Journal of Universal Computer Science, vol. 14, no. 20 (2008), 3333-3357
submitted: 5/7/08, accepted: 24/8/08, appeared: 28/11/08 © J.UCS

UCL-GLORP—An ORM for Common Lisp

Anténio Menezes Leitao
(INESC-ID/Technical University of Lisbon
Rua Alves Redol, n. 9, Lisboa, Portugal
aml@gia.is.utl.pt)

Abstract: UCL-GLORP is a Common Lisp implementation and extension of GLORP
(Generic Lightweight Object-Relational Persistence), an Object-Relational Mapper
for the Smalltalk language. UCL-GLORP is now a mature framework that largely
extends GLORP and that takes advantage of some of Common Lisp unique features.
This paper illustrates UCL-GLORP and discusses some of the challenges that we faced
in order to find suitable replacements, in Common Lisp, for some of the more esoteric
features of Smalltalk that were explored by GLORP.

Key Words: Object-relational mapping, Common Lisp, Smalltalk
Category: D.1.5, D.2.2, D.3.3, H.2

1 Introduction

A large fraction of modern applications need to store information in some persis-
tent form. Relational databases are the dominant technology for providing data
persistence and, in many cases, they are also a requirement.

Being forced to store all data in a relational model doesn’t mean that the
application can not be programmed in a modern object-oriented style. For all
mainstream object-oriented languages there exist one or more Object-Relational
Mappers (ORM) that can be programmed to transform data from an object-
oriented model into a relational model.

In the Common Lisp camp, however, the situation is not so good. In fact, until
very recently, only two of the several database interfaces available for Common
Lisp include some ORM capabilities: Common SQL[Lev02] and CLSQL[Ro0s07].
CLSQL can be seen as a free replacement for Common SQL because it imple-
ments the same functional and object-oriented interface to the relational opera-
tions. Given the similarity between Common SQL and CLSQL, it is sufficient to
describe one of them and we will focus on CLSQL because, contrary to Common
SQL, it is freely available and runs in all major Common Lisp implementations.

Unfortunately, CLSQL does not provide many of the important features iden-
tified by Fowler[Fow05]:

— It doesn’t properly implement the Identity Map pattern so it doesn’t preserve
the identity of loaded objects implying that an object has as many copies as
the number of times it was loaded from the database. CLSQL does implement

3334 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

a cache where objects are related to the queries that loaded them but a
different query that happens to return some previously loaded object will not
notice it. Besides the time and memory waste, this creates severe identity
problems such as inconsistent updates to the “same” object.

— It doesn’t implement the Unit of Work pattern, forcing the programmer to
either manually save all updated objects or else to rely on CLSQL’s au-
tomatic save mechanism that occurs on every slot update and that causes
performance problems due to the amount of database calls.

— It doesn’t implement the concept of Object Transaction, meaning that if a
database transaction fails while updating some rows, the mapped objects in
the application no longer reflect their last saved state. An Object Transaction
provides the same purpose as a database transaction but on the object level,
thus maintaining the consistency between them.

— It doesn’t implement the Optimistic Offline Locking pattern that is based on
the number of modified rows. This last functionality can easily be added to
CLSQL (we did it) but it is harder to automatically consider it for the detec-
tion of concurrent updates and the necessary signaling of the corresponding
object transaction failure.

As aresult, CLSQL doesn’t qualify as a proper ORM. Given the huge amount
of effort that is required for developing an ORM from scratch, we decided to
adopt a different strategy based on the translation of some already developed
ORM from its original programming language to the Common Lisp language.
After looking for a sufficiently developed ORM that was available with an ad-
equate license, we end up selecting GLORP—the Generic Lightweight Object-
Relational Persistence[Kni00].

In the next section we will briefly highlight some of the more important
characteristics of GLORP. Then, in section 3, we will discuss UCL-GLORP, our
rewrite and extension of GLORP for the Common Lisp language. Section 4 will
discuss the problems found and the solutions adopted and, finally, section 5 will
present the conclusions.

2 GLORP

GLORP is an open-source object-relational mapping layer for Smalltalk running
in several different implementations, including VisualWorks, VisualAge, Dolphin
Smalltalk and Squeak.

GLORP features a sophisticated mapping layer that uses a declarative ap-
proach to map classes to tables, instance variables to columns and references to
foreign keys.

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3335

Besides being an ORM, GLORP is also a showcase for the principles and
patterns that underlie all ORMs. In the next subsections, we will discuss some
of those patterns.

2.1 Models and Mappings

GLORP depends on explicit mappings between objects and their database rep-
resentations. These mappings operate over object models and database table
models.

Each object model describes all the attributes of a specific type of object,
in particular, all its relevant slots, their datatypes, their readers and writers,
etc. The object model is fundamental because it usually contains much more
information than what is generally available in a Smalltalk class definition.

Each table model describes all the attributes of a database table, including
column names and types, primary keys, foreign keys, constraints, etc. Although
the table model can model a legacy database schema, it is also possible to use
it to automatically create the corresponding database schema.

Based on both the object models and the table models, several kinds of
mappings can be established but two of them are the most used: object slots
containing value objects [Fow05] use direct mappings, i.e., they are mapped to
the corresponding table columns; object slots containing reference objects are
mapped to foreign keys, using one-to-one, one-to-many and many-to-many map-
pings. All these mappings are crucial to translate object operations to database
operations.

2.2 Inheritance

The Smalltalk language supports inheritance, a concept that is absent from re-
lational databases. This means that, besides mapping classes to tables, GLORP
must also map class hierarchies into tables. There are three different strategies
to implement this mapping [Fow05]: (1) single table inheritance (also called fil-
tered mapping), where all concrete classes of the inheritance tree are mapped to
a single table that has columns for all slots of all classes and also an additional
column to discriminate to which class a particular row belongs; (2) class table
inheritance (also called vertical mapping), where each class is mapped to a dif-
ferent table that is referenced by the tables of the subclasses; and (3) concrete
table inheritance (also known as horizontal mapping), where each concrete class
is mapped to a different table containing columns for all slots of the concrete
class, including the inherited ones.

Currently, GLORP only implements the filtered mapping strategy and the
horizontal mapping strategy. In both cases, they are implemented using type
resolvers that are consulted to translate polymorphic queries into queries that

3336 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

examine all the relevant tables. In the case of the horizontal mapping strat-
egy, the type resolver distinguishes types according to the specific values of the
discriminating column.

