
Instruction Scheduling Based on Subgraph Isomorphism

for a High Performance Computer Processor

Ricardo Santos
(Dom Bosco Catholic University, Campo Grande, Brazil

ricr.santos@ucdb.br)

Rodolfo Azevedo
(State University of Campinas, Campinas, Brazil

rodolfo@ic.unicamp.br)

Guido Araujo
(State University of Campinas, Campinas, Brazil

guido@ic.unicamp.br)

Abstract: This paper1 presents an instruction scheduling algorithm based on the
Subgraph Isomorphism Problem. Given a Directed Acyclic Graph (DAG) G1, our
algorithm looks for a subgraph G′

2 in a base graph G2, such that G′
2 is isomorphic

to G1. The base graph G2 represents the arrangement of the processing elements
of a high performance computer architecture named 2D-VLIW and G′

2 is the set of
those processing elements required to execute operations in G1. We have compared
this algorithm with a greedy list scheduling strategy using programs of the SPEC and
MediaBench suites. In our experiments, the average Operation Per Cycle (OPC) and
Operations Per Instruction (OPI) achieved by our algorithm are 1.45 and 1.40 times
better than the OPC and OPI obtained by the list scheduling algorithm.

Key Words: instruction scheduling, subgraph isomorphism, 2D-VLIW

Category: D.3.m, C.1.3, I.2.5

1 Introduction

It is well-known that current high performance microprocessor architectures use
hardware and software techniques to exploit the Instruction Level Parallelism
(ILP) available in the applications. The proper scheduling of operations onto the
hardware resources plays an important role in the final application performance.
For architectures that schedule instructions at compile time, advanced compiler
optimizations are essential to exploit the ILP available in programs.

Advanced compiler optimizations, including new instruction scheduling
strategies, can look at large code regions to find out larger parallelism lev-
els [Faraboschi et al. 2001]. In order to adopt large code regions at scheduling
time, there is an increasing number of scheduling techniques based on graph
1 A preliminary version of this paper was published in the Proceedings of the 12nd

Brazilian Symposium on Programming Languages, 2008.

Journal of Universal Computer Science, vol. 14, no. 21 (2008), 3465-3480
submitted: 16/4/08, accepted: 5/6/08, appeared: 1/12/08 © J.UCS

matching [Maheswaran and Siegel 1998]. These proposals range from schedul-
ing operations on multiprocessor systems, clustered VLIW architectures, and
heterogeneous computing systems.

In this paper we address the instruction scheduling problem in a high
performance computer architecture through a subgraph isomorphism approach.
Instead of looking at single operations of a Directed Acyclic Graph (DAG) and
allocating them to the hardware resources, our scheduling approach deals with
two graphs: a DAG and a hardware resource graph. The goal is to match the
DAG onto the hardware graph. This approach has shown to be very useful
for architectures based on multiple processing elements once it easily captures
the interconnection patterns of the DAGs and the available hardware resources
at scheduling time. We propose a new instruction scheduling algorithm for a
multiple functional-unit architecture named 2D-VLIW [Santos et al. 2006]. This
architecture relies thoroughly on the compiler optimizations to provide speedup
for the applications, since the compiler is the responsible for allocating and
managing the hardware resources.

We have performed some experiments considering the Operations Per Cycle
(OPC) and Operations Per Instruction (OPI) obtained by our algorithm. We
compare the results of the subgraph isomorphism scheduling with a greedy
list scheduling algorithm using programs of the SPEC (integer and float-
point) [Henning 2000] and MediaBench [Lee et al. 1997] suites.

This paper is organized as follows: A description of the 2D-VLIW architecture
is presented in Section 2. Section 3 discusses the Subgraph Isomorphism problem.
Section 4 describes our instruction scheduling approach based on subgraph
isomorphism. In addition, we present some heuristics to boost the subgraph
isomorphism algorithm. The experiments and results are presented in Section 5.
The final remarks and proposals for future work are described in Section 6.

2 The 2D-VLIW Architecture

2D-VLIW (Two-Dimensional Very Long Instruction Words) is a high per-
formance computer architecture that exploits ILP through a bi-dimensional
arrangement of the hardware resources and a pipeline datapath. In the 2D-VLIW
architecture, the compiler is the unique responsible for assigning operations
to the available resources. The architecture is called 2D-VLIW because it
fetches large instructions, comprised of single operations, from the memory and
executes these operations on a 2D-matrix of functional units through a pipeline.
2D-VLIW follows the EPIC terminology for operations and instructions: an
operation corresponds to a RISC-like instruction and an instruction is a group
of operations. The 2D-VLIW architectural arrangement is depicted in Figure 1.

