, IEEE Transactions on Software Engineering
(August 2002, pp.797-813).

[MozJS] Mozilla Javascript library: http://www.mozilla.org/rhino/

[Nunes, 01] Nunes, N. J., Cunha, J. F. WISDOM: Whitewater Interactive System Development
with Object Models, in Mark van Harmelen (ed.), Object-oriented User Interface Design,
Addison-Wesley, Object Technology Series, 2001.

[OMGMOF] Object Management Group MetaObject Facility: http://www.omg.org/mof/

[Paternò, 00] Paternò, F. Model-based Design and Evaluation of Interactive Applications.
Series of Applied Computing, Springer-Verlag London, 2000.

[Reichart, 07] Reichart, D. Presented at the Tamodia 2007, Toulouse, France, demo session:
http://liihs.irit.fr/tamodia2007/index.php?content=Demos

[Roberts, 98] Roberts, D., Berry, D., Isensee, S., and Mullaly, J., Designing for the User with
OVID: Bridging User Interface Design and Software Engineering, MacMillan, 1998.

[SCXML] Apache SCXML engine: http://commons.apache.org/scxml/

[Trætteberg, 03] Trætteberg, H. Dialog modelling with interactors and UML Statecharts - a
hybrid approach. Design, Specification and Verification of Interactive Systems. Funchall,
Madeira, June 2003.

[Trætteberg, 07] Trætteberg. H. A Hybrid Tool for User Interface Modelling and Prototyping.
In Calvary, G., Pribeanu, C., Santucci, G., Vanderdonckt, J. (eds.): Proceedings of the Sixth
International Conference on Computer-Aided Design of User Interfaces CADUI'06. (6-8 June
2006, Bucharest, Romania), Chapter 18, Springer-Verlag, Berlin, 2007.

[UsiXML] UsiXML language documentation:
http://www.usixml.org/index.php?mod=pages&id=6

[XSWT] XSWT: http://sourceforge.net/projects/xswt (a bit outdated)

3278 Traetteberg H.: Integrating Dialog Modeling and Domain Modeling ...