2.3 Units of Work and Transactions

Instead of forcing the programmer to explicitly write code that, for each updated
object, also updates the database, GLORP automatically computes the neces-
sary database updates based on the objects that were loaded, created, modified
or deleted during a unit of work. This not only simplifies the programmer’s work
but it is also important to allow reordering of the database updates so that all
integrity constraints are satisfied.

Besides Units of Work, GLORP also provides transactions at the object level.
This means that, for each object that is modified, a shallow copy is created that
contains the previous values of the object slots so that, if necessary, each modified
object can be restored to its previous state. This mechanism is important to
provide consistency between the database and the application level. Whenever
a database transaction aborts, the application program is notified and it can
choose to also abort, undoing all object changes that were made during the unit
of work.

GLORP contains many other features that are worth discussing but that are
beyond the scope of this paper. We refer the reader to [Kni00].

3 UCL-GLORP

Given the flexibility and sophistication of GLORP, it was tempting to use it
as the basis for a Common Lisp ORM implementation. The plan was to first
semi-automatically translate GLORP from Smalltalk to Common Lisp and then
to further develop it so that it could take advantage of the new implementa-
tion language. However, implementing and extending GLORP in Common Lisp
was far from simple and required us to explore less well-known features of the
Common Lisp language. At times, we had the feeling that we were “pushing
the envelope” of Common Lisp far beyond its original design. We will postpone
the discussion of the problems found until section 4 and we will now describe
UCL-GLORP, the Common Lisp implementation of GLORP.

UCL-GLORP is an ORM for Lisp. Like GLORP, UCL-GLORP depends on
class models and, given the variety of object systems available in the Lisp world,
we designed it to be independent of any specific object system, as long as it
is class-based. However, some of the more advanced features do depend on the
Common Lisp Object System so, in this paper, we will restrict the discussion to
the use of UCL-GLORP as an ORM for CLOS.

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3337

In spite of being a complete reimplementation with a large set of differ-
ences from GLORP, UCL-GLORP owes a lot to its original inspiration and
should inherit a similar license. GLORP was licensed under the LGPL(S)—
the GNU Lesser General Public License, with clarifications with respect to
Smalltalk library usage—but GLORP’s main author, Alan Knight, agrees that
UCL-GLORP should be licensed according to the LLGPL, the Lisp Lesser GNU
Public License[Inc00].

In the next sections we will give an overview of UCL-GLORP and we will
discuss some of its more interesting features.

3.1 Models and Mappings

The first step to provide CLOS classes with relational persistence is to define
the class models, the table models and the mappings between them. The most
flexible approach is to manually specify that information, allowing complete
freedom over table and column names, types, indexes and constraints. In many
cases, however, there is a strong correlation between the CLOS classes and the
database schema. For these cases, UCL-GLORP is capable of inferring models
and mappings strictly from plain CLOS classes, as long as the Common Lisp im-
plementation allows class introspection (e.g., using the CLOS MOP [KdRB91]).
We will now demonstrate this capability by modeling in CLOS a small database
to keep people names and their home address:

(defclass person ()
((name :type string :initarg :name :accessor name)
(address :type address :initarg :address :accessor address)))

(defclass address ()
((street :initarg :street :type string :accessor street)
(city :initarg :city :type string :accessor city)))

It is important to stress that the previous classes are plain CLOS classes:
defclass was not shadowed and there are no metaclasses involved. However, we
included with the slots information regarding their types and these type declara-
tions allow UCL-GLORP to infer not only the types to use in the corresponding
database columns but also the relationship between person and address.

The next step consists of selecting the intended database platform (e.g., post-
gres, oracle, mysql, etc), the intended database accessor (e.g., clsql, cl-rdbms,
etc), and, finally, the necessary database login information for accessing the
database.!

All these steps can be done using the function make-clos-session that also
creates a session for talking with the relational database:

1 In the following examples, we will use the postgres platform and the clsql accessor.

3338 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

(defparameter *session*
(make-clos-session
:classes ’(person address)
:username "foo" :password "bar" :database "baz"))

Just like GLORP, UCL-GLORP can use any legacy database model but can
also automatically create the tables using the following expression:

(recreate-tables *sessionx)

This causes UCL-GLORP to issue the following SQL commands to the
database:

CREATE TABLE person (oid serial NOT NULL,name text NULL,address int8 NULL,
CONSTRAINT person_pk PRIMARY KEY (oid),
CONSTRAINT person_uniq UNIQUE (oid))

CREATE TABLE address (oid serial NOT NULL,street text NULL,city text NULL,
CONSTRAINT address_pk PRIMARY KEY (oid),
CONSTRAINT address_uniq UNIQUE (oid))

ALTER TABLE person ADD CONSTRAINT person_add_to_address_oi_refl
FOREIGN KEY (address) REFERENCES address (oid)

Note that a primary key oid (object id) column was included on both tables
and that a foreign key address was included in the table person so that each
person row can reference its address row. These decisions were made automati-
cally by UCL-GLORP but could have been overridden by the user.

In the previous example, the primary key is a surrogate key, automatically
generated by UCL-GLORP and it only exists in the database model. It is gen-
erally a good idea to also have a slot in the object model that corresponds to
this primary key. This can be achieved either by inheriting from a pre-defined
UCL-GLORP class that provides such slot or by annotating the relevant slot:
UCL-GLORP identifies as primary key the first slot in the class precedence list
that has a reader named primary-key. With this annotation, the programmer
can also choose to have some natural key used as primary key. Whenever a class
contains a slot with a primary-key reader, UCL-GLORP will treat the corre-
sponding table column as a primary key and will not create the oid column.

3.2 Storing and Retrieving

Using the created session, it is now possible to give persistence to our objects.
This is accomplished using a with-unit-of-work form that keeps track of all the
manipulated objects during its dynamic scope. At the end, the unit of work com-
putes the necessary changes to the database and starts a database transaction
to persist those changes. Here is one example:

(with-session (*session*)
(with-unit-of-work ()

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3339

(db-persist
(make-instance ’person
:name "John Adams"
:address (make-instance ’address
:street "Park Avenue"
:city "New York")))))

Note that persisting one object entails persisting all objects reachable from
it. The generated SQL is the following:

BEGIN TRANSACTION

SELECT nextval(’address_oid_seq’) FROM pg_attribute LIMIT 1

SELECT nextval(’person_oid_seq’) FROM pg_attribute LIMIT 1

INSERT INTO address (oid,street,city) VALUES (1,’Park Avenue’,’New York’)
INSERT INTO person (oid,name,address) VALUES (1,’John Adams’,1)

COMMIT TRANSACTION

As is possible to see from the SQL log, UCL-GLORP assigns oids to the
rows using database sequences and then inserts them in their respective tables.