Figure 1(a) sketches the datapath and its major architectural components.
Figure 1(b) details the matrix of functional units (FUs) where four operations

3466 Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

Register
File Bank

EX /EX Pipeline Register2 3

EX /EX Pipeline Register1 2

EX1

EX3

EX4

EX2

EX /EX Pipeline Register43

(c)

OperandsOperands
SelOpnd2 SelOpnd1

Unit
Functional

Register
File

Temp

Register
FU

SelOperation

Global Reg. File

IF/ID Pipeline Register

2D−VLIW Instruction

Control Unit

ID/EX Pipeline Register1

Matrix
Functional Unit

(a) (b)

Figure 1: An overview of the 2D-VLIW datapath.

can be executed by four FUs at each execution stage EX1, EX2, EX3, EX4 of
the pipeline. Figure 1(c) shows all logic blocks and signals inside a 2D-VLIW FU.
Results from an FU may be written either into the Temp Register F ile (TRF) or
the Global Register F ile (GRF). TRF is a small register bank containing 2 local
registers dedicated to each FU. The GRF has 32 registers. The result of an FU
is always written into an internal register called FU Register (FUR). Operands

input data come from three possible sources: a GRF register, a TRF register,
or from the FUR of the FU itself. The SelOpnd1, SelOpnd2 and SelOperation

input selection signals are available from the pipeline registers.

3467Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

Program execution over the 2D-VLIW matrix is pipelined. At each clock
cycle, one 2D-VLIW instruction (comprised of 16 single operations) is fetched
from the memory and pushed into the pipeline stages. On the execution stages,
the operations from this instruction are executed according to the number of FUs
in each row. Assuming that the architecture has 16 functional units organized
as a 4 × 4 matrix, a 2D-VLIW instruction can also be represented as a 4 × 4
operation matrix comprised of 16 operations. Figure 2 shows the execution of
instructions A and B in the 2D-VLIW datapath. Since the decode and fetch
stages work the same as in a standard processor, we start at the EX1 execution
stage. After the ID/EX1 pipeline register has been filled in, the execution starts
over the matrix.

A

A

A

A

1

2

3

4

ld ld ld

& &
addiaddi

addi addi addi addi

addiaddi

ld

& &

st st st

ld ld
addi addi

addi addi

st

+ +
addi

addi&
st

B

B

B

B

1

2

3

4

A

B

EX /EX
1 2

ID/EX
1

A1

EX /EX
3 4

EX /EX
2 3

addi addi addi addi

(a) cycle 1

EX /EX
3 4

EX /EX
2 3

EX /EX
1 2

ID/EX
1A

A

A

A

1

2

3

4

addi & addiaddi

ld ld ld ld

ld ld ld

& &
addiaddi addiaddi

ld

& &

st st st

ld ld
addi addi

addi addi

st

+ +
addi

addi&
st

B

B

B

B

1

2

3

4

A

B

2

B1

A

(b) cycle 2

A

A

A

A

1

2

3

4

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���
����������

EX /EX
2 3

3 4
EX /EX

EX /EX
1 2

ID/EX
1

&
addiaddi addiaddi

& &

st st st

ld ld
addi addi

st

+ +
addi st

B

B

B

B

1

2

3

4

A

B

&

ld ld addi st

& & & &

C1

B2

A3

(c) cycle 3

3 4
EX /EX

EX /EX
2 3

EX /EX
1 2

1
ID/EX

A

A

A

A

1

2

3

4

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��������

addi addi + +

addi addiaddi addi

D1

C2

B3

A4

addiaddi addiaddi

st st stst

B

B

B

B

1

2

3

4

A

B
addi + +addi

(d) cycle 4

Figure 2: The execution stages of two instructions on the 2D-VLIW architecture.

Figure 2(a) depicts the first execution cycle on the FU matrix. The first row
receives data from the ID/EX1 pipeline register. Four functional units from
row A1 execute operations addi, addi, addi, addi (instruction A). The dashed
arrows indicate which FUs receive the results from these operations. At the
second execution cycle, Figure 2(b), operations ld, ld, ld, ld from A2 are running
on the second row. At the same time, operations from B1 start onto the first
row. At the third execution stage, Figure 2(c), the EX2/EX3 pipeline register

3468 Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

carries information to execute operations from A3, the FUs in the second row are
executing operations ld, ld, addi, st from B2 and the first row (C1) of a 2D-VLIW
instruction C, starts its execution on the matrix. At the fourth execution stage,
Figure 2(d), operations from A4 are running on the fourth row, operations from
B3 are running on the third row, operations from C2 are running on the second
row and instruction D starts its execution.

As the unique responsible for the mapping of operations onto the hardware
resources, the compiler plays an important role in the 2D-VLIW architecture.
In order to have a compiler infrastructure generating code for the 2D-VLIW
architecture, the Trimaran compiler [Chakrapani et al. 2004] has been adopted.

Trimaran does not have a scheduler that captures all 2D-VLIW features
however. The scheduling techniques carried out in Trimaran are based on
variations of the classical list scheduling. We have found out that approaches
dealing with individual operations (like list scheduling does) or small code
regions, do not draw a good performance on this architecture when compared
to a scheduling looking at larger code regions and taking the functional units
interconnection into account. Our scheduling proposal, on the other hand, picks
up DAGs from programs and matches these DAGs onto the FU-matrix. The
matching is performed by a subgraph isomorphism algorithm.

3 The Subgraph Isomorphism Problem in the 2D-VLIW
Architecture

Subgraph isomorphism is a very general form of exact pattern matching and
a common generalization of many important graph problems including finding
Hamiltonian paths, cliques, matchings, girth and shortest paths [Eppstein 1999].

In the classical graph isomorphism problem, two graphs G1 = (V1, E1) and
G2 = (V2, E2) are isomorphic, denoted by G1

∼= G2 if there is a bijection
ϕ : V1 → V2 such that, for every pair of vertices vi, vj ∈ V1 holds that (vi, vj) ∈
E1 if and only if (ϕ(vi), ϕ(vj)) ∈ E2. In the subgraph isomorphism problem,
graph G1 = (V1, E1) is isomorphic to graph G2 = (V2, E2) if there exists
a subgraph of G2, for example G′

2, such that G1
∼= G′

2. For certain choices
of G1 and G2 there can be exponentially many occurrences so that listing
all these occurrences is impractical thus leading to an NP-complete decision
problem [Garey and Johnson 1979]. Without loss of generality, lets call G1 the
input graph and G2 the base graph.

Figure 3 shows an example of subgraph isomorphism. Figures 3(a) and 3(b)
show the input graph and the base graph, respectively. The result of the mapping
of edges and vertices from graph G1 to graph G2 is the graph in Figure 3(c).
Notice that ϕ(a) = 6, ϕ(b) = 5, ϕ(c) = 4, ϕ(d) = 3.

Instruction scheduling has been one of the most complex tasks for a 2D-
VLIW compiler mostly because the scheduler has to capture several hardware

3469Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

b d

a

c

(a) Input graph G1

1

2

3

4

5

6

(b) Base graph G2

3

4

5

6

(c)

(b)

(a)

(d)

(c) Graph G′
2

Figure 3: Example of Subgraph Isomorphism.

features such as FU-matrix size and topology, number of global and temporary
registers and take all of them into account at the scheduling time. An instruction
scheduling scheme based on subgraph isomorphism can minimize part of this
complexity by representing the functional units and their interconnections
through a base graph whereas the operations of the input DAG and their
dependencies are represented by the input graph. Given an input DAG G1 and
the FU-matrix represented as a base graph G2, the scheduler goal is to find a
subgraph G′

2 (represented as hardware resources inside the matrix) that matches
to G1.

The mapping of operations onto the FU-matrix leads to a complete 2D-
VLIW instruction. Figure 4 depicts the 2D-VLIW instruction scheduling as a
subgraph isomorphism problem. Notice that the functional units of the matrix
and their interconnections are nodes and edges of the base graph. By looking
at the scheduling result, we can realize that each position of the 2D-VLIW
instruction has one operation which will be executed as the instruction goes
down the FU-matrix.