It is now safe to shutdown the Common Lisp process. Upon restart, the
persisted objects can be reloaded using the db-read function. This function
accepts many options (some will be described later) but, for the moment, it is
sufficient to say that it is possible to read just :one instance of the specified
class or :all stored instances of that class. Here is one expression that returns
the previously stored person:

(with-session (*sessionx)

(let ((p (db-read :one ’person)))
(describe p)))

3.3 Lazy Loading

The evaluation of the previous expression issues the following SQL statement:

SELECT tl1.o0id, tl.name, tl.address FROM person t1 LIMIT 1

and prints:

#<PERSON @ #x7352377a> is an instance of #<STANDARD-CLASS PERSON>:
The following slots have :INSTANCE allocation:

NAME "John Adams"

ADDRESS <unbound>

Note that the address slot is unbound. This is intended because UCL-
GLORP wuses lazy loading [Fow05]: referenced objects are loaded only when
needed.? However, on the first attempt to access the currently unbound slot,
UCL-GLORP will “resolve” it using another SQL statement:

2 This behavior can be customized by the programmer on a slot by slot basis.

3340 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

SELECT t1.o0id, tl.street, tl.city FROM address t1
WHERE (tl1.o0id = 1) LIMIT 1

The result is then used to build the appropriate address instance that is
stored in the previously unbound slot so that future slot accesses behave as
usual. If the previous query didn’t return anything, the address slot would
remain unbound and the session would be modified to avoid repeated attempts
for resolving the slot.

Again, we should stress that this mechanism does not require any special care
from the programmer. All that is needed is to wrap the code in a with-session
form.

3.4 Null Values

Most object-relational mappers map database NULLs into a special value of the
programming language. Several Java ORMs use the Java null value and the
original GLORP uses the Smalltalk nil value. For Common Lisp, it is very
tempting to use nils and that is what CLSQL does.

It is our belief that this is not the best solution but, for most programming
languages, it is the only reasonable option available. To understand the problem,
it is relevant to know that, in database terms, a NULL value is not a value at all:
it represents a missing or unknown value. Unfortunately, translating a database
NULL into a Java null allows a program to manipulate an “unknown value,”
passing it as argument to method calls, storing it in data structures, and return-
ing it from method calls. It is only later, when the value is used as receiver of a
method call, that the “unknown value” causes a null pointer exception. Unfor-
tunately, it is then much more difficult to understand where did the null value
come from.

In Common Lisp, using nil for representing unknown values is even more
problematic than in Java. One obvious problem is caused by the fact that the
nil value also represents the false logical value and this means that it makes it
impossible to distinguish a false value from an unknown value. Another serious
problem is that nil is (the only) value of type null. As was explained in sec-
tion 3.1, UCL-GLORP uses slot type declarations to infer relations and column
types but, from the point of view of the Common Lisp type checker, a slot with
declared type address can only contain objects of type address and it is an
error to assign nil to such slot.

Fortunately, there is a much better solution that does not depend on using
the nil object: in Common Lisp, when a slot has a value, the slot is bound
and reading it returns its value; when a slot does not have a value, the slot is
unbound and reading it triggers a call to a generic function whose default method
signals a condition. UCL-GLORP explores this behavior to map database NULLs

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3341

to unbound slots. This means that the type declarations can be correctly used
and it also has the advantage that any attempt to manipulate “unknown values”
will be immediately detected.

In some cases, however, we might prefer to represent a database NULL using
a bound slot with a nil value. A proper type declaration for this situation
requires a compound type specifier. For example, we could write the following
class definition:
(defclass person ()

((name :type string :initarg :name :accessor name)
(address :type (or address null) :initarg :address :accessor address)))

to represent people that have a known address or that have a nil value in
place of an unknown address. To deal with this approach, UCL-GLORP also
understands (or type null) type specifiers and, for those slots that have such
type declaration, it uses the NULL-nil mapping technique.

3.5 Relations

In the previous example, each person references just one address but we are not
restricted to one-to-one relations. We can also have one-to-many and many-to-
many relations. For example, let’s suppose each person also has a vector of email
addresses. This can be written using a (vector email-address) compound type
specifier, as follows:

(defclass person ()

((name :type string :initarg :name :accessor name)
(address :type address :initarg :address :accessor address)

(email-addresses :type (vector email-address)
:initarg :email-addresses :accessor email-addresses)))

(defclass email-address ()
((username :initarg :username :type string :accessor username)
(host :initarg :host :type string :accessor host)))

UCL-GLORP will use the :type option in the email-addresses slot to infer
a one-to-many relation from person to email-address.? This implies that UCL-
GLORP will include a foreign key column in the table for email addresses that
will point to the person that owns the email address, as is possible to see in the
generated SQL for the table email_address:

CREATE TABLE email_address (oid serial NOT NULL,username text NULL,
host text NULL,person_email_addresses int8 NULL,
CONSTRAINT email_address_pk PRIMARY KEY (oid),
CONSTRAINT email_address_uniq UNIQUE (oid))

ALTER TABLE email_address ADD CONSTRAINT email_addr_to_person_oid_refl
FOREIGN KEY (person_email_addresses) REFERENCES person (o0id)

3 Besides vectors, UCL-GLORP also recognizes type specifiers for lists of ele-
ments, including the more relationally-oriented (one-to-many element-type) and
(many-to-many element-type).

3342 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

3.6 Updating

After the previous change, we can ask UCL-GLORP to update the database
schema, causing it to create a table to contain the email addresses. Now, let’s
suppose that we want to assign two different email addresses to John and we
will also take the opportunity to change the street of the address of John:

(with-session (*session*)
(with-unit-of-work ()
(let ((john (db-read :one ’person)))
(setf (street (address john)) "33rd Street")
(setf (email-addresses john)
(vector
(make-instance ’email-address
:username "012345" :host "freemail.com")
(make-instance ’email-address
:username "john" :host "foo.bar"))))))

This is where a UCL-GLORP’s unit of work becomes very useful: instead of
forcing us to manually identify the new and changed objects, it automatically
computes all changes and writes the proper sequence of updates and inserts to the
database. For the previous example, the generated sequence of SQL statements
is the following:

BEGIN TRANSACTION

SELECT tl1.o0id, tl.username, tl.host FROM email_address t1

WHERE (t1.person_email_addresses = 1)

SELECT nextval(’email_address_oid_seq’) FROM pg_attribute LIMIT 2
UPDATE address SET street = ’33rd Street’ WHERE oid =1

INSERT INTO email_address (oid,username,host,person_email_addresses)
VALUES (1,°012345°,’freemail.com’,1)

INSERT INTO email_address (oid,username,host,person_email_addresses)
VALUES (2,’john’,’foo.bar’,1)

COMMIT TRANSACTION

Note, in the previous SQL code, that a SELECT statement was issued so
that UCL-GLORP could compute the changes to the former email addresses of
John.

3.7 Querying

One of the best features of UCL-GLORP is the support for combining “normal”
Common Lisp code with database queries. As an example, let’s suppose we define
a predicate that tests that a given person has an email address on a given host:

(defun has-email-on-host-p (person host)
(some (lambda (address)
(string= (host address) host))
(email-addresses person)))

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3343

Using this predicate, we can collect all people that have email on, e.g.,
freemail.com:

(remove-if-not (lambda (person)
(has-email-on-host-p person "freemail.com"))
(db-read :all ’person))

The previous code reads :all people from the database and then filters those
that do not satisfy the predicate. To achieve this goal, the db-read call starts by
generating a generic SQL query that returns all rows from the person table and
creates the corresponding objects. Then, for each person (with o<d primary key),
the remove-if-not function calls the predicate that checks the email addresses,
causing a series of SQL queries of the form:

SELECT tl.o0id, tl.username, tl.host

FROM email_address t1

WHERE (tl.person_email_addresses = otdl)
SELECT t1.o0id, tl.username, tl.host

FROM email_address t1

WHERE (tl.person_email_addresses = 0td2)

SELECT tl.o0id, t1l.username, tl.host
FROM email_address t1
WHERE (t1.person_email_addresses = o%dn)

Clearly, this is a waste of resources because the database might contain hun-
dreds of thousands of rows in the people table that will have to be loaded and,
for each of them, another query will be issued to compute the corresponding
rows from the email_address table, thus creating a huge amount of objects
just to filter them. Besides the space waste, the process will generate a huge
amount of traffic between the application and the database, severely impacting
the performance.

Fortunately, a simple rewrite of the expression is sufficient to dramatically
speed up the process. To this end, the db-read function has a :where keyword
parameter that accepts the exact same function that the remove-if-not ac-
cepted. Using this :where parameter, the previous expression can be rewritten
as:

(db-read :all ’person
:where (lambda (person)
(has-email-on-host-p person "freemail.com")))

The results are exactly the same but they are computed differently. Now, the
db-read call uses the predicate, not to filter the results, but to compute a single
SQL query that returns the relevant people in just one database call:

SELECT tl1.o0id, tl.name, tl.address
FROM person ti1

3344 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

WHERE EXISTS (SELECT t2.o0id
FROM email_address t2
WHERE ((t2.host = ’freemail.com’) AND
(tl.0id = t2.person_email_addresses)))

The previous translation uses a subquery but it is also possible to generate
an equivalent query that uses a join that, for certain database backends, might
have better support. To this end, the programmer can change a flag in the
configuration of the database connection and the same db-read expression will
be translated into the following SQL query:

SELECT DISTINCT t1.o0id, tl.name, tl1.address
FROM (person t1 INNER JOIN email_address t2

ON (tl.0id = t2.person_email_addresses))
WHERE (t2.host = ’freemail.com’)

Given the fact that database communication is considerably slow and that
modern database engines have good query optimizers, any of the two previous
SQL queries will likely run much faster, even taking into account the time needed
to analyze the predicate and to translate it into an SQL clause. Not every Com-
mon Lisp predicate can be translated into SQL but a representative subset can
and Common Lisp programmers will like to know that this subset includes clo-
sures. For example, let’s suppose that john references the “John Adams” that
lives in the “33rd Street.” Then, the following expression returns all people that
live on the same street as john:

(let ((john ...))
(db-read :all ’person
:where (lambda (person)
(string= (street (address person))
(street (address john))))))

Note, in the :where argument of the db-read call, that the function uses the
free variable john. In this case, the evaluation of the previous expression will
make a single database call using the following SQL query:

SELECT tl1.o0id, tl.name, tl.address
FROM (person t1 INNER JOIN address t2 ON (tl.address = t2.0id))
WHERE (t2.street = ’33rd Street’)

Again, this query will run much faster than loading all people and then filter
them on the application side.
We will discuss the predicate translation process in section 4.

3.8 Sorting

As we explained in the previous section, a query can be executed much more
efficiently when the filtering criteria can be translated from Common Lisp to

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3345

SQL. Besides reducing the traffic between the database and the application, it
allows the database backend to produce better query plans.

Filtering, however, is just one of the operations that can benefit from these
optimizations. Sorting is another one.

As an example, let us suppose that, again, we are interested in the people
that have email on freemail.com but, this time, we also want to sort the result
by the city of the home address. This can be done using the Common Lisp sort
function:

(sort (db-read :all ’person
:where (lambda (person)
(has-email-on-host-p person "freemail.com")))
#’string<
:key (lambda (p) (city (address p))))

Unfortunately, in spite of the improved performance of the db-read query,
the sorting operation will have very poor efficiency because it will be done on
the application side: for each person retrieved by the first query, the comparison
predicate needs to retrieve, from the database, his/her address, thus emitting a
potentially large number of requests to the database.

To solve this problem, UCL-GLORP db-read function can also translate
sorting operations. These are specified using the : order-by keyword parameter:
(db-read :all ’person

:where (lambda (person)

(has-email-on-host-p person "freemail.com"))
:order-by (lambda (p) (city (address p))))

Using the previous query, a single SQL statement is generated:

SELECT t1.o0id, tl.name, tl.address
FROM (person t1 INNER JOIN address t3 ON (tl.address = t3.0id))
WHERE EXISTS (SELECT t2.oid
FROM email_address t2
WHERE ((t2.host = ’freemail.com’) AND
(tl.0id = t2.person_email_addresses)))
ORDER BY t3.city

Note that an additional inner join was generated in order to allow the city
of the address to be used as sorting criteria.

3.9 Eager Loading

We mentioned that UCL-GLORP implements lazy loading as a performance
optimization that allows it to avoid loading the objects that are related to a
retrieved object.