4 A Subgraph Isomorphism Algorithm to Schedule 2D-VLIW
Instructions

Since subgraph isomorphism problems were already proved as NP-complete
problems [Ullmann 1976], adopting efficient algorithms is a mandatory condition
to use solutions to solve them. We have carried out a set of heuristics and used the
main ideas from the VF subgraph isomorphism library [Cordella et al. 2001] to
perform the 2D-VLIW scheduling based on the subgraph isomorphism strategy.
The VF algorithm finds an isomorphism if there exist one and can determine
the best isomorphism (optimal result). Further optimizations were added to this
library to make it suitable for our purposes. For example, the original worst-
case time complexity of VF algorithm is O(V !V), where V = #vertices of the
input graph. One of our optimizations consists in determining a time constraint
(≤ 8 sec.) where the VF algorithm should find an isomorphism for each DAG.

3470 Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

ld
addi

addi addi&

st

addi

+ +

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����

����
����
����

ld + +

addiaddi

addi

st

addi&

Input Graphs

EX /EX Pipeline Register3 4

Base Graph

EX /EX Pipeline Register2 3

EX /EX Pipeline Register1 2

& addi

st

addi

addi

ld

addi

+ +

Scheduling Result

Figure 4: 2D-VLIW Instruction Scheduling Strategy.

If the isomorphism is not found within this time constraint, one optimization
is performed to aid the scheduling. By performing the experiments, we could
realize that these optimizations were indeed useful to schedule DAGs having
more than a hundred vertices.

The inputs of the 2D-VLIW instruction scheduling strategy are DAGs gener-
ated by the Trimaran compiler and a base graph built in a specific procedure. The
DAGs are passed to the scheduler on a hyperblock [Mahlke et al. 1992] basis,
i.e., all the DAGs from a hyperblock i are scheduled before going to the next
hyperblock p, p > i. Our algorithm takes these DAGs along with operation’s
latency information and performs the matching between the DAG and the
base graph. Despite taking operations’ latency and explicit data dependencies
to schedule instructions, our algorithm also obeys some non-explicit data
dependency such as saving passing parameters before procedure calls, and so
on. Algorithm 1 outlines the 2D-VLIW instruction scheduling strategy.

First of all, we execute the topological order procedure (Line 1) to perform
a topological ordering in the input DAG G1. Procedure subg iso sched (Line
2) finds a subgraph G′

2, G′
2 ⊆ G2, isomorphic to G1. This procedure uses the

VF subgraph isomorphism library to find out subgraph G′
2. If subgraph G′

2 is
not found (Lines 3-8) the scheduler chooses one heuristic (Lines 4-6) and runs
it over the input parameters. Variable tag (Line 4) acts as a heuristic selector.

3471Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

Algorithm 1 2D-VLIW Subgraph Isomorphism Scheduling Algorithm
INPUT: An input graph G1 and a base graph G2

OUTPUT: Set of 2D-VLIW instructions
Sched(DAG: G1, BASE GRAPH: G2)
1) topological order(G1);
2) G′

2 =subg iso sched(G1, G2, tag);
3) while (G′

2 == NULL)
4) switch(tag)
5) case 1 : base graph resize(G2);
6) case 2 : DAG stretch(G1);
7) G′

2 =subg iso sched(G1, G2, tag);
8) end while
9) create 2D-VLIW instruction(G′

2);

Heuristic base graph resize (Line 5) increases the base graph size in order to
speed up the subgraph isomorphism procedure. The last heuristic, DAG stretch
(Line 6), transforms DAG G1 into a more flexible graph so that it can be easily
matched to G2. Observe that only one heuristic is used after each unsuccessful
execution of the subg iso sched procedure. Each heuristic is executed following a
sequential order according to the numbers in Lines 5 and 6. After the scheduling
is found, a 2D-VLIW instruction is created (Line 9). It should be clear that the
time constraint is set in the subg iso sched procedure.

4.1 Topological Ordering Procedure

The topological ordering procedure provides the vertices ordering for the
subg iso sched procedure. A bad vertex ordering can increase the number of
backtracking steps of the isomorphism algorithm, resulting in a poor scheduling
performance.

4.2 Heuristic 1: Base Graph Resizing

This heuristic is run when a base graph G2 is not large enough to have a subgraph
isomorphic to DAG G1. The heuristic enlarges a base graph 2-fold, thereby
forming up a new larger base graph. One can see this heuristic as a base graph
“unrolling” method once the enlargement of the base graph is given by doubling
(unrolling) its nodes and interconnections along the time, like in the software
pipeline techniques [Aiken and Nicolau 1988]. Figure 5 exemplifies an unrolling
of a single base graph, the FU-matrix in Figure 5(a), into a new larger base
graph, the interconnected FU-matrices in Figure 5(b). For the sake of simplicity
we left out the pipeline details. Looking at FU-matrix B, we can notice that the

3472 Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

FUs in row n from this matrix, 2 ≤ n ≤ 4, have more edges than the FUs in the
same row from FU-matrix A. These edges indicate that an FU from an unrolled
matrix B can read values produced by FUs from matrix A and matrix B itself.
Figure 5(c) shows the interconnection details from two nodes of FU-matrix A to
two nodes of FU-matrix B.

A

(a) Single base graph

B

A

(b) Larger base graph

A

B

(c) Interconn. details between
FU-matrix A and FU-matrix B

Figure 5: Example of base graph unrolling.

In Figure 6, one can observe that the input DAG in 6(a) cannot be scheduled
onto a base graph comprised of just one FU-matrix. This scheduling cannot
happen because node 2 has 3 descendants and the nodes of the base graph have
only 2 descendants. The solution is to unroll the base graph to produce nodes
with 3 descendants. Remember from Figure 5(b) that a base graph comprised
of 2 FU-matrices has nodes with more than 2 descendants. After unrolling the
single base graph, in Figure 6(b), we obtain the final successful scheduling in
Figure 6(d).

4.3 Heuristic 2: DAG Stretch

The DAG stretch heuristic acts as a mechanism to make the input DAG flexible
enough to be allocated onto the 2D-VLIW FU-matrix.

At scheduling time, the scheduler struggles to match input DAGs onto the
base graph. If the input DAG is too complex such that the scheduler cannot
find a subgraph isomorphic to the input DAG, the scheduling algorithm resorts
to the DAG stretch heuristic. The heuristic converts single nodes of the input
DAG into a new class of nodes named g-nodes in order to let the scheduler can
use different base-graph regions to perform the scheduling. The single nodes
are the nodes with the most number of descendants. This choice comes to

3473Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

5 43

1

2

(a) Input DAG

A

1

2

3 4

(b) Single base graph

5 43

1

2

(c) Input DAG

A

B

1

2

3 4

5

(d) Larger base graph

Figure 6: Base graph resize example.

the intuition that nodes with many descendants are most likely, the cause of
backtrackings. Figure 7 outlines how this heuristic works. In Figure 7(a) node 2
has 3 descendants and the base graph, Figure 7(b), has enough available nodes
to match the input DAG. However, the mapping of DAGs edges onto the FUs
interconnections (TRFs) enables the subgraph isomorphism algorithm to explore
only TRFs-connected nodes. Our solution is to convert node 2 into 2g (global
node) that allows its descendants to be scheduled onto any node of the base
graph.

One can notice that the g-node makes the input DAG flexible enough
enabling it to use other nodes of the base graph that were not initially available.
Such flexibility is owed to the global registers usage since a global register data
can be read from any functional unit of the FU-matrix through the pipeline
registers. In other words, the conversion of node 2 into 2g indicates that node
2g writes its result to an available global register, hence making it possible to
its descendants nodes to be scheduled onto any functional unit.

4.4 Subgraph Isomorphism Scheduling and Register Allocation

Register allocation is another compiler task that can take advantage of a
subgraph isomorphism strategy. By including special nodes in the base graph, we
can perform instruction scheduling and register allocation together in the 2D-
VLIW architecture. These special nodes represent 2D-VLIW registers (global
and temporaries) and they follow the 2D-VLIW interconnection as depicted in

3474 Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

5 43

1

2

(a) Input DAG

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

A

B

C

D

1

2

(b) Scheduling result

35 4

1

2g

(c) Input DAG with a g-
node

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
��� ���

���
���
���
���
���

���
���
���
���
���
������
���
���
���
���
���

���
���
���
���
���
�������

����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
��� ���

���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
�������

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
������
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
������

���
���
���
���
���

���
���
���
���
���
���

A

B

C

D

1

2g

3 4

5

(d) Scheduling result after a g-node insertion

Figure 7: DAG stretch example.

Figure 1. Figure 8 depicts a base graph with basic nodes (FUs) and special nodes
(temporary register banks).

By adopting an integrated approach, instruction scheduling and register
allocation, the 2D-VLIW register allocator acts as follows:

1. Root nodes of the input graphs read values from the global register file while
leaf nodes write their results to the global registers.