Sometimes, however, this optimization becomes a pessimization. As an ex-
ample, let’s consider again the query that returns all people that has an email
address on freemail . com but, now, let’s also compute the cities where they live:

3346 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

(mapcar (lambda (p) (city (address p)))
(db-read :all ’person
:where (lambda (person)
(has-email-on-host-p person "freemail.com"))))

Due to the lazy loading mechanism, the db-read function returns a set of
people with unbound address slots. However, immediately after retrieving this
set, the application computes the city of the address of each person. This means
that, for each person in the previous result set, another query will be send to
the database to retrieve his address, severely impacting the performance.

To solve this problem, UCL-GLORP also implements the opposite of lazy
loading: eager loading. Eager loading allows the application to selectively re-
quest from the database the necessary information to immediately build related
objects. To this end, the db-read function has an :also-fetch keyword argu-
ment that accepts a function that expresses the intended relation.

In order for the current example to take advantage of this feature, we can
simply include the relation in the query, as follows:

(mapcar (lambda (p) (city (address p)))
(db-read :all ’person
:where (lambda (person)
(has-email-on-host-p person "freemail.com"))
:also-fetch #’address))

The generated SQL is:

SELECT t1.o0id, tl.name, tl.address, t3.oid, t3.street, t3.city
FROM (person t1 LEFT OUTER JOIN address t3 ON (tl.address = t3.0id))
WHERE EXISTS (SELECT t2.o0id
FROM email_address t2
WHERE ((t2.host = ’freemail.com’) AND
(tl.0id = t2.person_email_addresses)))

In this case, note that the rows from the person table are combined with the
corresponding rows from the address table using a left outer join, so that the
query does not exclude those who don’t have an address.

Lazy loading and eager loading should be used in combination. Lazy loading
avoids loading an object that is not necessary for the current computation but
it entails a performance penalty if the object becomes necessary later on. Eager
loading allows us to selectively annotate the code so that this situation can be
avoided. With eager loading, all the objects required for a given computation
can be loaded in as few queries as possible.

As with any optimization, eager loading should be applied only after profiling
the application. As an example, after profiling a web application that uses UCL-
GLORP we identified a fragment of code that, on average, was taking 5.7 seconds
to run and allocated more than 70 MB of memory. The fragment in question
computed the addresses of all the users that satisfied some arbitrary criteria but

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3347

the address of each user was lazy loaded. After including the address relation
as an :also-fetch argument, the same code fragment runs, on average, in 1.8
seconds and allocates only 20 MB of memory.

3.10 Database Evolution

Common Lisp was designed to allow an interactive and incremental development
process. For example, defun can be used to define a new function or to redefine
an already-defined function and defclass can be used to define new classes or to
redefine old classes. In this last case, an instance update protocol is automatically
run so that old class instances get a chance to adapt to the new class definition.

Given the fact that UCL-GLORP can derive a database schema from a set
of CLOS classes, it would be highly annoying if that schema had to be entirely
regenerated on every class redefinition, forcing the programmer to DROP the
database and to rebuild it from scratch.

In order to be faithful to the incremental development process allowed in
Common Lisp, besides mapping a set of classes into a set of database tables,
UCL-GLORP is also capable of mapping a set of class changes into a set of
database changes. To this end, UCL-GLORP regenerates a local copy of the
entire database schema after a set of class changes and compares it with the
previous database schema, computing the differences. From these differences, a
set of SQL statements is generated that CREATEs only the new tables, DROPs only
the obsolete ones and ALTERs only those that changed, thus moving the database
from its previous schema to the new one.

The programmer should be aware that, in many cases, there might be more
than one way to do this. For example, let’s consider a class redefinition where a
slot was added and another one was removed and let’s assume that both these
slots are mapped into database columns of the same table. In what regards the
database, this change can be accomplished either by dropping the old column
and adding the new one, or by adapting the old column so that it becomes the
new one. There is a huge difference between these two approaches because the
first one might require migration code (or loss of data) while the second one
might be entirely managed by the database.

UCL-GLORP is agnostic regarding the correct update path so whenever there
are mismatches between the old and new database schema, a condition is signaled
and restarts for all possible update paths are established. It is the programmer’s
responsibility to (1) interactively choose the sequence of restarts that provide
the best database update path and (2) provide any necessary migration code.

3348 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

4 From GLORP to UCL-GLORP

During the reincarnation of GLORP as UCL-GLORP, several problems had to
be solved in order to overcome the following differences between Smalltalk and
Common Lisp:

— In Smalltalk, methods belong to classes and are dispatched according to the
class of the receiver. In Common Lisp, methods belong to generic functions
and are dispatched according to the type of all the arguments. This is a
huge obstacle for the translation because generic functions require congruent
methods, while in Smalltalk methods are independent from each other. In
practice, each Smalltalk class provides a namespace for its own methods.

— In Smalltalk, the methods of a class have direct access to the instance
variables of the receiver. In Common Lisp, this is not possible but can be
emulated using the with-slots macro. However, a naive translation from
Smalltalk to Common Lisp might end up inserting a with-slots form in
every method. Replacing with-slots with accessors is also not practical
because of potential name clashes between the newly created readers and
already existent generic functions.

— Smalltalk method invocation protocol makes it easy to explore the proxy
design pattern [GHJV00]. A proxy class can redefine the default behavior
for the #doesNotUnderstand: message so that every message sent to the
proxy can have a response even when not directly implemented in the proxy
class. This is used, for example, to implement the lazy loading of an object:
the proxy stands for some not yet loaded object until it receives a message
that it doesn’t understand, causing it to load the object and forward the
message. Common Lisp’s generic function invocation protocol makes it much
more difficult to implement the same design pattern.

— Smalltalk provides distinct true and false values. On the contrary, Common
Lisp amalgamates the false value, the empty list and the symbol nil and
treats all other values as true.

— Smalltalk provides a distinct null value that is used to initialize instance
variables. Common Lisp relies on a different mechanism where instance vari-
ables either are unbound or are bound to a value and there is a protocol for
accessing those variables (called “slots” in Common Lisp parlance).

— In Smalltalk, collections have identity. Adding or removing elements from
collections preserve that identity. Although some Common Lisp collections
also preserve identity across modifications, the most used collection data
type—the list—was not designed to preserve identity. Usually, this is not a

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3349

problem to Common Lisp programmers because they tend to respect the Law
of Demeter [Lie89], meaning that they don’t directly manipulate containers
stored inside some object. However this law is not consistently enforced in
Smalltalk programs, where it is not uncommon to see a collection being
passed to a method that then modifies it.

There are many more differences between the two languages but these were
the ones that had the biggest impact on the translation of GLORP from Smalltalk
to Common Lisp. We will now discuss some of the differences.

4.1 Convention over Configuration

One of the biggest differences between GLORP and UCL-GLORP is in the
amount of effort that is needed to map an object model to a relational model.
GLORP is implemented in Smalltalk, a language that does not provide any
standardized way of including slot type information in a class definition. That
is the main reason why the programmer has to explicitly describe such type
information in a model of the mapped class that must be synchronized with
the class itself. The same problem happens with the table model and with the
mappings that must be established between the class model and the table model:
they must be hand-written and they must be consistent between each other.

Writing all these models and mappings quickly becomes an annoying task
for the programmer and a potential source of bugs. They are also difficult to
maintain. A single inconsistency between any of them can cause hard-to-detect
bugs and, in the limit, severe data loss.

Just like GLORP, UCL-GLORP also depends on class models, table models
and mappings but, in most cases, these are automatically generated. To this
end, UCL-GLORP explores the convention over configuration design paradigm,
meaning that it can take advantage of a small set of conventions in order to
generate all the necessary models and mappings. For example:

— Class and slot names are used to infer database table and column names.
— Slot type declarations are used to infer the database column types and foreign
keys:
e A slot type declaration for a class belonging to the set of mapped classes

is used to infer a foreign key column.

e A slot type declaration for a type that does not belong to the set of
mapped classes is used to infer an appropriate database column type.

e A slot type declaration of the form (or type null) means that whenever
the value in the database is NULL, the corresponding object slot has nil
instead of being unbound.

3350 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

e A slot type declaration of the form (vector type) or (list-of type)
or (one-to-many type) is used to infer a one to many relation.

e A slot type declaration of the form (many-to-many type) is used to infer
a many to many relation.

— The presence of a primary-key slot reader is used to infer the primary key
column.

— The presence of a slot reader whose name starts with indexed- is used to
infer which table columns should have indexes.

The use of convention over configuration is one feature of UCL-GLORP
that clearly improves the creation of models and mappings that is provided
by GLORP. However, the use of the conventions does not entail loosing power:
the programmer can always access and modify the automatically generated con-
figuration.

Given the fact that there is more than one strategy for mapping inheritance
relations, at this moment UCL-GLORP does not attempt to infer the necessary
type resolvers for mapping an inheritance tree, meaning that these type resolvers
must be added manually. We plan to address this problem in the future.

4.2 Slot Access Protocol

UCL-GLORP attempts to be non-intrusive, meaning that it is possible to use
plain CLOS classes to define the data model and then map those classes into
database tables. One critical point of this mapping is the lazy loading of ref-
erenced objects. GLORP implements it using the proxy design pattern. UCL-
GLORP implements it using the (non-meta) slot access protocol: each time an
object is reconstructed from the information stored in the database, we delay
the load of all its associations and the corresponding slots will remain unbound.
However, the first time one of those unbound slots is accessed, we detect the un-
bound slot condition and we identify whether the condition represents a delayed
load. In this case, we retrieve the necessary information from the database to
construct the delayed object, we store it in the previously unbound slot, and we
continue the computation.

This approach requires us to be prepared to handle the unbound slot con-
dition. Obviously, we need to execute all code that potentially needs to access
the database in the dynamic scope of an handler-bind. This is not problematic
because, similarly to the manipulation of files, the managing of database con-
nections already suggests the use of dynamic scope. What is problematic is the
reaction to the unbound slot condition because the Common Lisp specification
is not sufficiently clear regarding the name (or even existence) of the restart that

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3351

should be used in that situation. Although one can argue that an unbound-slot
condition is a subtype of a cell-error condition and these errors should have
use-value and store-value restarts, the Hyperspec also includes a short note
mentioning that “No functions defined in this specification are required to pro-
vide a use-value restart.”*

This is an area where we think that the Common Lisp specification should
have gone farther and should have specified more conditions and restarts. The
hierarchy of conditions presented in the language specification is quite short
and makes it difficult to develop portable programs that can handle exceptional
situations. The lack of standardized restarts is also an obstacle that could have
been more easily removed with a more stringent specification.

It is arguable whether treating exceptional situations as “normal” situations
is an adequate approach but, given the fact that Common Lisp is one of the
few languages that allow programmatic access to the condition reporting and
handling mechanisms, it would be good if those mechanisms were portable across
different implementations. It is not a matter of debugging convenience; it is a
matter of programming convenience.

4.3 Function Introspection

Besides mapping object oriented models to relational models, GLORP also maps
Smalltalk blocks to SQL statements. Similarly, as was shown in section 3, UCL-
GLORP maps functions to SQL statements. To this end, it is necessary to intro-
spect the function so that an abstract syntax tree (AST) can be built in order
to rewrite it in terms of database operations.

To construct this AST, GLORP applies the predicate block to an element
of a special class that does not implement any of the methods that might be
called in the block but that implements the #doesNotUnderstand: method so
that it records each method that was called, along with its arguments. It then
returns another instance of the same special class to continue the construction
of the AST. Certain method calls are specially recognized so that other blocks
that occur in the code can also be dealt with. Obviously, there is an infinite
number of Smalltalk blocks (e.g., all those that cause side-effects) where this
introspection strategy cannot possibly work but, in practice, the blocks that
need to be introspected are used only as predicates and, usually, these are made
of boolean expressions and reader methods that do not cause any side-effects.

Porting this introspection strategy to Common Lisp was exceedingly dif-
ficult. Trying to be faithful to the Smalltalk approach, we also used an in-
stance of a special class as predicate argument. However, instead of using the
#doesNotUnderstand: approach that doesn’t exist in Common Lisp, we used

4 Independently of what the specification says, at least one important Common Lisp
implementation didn’t provide the correct restarts for the unbound-slot condition.

3352 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

two different approaches. The first one is based on the fact that most generic
function calls and, particularly, slot readers, will not be applicable to our spe-
cial instance.® When the error is detected, we immediately define an additional
method that specializes the generic function in question for our special class (so
that it registers the call) and we invoke the continue restart so that the call is
indeed registered and the introspection process can proceed.