2. Internal nodes of the input graphs read and write from/to the temporary
registers.

5 Experimental Results

This Section presents the performance results of the 2D-VLIW scheduling.
We compare the results of our approach based on subgraph isomorphism
with a greedy list scheduling algorithm. This list scheduling is described in
Subsection 5.1. We have performed three experiments that measure the number
of 2D-VLIW instructions per program, the number OPC enabled by each
scheduling type, and the number of OPI. The results of the experiments are
presented in Subsection 5.2. All the experiments were carried out using programs
of the SPEC and MediaBench suites compiled with the Trimaran compiler
infrastructure.

3475Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

EX /EX Pipeline Register2 3

EX /EX Pipeline Register3 4

EX /EX Pipeline Register1 2

Register
Files

Temp

Global Register File

FU FU FU FU

FUFUFUFU

FU

FU FU

FU

FU

FU

FU

FU

1 2 3

4 5 6 7

111098

12 13 14 15

0

Figure 8: Temporary and global registers as nodes of the base graph.

5.1 A 2D-VLIW Greedy List Scheduling Algorithm

The 2D-VLIW list scheduling algorithm is a greedy list scheduling solution for
the 2D-VLIW FU-matrix. As usual, it schedules each individual node according
to its order in the ready set. Given an operation i to be scheduled, the algorithm
tries to choose an available FU at the same matrix as its ancestors in order to
increase the program OPI. If such FU is not available, the algorithm chooses the
first available FU in the next matrix following the interconnection constraints
of its parents. Like the isomorphism algorithm (discussed in Section 4), the
list scheduling strategy backtracks whenever there is no possible scheduling
for the current node. Despite its exponential time complexity, the backtracking
procedure is a necessary step to make sure that the scheduling follows the DAG’s
nodes dependency.

Algorithm 2 outlines the main steps of the 2D-VLIW list scheduling strategy.
Except for Lines 2, 5, and 7, the steps of the algorithm look like the same as in
Algorithm 1. Observe that the DAG Stretch heuristic can also be applied to the
input parameters in Algorithm 2. Moreover, the same time constraints used in
Algorithm 1 are also applied to Algorithm 2.

5.2 Results

The first experiment shows the number of 2D-VLIW instructions obtained by
each scheduling algorithm and their respective scheduling time. The results in

3476 Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

Algorithm 2 Greedy List Scheduling Algorithm
INPUT: An input graph G1 from a hyperblock
OUTPUT: Set of 2D-VLIW instructions
LS Sched(DAG: G1)
1) topological order(G1);
2) G′

2 =greedy ls sched(G1);
3) while (G′

2 == NULL)
4) DAG stretch(G1);
5) G′

2 =greedy ls sched(G1);
6) end while
7) create 2D-VLIW instruction(G′

2);

Table 1 has a straight impact on the final code size and performance of the pro-
grams since programs that have more instructions will require more instruction
fetch cycles to the memory. The last column indicates the improvement of the
subgraph isomorphism scheduling time when compared to the list scheduling
time. Columns 2 and 3 represent the number of instructions and the scheduling
time (seconds) of the List Scheduling (LS) algorithm. Columns 4 and 5 show
the same values (number of instructions and scheduling time) considering the
Subgraph Isomorphism Scheduling (SIS) algorithm.

Table 1: Number of 2D-VLIW instructions and Scheduling Time of the List Scheduling
(LS) and the Subgraph Isomorphism Scheduling (SIS).

Programs LS SIS Improv.
176.gcc 158,300 401,573 108,786 48,967 (87%)
175.vpr 58,483 54,217 43,511 7,525 (86%)
181.mcf 9,689 9,243 7,782 1,264 (86%)
197.parser 71,514 86,912 45,410 6,666 (92%)
255.vortex 110,602 128,608 75,235 5,679 (95%)
256.bzip2 21,020 24,875 17,109 5,184 (79%)
300.twolf 99,688 141,371 84,344 23,843 (83%)
epic 8,732 634 1,953 151 (76%)
gsm.decode 10,557 1,831 9,136 1,113 (39%)
gsm.encode 13,852 5,034 11,810 1,885 (62%)
pegwit 14,128 10,634 11,159 2,171 (79%)
168.wupwise 9,336 6,869 6,666 1,096 (84%)
183.equake 10,787 5,150 7,243 655 (87%)

The results in Table 1 show that the isomorphism scheduling strategy leads to
fewer 2D-VLIW instructions than the greedy list scheduling for all the evaluated
programs. The isomorphism scheduler time performance were up to 95% better

3477Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

than the list scheduling. The scheduler performance gains of our strategy can
be observed for all the programs (Column Improv.). We have also performed an
experiment comparing the time performance of our scheduling strategy to the
greedy list scheduling algorithm. The average time speedup of our scheduling
over the greedy list scheduling algorithm is 8.21. The worst running performance
of the list scheduling is owing to two reasons: 1) its local view of the scheduling
process; 2) the backtracking procedures running every time a vertex does not
match to the base architecture graph. Despite not being shown, we believe that
a list scheduling algorithm that does not perform the backtracking, provides a
better performance at the expense of a larger global register usage.