Unfortunately, this contorted scheme cannot work with non-generic functions
because it critically depends on the continue restart that is not generally avail-
able and, moreover, it can’t detect the use of boolean operators because (1) and
and or are macros that expand into special forms and (2) not accepts anything
as argument, never signaling any error. This is where our second approach is
applied: we shadow those symbols and provide different implementations so that
we can have an handle on their evaluation and we also do this for all non-generic
functions that might occur in a predicate that will be used for restricting a
database query, such as the some and string= functions that we presented in
section 3. Although it is not measurable in our experiments, we are aware that
replacing (normal) functions with their generic counterparts might have a con-
siderable impact on the performance. However, without these drastic measures,
we found it highly difficult to introspect Common Lisp functions.

It should be mentioned that there are simpler ways in Common Lisp to obtain
the AST of a given function. For example, in an implementation that supports
it, the application of function-lambda-expression to a given function returns
a lambda expression that can be compiled to reconstruct the function. However,
this is only useful if the given function was defined in the null lexical environment.
In the non-null lexical environment case, we need to access the values of the free
variables but that is something that is not provided by Common Lisp, making it
impossible to translate the function body to the correct SQL clause. As a result,
in the general case, we still need to introspect the actual function.

5 Conclusions and Related Work

In this paper, we presented UCL-GLORP, a Common Lisp reimplementation of
GLORP, an well-established ORM for Smalltalk. UCL-GLORP was developed
by the author in 2005 to replace the persistency layer of a web application
that previously used a very simple object-oriented database that was suffering
from severe performance problems and frequent data corruptions. The entire
translation process required around three months of work by the author, largely
exceeding the initial estimate. In general, the delays were caused by the subtle
differences between Common Lisp and Smalltalk that caused hard-to-detect bugs
5 Unfortunately, the ANSI Common Lisp specification does not specify the subtype

of error that should be signaled and all the implementations tested simply signal an
instance of error with different error messages.

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3353

in the Common Lisp version. Without the excellent debugging tools available in
the Smalltalk and Common Lisp implementations, we are convinced that the
debugging phase would have taken a much longer time.

UCL-GLORP differs from GLORP in several important ways:

— UCL-GLORP infers models and mappings from a set of CLOS classes. This
is something that is beyond GLORP capabilities because, contrary to CLOS,
Smalltalk classes do not have any standardized way of annotating slots with
the necessary type information.

— UCL-GLORP never expose proxies. Instead, these are completely hidden
from application code and are resolved whenever we trap the unbound-slot
condition associated with the corresponding slot access. This is a much safer
approach to lazy loading because, contrary to GLORP, it is impossible, in
UCL-GLORP, to create identity problems between a proxy and the object
it stands for.

— UCL-GLORP is more complex than GLORP because we need to deal with
a lot more diversity in Common Lisp than in Smalltalk. One of the strongest
points of Smalltalk is, indeed, its simplicity and uniformity that makes it
easier to centralize behavior.

— There is no support in GLORP for schema evolution. UCL-GLORP, on
the contrary, provides such support. Besides mapping a set of classes into
a set of database tables, UCL-GLORP is also capable of mapping a set of
class changes into a set of database changes. Sometimes, there is more than
one way to do this and whenever this happens, UCL-GLORP presents the
different options and requests guidance from the programmer.

One of the main responsibilities of an ORM is to ensure the persistence of
data. In the Common Lisp camp, this task can also be accomplished using any
of the other persistence frameworks, namely, UCL+P [JS97], Statice [WFGLS3],
PCLOS [Pae88], PLOB! [Kir95], AllegroCache [Aas05], Common SQL[Lev02],
CLSQL[Ros07], YstokSQL[Iva08], Postmodern[Hav08], Elephant[LB08], etc.

Besides ensuring persistence, an ORM also ensures that persistent data is
stored according to the principles of the relational model, a requirement that
cannot be satisfied by some of the previous Common Lisp frameworks: UCL+P
and PLOB! use a persistent heap; Statice, PCLOS, Elephant and AllegroCache
are object-oriented databases.

Finally, the most important responsibility of an ORM is to provide a map-
ping from the object-oriented model to the relational model and this is the
requirement that excludes almost all Common Lisp frameworks. Common SQL
and CLSQL map objects into relational tables but, as explained in the intro-
duction, they do not provide all the necessary features; YstokSQL only provides

3354 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

a Lisp-like SQL syntax; and Postmodern, although it provides some mapping
capabilities, is not intended as a full-fledged object-relational system.

CLOS-DB [Wer08] is another proposal for mapping objects into tables but
it requires the user to explicitly provide functions (and SQL strings for the less
trivial cases) that update the database whenever the objects change and it also
requires explicit SQL code to manually populate the database. Gestalt-class
[MHL96] is a more sophisticated system that CLOSifies GESTALT [HN89]—
an interface to multiple heterogeneous database systems. Gestalt-class maps a
GESTALT database schema into automatically generated CLOS classes and it
provides some of the features of a proper ORM, such as preserving the identity of
the loaded objects and mapping S-expressions into GESTALT queries. However,
GESTALT is not a relational database, although it can use a relational database
as a backend. When this happens, the relational model used is fixed: each class
is associated with two primary tables and zero or more association tables. The
primary tables are used to store all single-valued attributes (value objects and
one-to-one relations) and the next available object id; the association tables are
used to store the one-to-many relations. This is similar to what UCL-GLORP
does, although we prefer database sequences for the object id, we have a more
natural mapping for one-to-many relations that does not require an additional
association table and we can also use many-to-many relations. Besides these
small differences, there is a huge difference in the approach used: UCL-GLORP
can infer the relational model from the object-oriented model while Gestalt-
class operates in the opposite direction: the programmer defines attributes and
types (sets of attributes) and Gestalt-class infers the CLOS classes that represent
them.

Very recently, another ORM for Common Lisp was presented: CL-PEREC
[LMBO08]. Although it targets the same goals, CL-PEREC and UCL-GLORP
have several important differences:

— In CL-PEREC, classes whose instances should be persistent must belong to
a special metaclass. There is no such requirement in UCL-GLORP and plain
CLOS instances can be made persistent without any changes.

— CL-PEREC does not include relations in the class definitions. Instead, all
relations must be defined separately. UCL-GLORP, on the other hand, can
infer the relations from the class definitions.

— CL-PEREC provides a specialized SQL-like query language that can be com-
piled (macro-expanded, actually) to a more efficient form where some parts
are computed in advance. Although we didn’t mentioned it in this article,
UCL-GLORP also provides an SQL-like language but this language is not
generally used by the programmer. Instead, it is used as the target for the
translation of Common Lisp functions that restrict the queries.