The next experiment compares the OPC and OPI achieved by both schedul-
ing algorithms when considering all the programs. Unlike other approaches
based on the program’s kernels, we compute the OPC and OPI by the whole
program code source. The values in Table 2 indicate the OPC and OPI (in
parenthesis), respectively. Likewise Table 1, LS represents the results obtained
by the List Scheduling algorithm and SIS represents the results of the Subgraph
Isomorphism Scheduling algorithm. Moreover, we compute the average and
standard deviation of the OPC and OPI in each algorithm.

Table 2: OPC and OPI

Program LS SIS
176.gcc 2.27 (6.17) 3.14 (8.99)
175.vpr 2.50 (2.34) 3.70 (3.15)
181.mcf 5.00 (4.99) 6.60 (6.22)
197.parser 2.20 (2.03) 3.59 (3.20)
255.vortex 1.09 (2.25) 3.41 (3.31)
256.bzip2 2.47 (2.47) 3.20 (3.03)
300.twolf 2.18 (1.93) 2.76 (2.28)
epic 2.61 (1.30) 4.49 (5.84)
g721.decode 2.23 (2.23) 3.52 (3.44)
g721.encode 2.24 (2.24) 3.48 (3.41)
gsm.decode 2.47 (2.47) 3.10 (2.86)
gsm.encode 2.55 (2.55) 3.20 (2.99)
pegwit 4.32 (4.30) 5.07 (5.44)
168.wupwise 2.23 (2.23) 3.38 (3.13)
179.art 2.36 (2.36) 3.51 (1.67)
183.equake 2.20 (2.30) 3.52 (3.28)

Average 2.55 (2.76) 3.72 (3.89)
St. Dev. 0.9 (1.2) 0.9 (1.8)

The isomorphism scheduling algorithm outperforms the greedy list scheduling
for all programs. The average OPC and OPI of the subgraph isomorphism
scheduling are about 1.5× better than the values produced by the list scheduling.

3478 Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

Actually, the maximum OPC and OPI values achieved by the subgraph
isomorphism is up to 3.12× (program 255.vortex) better than the greedy list
scheduling.

Another interesting result shows up when we compare the OPC achieved by
a subset of the programs in Table 2 (programs 179.art, 256.bzip2, 183.equake,
and 197.parser) with the results reported in [Coons et al. 2006] when using the
same subset. The peak OPC (Annealed IPC) obtained in [Coons et al. 2006] for
these programs is 6.4, 3.0, 2.7, and 2.4, leading to an average OPC of 3.62.
For this same program subset, the average OPC achieved by our subgraph
isomorphism scheduling is 3.45. Most important, the scheduling algorithm
described in [Coons et al. 2006] does not consider compiler time constraints to
achieve these peak performance. On the other hand, all our results were obtained
according to time constraints added into our scheduling algorithm.

6 Conclusions and Future Work

A new instruction scheduling algorithm based on subgraph isomorphism theory
was presented in this paper. The algorithm has been used as a basic scheduler for
an architecture named 2D-VLIW. The algorithm considers DAGs of a program as
input graphs and the functional units and their interconnections are represented
by a base graph. The objective is to find a subgraph of the base graph which is
isomorphic to the input graph.

By comparing the average OPC and OPI achieved by our scheduling
technique to the greedy list scheduling algorithm, the subgraph isomorphism
algorithm obtains 3.72 and 3.89, respectively, whereas the greedy list scheduling
values are 2.55 and 2.72. All the programs have less 2D-VLIW instructions
when scheduled with the subgraph isomorphism strategy. Interesting enough,
our scheduling algorithm achieves a time speedup of 8.21 over the greedy list
scheduling algorithm.

Future research is focused on plugging scheduling and register allocation
together using the subgraph isomorphism strategy. We are also experimenting
new parameters for the Base Graph Resize heuristic. Furthermore, we intend to
evaluate this scheduling algorithm under other architectures based on multiple
processing elements with dynamic or fully interconnecting schemes.

Acknowledgments

The authors thank Brazilian Research Agencies (CAPES and CNPq) for their
financial support to the research in the Computer Systems Laboratory of
the Institute of Computing. Ricardo Santos also thanks Dom Bosco Catholic
University for its financial support in the 2D-VLIW project.

3479Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

References

[Aiken and Nicolau 1988] Aiken, A., Nicolau, A.: “Limits on Multiple Instruction
Issue”; Proceedings of the ACM Conf. on PLDI, ACM Press, 1988, 308-317.

[Chakrapani et al. 2004] Chakrapani, L. N., Gyllenhaal, J., Mei, W., Hwu, W.,
Mahlke, S. A., Palem, K. V., Rabba, R. M.: “Trimaran - An Infrastructure for
Research in Instruction-Level Parallelism”; Lecture Notes in Computer Science,
Springer-Verlag, 3602, 2004, 32-41.

[Coons et al. 2006] Coons, K. E., Chen, S., Kushwaha, S. K., Burger, D., McKinley, K.
S.: “A Spatial Path Scheduling Algorithm for EDGE Architectures”; Proceedings
of the 12th ACM Int. Conf. on ASPLOS, ACM Press, October 2006, 40-51.

[Cordella et al. 2001] Cordella, L. P., Foggia, P., Sansona, C., Vento, M.: “An Improved
Algorithm for Matching Large Graphs”; Proceedings of the 3rd IAPR TC15
Workshop on Graph-Based Representations, Ischia-Italy, 2001, 149-159.

[Eppstein 1999] Eppstein, D.: “Subgraph Isomorphism in Planar Graphs and Related
Problems”; Journal of Graph Algorithms and Applications, World Scientific Pub-
lishing, 3 (3), 1999, 1-27.

[Faraboschi et al. 2001] Faraboschi, P., Fisher, J. A., Young, and C.: “Instruction
Scheduling for Instruction Level Parallel Processors”; Proceedings of the IEEE,
IEEE Computer Society, 89 (11), November 2001, 1638-1658.

[Garey and Johnson 1979] Garey, M. R., Johnson, D. S.: “Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness”; W. H. Freeman and Company,
1979.

[Henning 2000] Henning, J.: “SPEC CPU2000: Measuring CPU Performance in the
New Millenium”; IEEE Computer, IEEE Computer Society, 33 (7), 2000, 28-35.

[Johnson 1974] Johnson, D. S.: “Fast Algorithms for Bin Packing”; Journal of Com-
puter and System Sciences, Society for Industrial and Applied Mathematics, 8, 1974,
272-314.

[Lee et al. 1997] Lee, C., Potkonjak, M., Smith, W. H.: “MediaBench: A Tool for Eval-
uating and Synthesizing Multimedia and Communications Systems”; Proceedings of
the 30th Int. Symp. on MICRO, IEEE Computer Society, December 1997, 330-335.

[Maheswaran and Siegel 1998] Maheswaran, M., Siegel, H. J.: “A Dynamic Matching
and Scheduling Algorithm for Heterogeneous Computing Systems”; Proceedings of
the 7th Heterogeneous Computing Workshop, IEEE Computer Society, 1998, 57-69.

[Mahlke et al. 1992] Mahlke, S. A., Lin, D. C., Chen, W. Y., Hank, R. E., Bring-
mann,R. A.: “Effective Compiler Support for Predicated Execution Using the
Hyperblock”: Proceedings of the 25th IEEE/ACM Int. Symp. on MICRO, IEEE
Computer Society, December 1992, 45-54.

[Santos et al. 2006] Santos, R., Azevedo, R., Araujo, G.: “Exploiting Dynamic Recon-
figuration Techniques: The 2D-VLIW Approach”; Proceedings of the 13th IEEE
Int. Workshop on Reconfigurable Architectures, IEEE Computer Society, Rhodes
Island-Greece, 2006.

[Ullmann 1976] Ullmann, J. R.: “An Algorithm for Subgraph Isomorphism”; Journal
of the Association for Computing Machinery, ACM Press, 23 (1), 1976, 31-42.

3480 Santos R., Azevedo R., Araujo G.: Instruction Scheduling ...