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3355

— Contrary to UCL-GLORP, CL-PEREC doesn’t implement units of work and
transactions are not supported on the object level. This means that every
slot update is immediately transferred to the database, thus preventing the
optimizations and reorderings that are done by UCL-GLORP.

Besides the mentioned differences, there is a more profound mismatch be-
tween CL-PEREC and UCL-GLORP: CL-PEREC provides a new language for
class definitions and queries while UCL-GLORP tries very hard to remain faith-
ful to the “normal” CLOS style. We think we achieved this goal because, using
UCL-GLORP, programs using CLOS can be made persistent without requir-
ing incompatible changes. This is an important property because it makes the
program independent of the persistency backend used.

Being non-intrusive is a fundamental goal for UCL-GLORP. However, there is
always a balance between hiding the implementation details and achieving good
performance: UCL-GLORP allows us to provide transparent object-relational
persistency to Common Lisp programs but the performance consequences might
be more difficult to predict.

As we explained in this paper, in order to improve the performance we might
have to rewrite parts of the code. One partial solution to this problem is to
provide a set of compiler macros that automatically rewrite the common use cases
but, in general, this is a problem that will always require human intervention. In
the limit, for critical optimizations the solution might be to manually provide the
models and mappings and to explore the low-level UCL-GLORP SQL interface,
using a more persistency-aware development model.

Although there are still several rough edges that we would like to smooth,
UCL-GLORP is perfectly usable and, in fact, we have been using UCL-GLORP
in a production environment for more than two years, to provide the persistency
layer of a web-based application.

On the negative side, it should be mentioned that portability is UCL-GLORP
major problem because it stresses Common Lisp in ways that are not well-defined
in the language specification. Although not strictly related to the features pro-
vided by UCL-GLORP, the code base also explores a few Common Lisp features
that are not provided by all Common Lisp implementations. For example, we
depend on CLOS introspection at macro-expansion time, a possibility that is ex-
plicitly allowed by the standard for macros that care to provide the compile-time
environment. Unfortunately, at the time of this writing, some of the free Com-
mon Lisp implementations, including SBCL and CMUCL, do not allow that,
thus preventing UCL-GLORP of working in those implementations. The net
result of all these limitations is that, at the moment, UCL-GLORP only runs
in Allegro Common Lisp and Lispworks, but we expect that the situation will
improve in the near future.

Also on the negative side is the fact that large parts of the code base are

3356 Leitao A.M.: UCL-GLORP - An ORM for Common Lisp

written in a non-standard style that still contains many traces of the original
implementation language. This was necessary to speed up the translation process
but it makes it difficult for others to correct bugs and/or implement new features.
We plan to address this problem by rewriting the problematic parts according
to the Common Lisp usual programming conventions and then we will make the
source code freely available.

We will continue to develop UCL-GLORP in order to address some of the
shortcomings discussed in this paper. On the top of our list is the automatic
creation of mappings for dealing with class hierarchies, where we plan to gener-
ate a combination of filtered mappings, for shallow hierarchies, with horizontal
mappings for the other cases.

References

[Aas05] Jans Aasman. AllegroCache: A high-performance object database for large
complex problems. In 5th International Lisp Conference, Stanford Univer-
sity, June 2005.

[Fow05] Martin Fowler. Patterns of Enterprise Application Architecture. Addison
Wesley, 2005.

[GHIJV00] Gamma, Helm, Johnson, and Vlissides. Design Patterns—Elements of
Reusable Object-Oriented Software. Addison-Wesley, Massachusetts, 2000.

[Hav08] Marijn Haverbeke. Postmodern. http://common-lisp.net/project/
postmodern/, Nov 2008.

[HN89] Michael L. Heytens and Rishiyur S. Nikhil. Gestalt: an expressive database
programming system. SIGMOD Rec., 18(1):54-67, 1989.

[Inc00] Franz Incorporated. LLGPL, the Lisp Lesser GNU Public License. http:
//opensource.franz.com/preamble.html, 2000.

[Iva08] Dmitriy Ivanov. YstokSQL. http://lisp.ystok.ru/ysql/, Nov 2008.

[JS97] J. H. Jacobs and Mark R. Swanson. UCL+P - defining and implementing
persistent common lisp. Lisp and Symbolic Computation, 10(1):5-38, 1997.

[KdRBY1] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[Kir95] Heiko Kirschke. Persistency in a Dynamic Object-Oriented Programming
Language. Technical Report 10, University of Hamburg Computer Science
Department, Jul 1995.

[Kni00] Alan Knight. Glorp: generic lightweight object-relational persistence. In
OOPSLA ’00: Addendum to the 2000 proceedings of the conference on
Object-oriented programming, systems, languages, and applications (Adden-
dum), pages 173-174, New York, NY, USA, 2000. ACM.

[LBO§] Ben Lee and Andrew Blumberg. Elephant. http://common-lisp.net/
project/elephant/, Nov 2008.

[Lev02] Nick Levine. Common SQL. http://www.ravenbrook.com/doc/2002/09/
13/common-sql/, September 2002.

[Lie89] K. J. Lienberherr. Formulations and benefits of the law of demeter. SIG-
PLAN Not., 24(3):67-78, 1989.

[LMBO08] Attila Lendvai, Levente Mészdros, and Tamds Borbély. cl-perec: RDBMS
based CLOS persistency. http://common-lisp.net/project/cl-perec/,
Feb 2008.

[MHL96] Michael B. Mcllrath, Michael L. Heytens, and Thomas J. Lohman. Gestalt-
class: A Persistent, Multi-user CLOS Application Environment. In Dynamic
Objects Workshop, 1996.

Leitao A.M.: UCL-GLORP - An ORM for Common Lisp 3357

[Pae88| Andreas Paepcke. PCLOS: A Flexible Implementation of CLOS Persis-
tence. In S. Gjessing and K. Nygaard, editors, Proceedings of the Furopean
Conference on Object-Oriented Programming. Lecture Notes in Computer
Science, Springer Verlag, 1988.

[Ros07] Kevin M. Rosenberg. CLSQL — a multi-platform SQL interface for Common
Lisp. http://clsql.b9.com/, September 2007.

[Wer08] Christoph Wernhard. CLOS-DB. http://cs.christophwernhard.com/
cdb/, Nov 2008.

[WFGLS88] D. Weinreb, N. Feinberg, D. Gerson, and C. Lamb. An object-oriented
database system to support an integrated programming environment. Data
Engineering, 11(2):33-43, June 1988.

